
Provided by the author(s) and University College Dublin Library in accordance with publisher

policies. Please cite the published version when available.

Title Detecting highly overlapping communities with Model-based Overlapping Seed Expansion

Authors(s) McDaid, Aaron; Hurley, Neil J.

Publication date 2010-08

Publication information Memon, N. and Alhajj, R. (eds.). 2010 International Conference on Advances in Social

Network Analysis and Mining ASONAM 2010 : proceedings

Conference details Presented at the 2010 International Conference on Advances in Social Networks Analysis

and Mining (ASONAM 2010), August 9-11, Odense, Denmark

Publisher IEEE Computer Society

Link to online version http://dx.doi.org/10.1109/ASONAM.2010.77

Item record/more information http://hdl.handle.net/10197/2404

Publisher's statement Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

Publisher's version (DOI) 10.1109/ASONAM.2010.77

Downloaded 2022-08-23T11:47:52Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2FASONAM.2010.77&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F2404

Detecting highly overlapping communities with
Model-based Overlapping Seed Expansion

Aaron McDaid and Neil Hurley
School of Computer Science and Informatics, University College Dublin, Ireland

aaronmcdaid@gmail.com neil.hurley@ucd.ie

Abstract—As research into community finding in social net-
works progresses, there is a need for algorithms capable of
detecting overlapping community structure. Many algorithms
have been proposed in recent years that are capable of assigning
each node to more than a single community. The performance of
these algorithms tends to degrade when the ground-truth contains
a more highly overlapping community structure, with nodes
assigned to more than two communities. Such highly overlapping
structure is likely to exist in many social networks, such as
Facebook friendship networks. In this paper we present a scalable
algorithm, MOSES, based on a statistical model of community
structure, which is capable of detecting highly overlapping
community structure, especially when there is variance in the
number of communities each node is in. In evaluation on synthetic
data MOSES is found to be superior to existing algorithms,
especially at high levels of overlap. We demonstrate MOSES on
real social network data by analyzing the networks of friendship
links between students of five US universities.

I. INTRODUCTION

In this paper we introduce MOSES, a Model-based Over-
lapping Seed ExpanSion1 algorithm, for finding overlapping
communities in a graph. The algorithm is designed to work
well in applications, such as social network analysis, in which
the graph is expected to have a complex, highly-overlapping
community structure.

Many of algorithms for finding communities in graphs
have been limited to partitions, where each node is assigned
to exactly one community. While there are still very many
open questions about the basic structure of empirical graphs,
it is difficult to accept that a partition is an appropriate
description of the complete community structure in a graph. In
recent years, many algorithms have been proposed to detect
overlapping communities. We repeat experiments similar to
those carried out in [1], which show that many such algorithms
are only capable of detecting weakly overlapping community
structure, where a typical node is in just two communities.
If we are to be able to make reasonable inferences about the
community structure in empirical graphs, we need algorithms
capable of detecting highly overlapping communities, if only
so that we can credibly rule out highly overlapping community
structure for a given graph.

The method presented here is similar in spirit to many exist-
ing algorithms, in that a global objective function is defined to
assign a score to each proposed community assignment. The

1Our C++ implementation of MOSES is available at http://sites.google.com/
site/aaronmcdaid/moses.

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

Fig. 1. Four communities of a single user (the node in black) of Facebook,
as determined by MOSES. Two other users (red) have been assigned to
both the blue and purple communities. A typical user, like many of those
in this diagram, will be a member of seven communities, which we have not
attempted to visualize here.

algorithm proceeds by using simple heuristics to search for
communities in the graph, maximizing our objective function.
This allows for scalability as the MOSES objective function
can be efficiently updated throughout.

A. Structure of this paper

We first briefly consider related work in the field on over-
lapping community finding. Then, in sections III and IV we
introduce our objective function and describe the algorithm.
Next, there is an analysis of the algorithm with two types of
synthetic benchmark data, the LFR benchmarks proposed in
[2] and a second model that allows for greater variance in the
community overlap structure. We conclude with an analysis of
a Facebook friendship network from five US universities.

a) Notation: In this paper we consider the community
assignment problem on an unweighted, undirected graph G,
with vertices V and edges E and no self-loops. Boldcase
letters, such as Z, z denote column vectors with the uppercase
Z referring to a random vector variable and the lowercase
z referring to a particular realization of Z. We use capital
Roman letters, such as Z to denote random matrices and
their realizations. The components of random matrices are
denoted by the corresponding uppercase letter e.g. Zij , while

http://sites.google.com/site/aaronmcdaid/moses
http://sites.google.com/site/aaronmcdaid/moses
Library
Text Box
©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

the components of matrix realizations are denoted by the
corresponding lowercase letter e.g. zij .

II. RELATED WORK

While there is no single generally accepted definition of a
community within a social network, most definitions try to
encapsulate the concept as a sub-graph that has few external
connections to nodes outside the sub-graph, relative to its
number of internal connections. We find the following dis-
tinctions useful in characterizing commonly-used community
definitions:

1) Structural communities: A deterministic set of properties
or constraints that a sub-graph must satisfy in order
to be considered a community is given and thus a
decision can be made on whether any particular sub-
graph is, or is not, a community, e.g. we may consider all
maximal cliques to be communities. Thus finding such
communities is a process of searching the graph for all
sub-graph instances that satisfy the defining properties.

2) Evaluated communities: Every sub-graph is considered
to be a community to a certain extent, given by the value
of a community fitness function. The fitness function may
be local or global in nature and sometimes is associated
with the entire community decomposition rather than
with each single community.

3) Algorithmic communities: As pointed out in [3], often
there is no explicit definition of a community, other
than as the sub-graphs that result from some community
extraction algorithm. A good example of this is the edge-
betweenness algorithm of [4].

The last decade has seen a lot of publications on the topic
of community detection in networks. For a good review, see
[3]. Much work has concentrated on modularity maximization
algorithms, that produce partitions of graphs in which each
node is assigned to a single community. Modularity defines
evaluated communities, where the community fitness is related
to its number of internal edges relative to its expected number
in a particular ‘null model’. While modularity maximization
results in a decomposition of the entire network into a partition
of communities, in fact, a more general view of community-
finding is from the node perspective as community assignment,
i.e. the task is to assign each node in the graph to the
communities (if any) it belongs to and we may describe
algorithms for community-finding as community assignment
algorithms (CAAs).

A number of CAAs that allow overlapping communities
have emerged since 2005 [1, 5–13]. For example GCE [1],
LFM [11] and Iterative Scan (IS) [12] find evaluated commu-
nities. Each uses various local iterative methods to expand
(or shrink) proposed communities such that some function
of the density of the communities is maximized, but the
decision on whether a proposed community is accepted or
not depends on somewhat arbitrary criteria. At the other end
of the spectrum, the Clique Percolation Method (CPM) of
[5] has proved very influential and is essentially a structural

community-finding algorithm, where communities are defined
as sub-graphs consisting of a set of connected k-cliques.

With the recent release of the LFR synthetic benchmark
graphs [14], it has become possible to more thoroughly explore
the performance of these different approaches. Studies on this
benchmark data have illustrated that performance of the algo-
rithms generally degrades as nodes are shared between larger
numbers of communities [1]. It is our contention that real-
world social communities do in fact contain rich overlapping
structures like those of the LFR benchmarks and that it is
necessary to develop CAAs that perform well when on average
each node is assigned to multiple communities. There is need
for further extensions of these synthetic benchmarks as, for
example, the current LFR model places each overlapping node
into exactly the same number of communities.

Model-based CAAs have the advantage of being based on
a model which can explain the rationale of the communities
found, thus avoiding the often arbitrary criteria which are
used in many overlapping CAAs. We develop a scalable,
model-based CAA that performs well on highly overlapping
community structures. In the next section, we review the
model-based network algorithms that are most relevant to our
approach.

A. Model-Based Community-Finding

In model-based community-finding, the graph G is con-
sidered to be a realization of a statistical model. Assuming
unweighted, undirected graphs, with no self-loops, the graph
edges are represented by a random symmetric adjacency
matrix X such that xij = xji = 1 if an edge connecting nodes
i and j exists and zero otherwise. Statistical network models
are reviewed in [15]. Of particular interest in the context of the
work presented here is the stochastic blockmodel introduced
in [16] which is also referred to as the Erdos-Renyi Mixture
Model for Graphs (ERMG) in [17].

The ERMG assumes a partitioning of the graph into com-
munities, so that community assignments can be described
by the vector Z = (Z1, . . . , ZN)T , where Zi = q if node
i is assigned to community q. The graph edges are assumed
independent given the node assignments Z, and drawn from
a Bernoulli distribution with connection probability dependent
on the community assignments of the end-points:

P (Xij = 1|Z = z) = π(zi, zj) ≡ πzizj .

Assuming that πqr = πrq , this leads to the conditional
probability for X given Z,

P (X|Z,θ,Π) =
N∏

i=1

N∏
j=i+1

πxij
zizj

(1− πzizj
)(1−xij) , (1)

where Π is the Q×Q matrix of inter-community connection
probabilities {πqr}. Ultimately, the goal is to predict the
unobserved community assignments z. As discussed in [16]
parameter estimation is difficult as the observed likelihood:

P (X|θ,Π) =
∑

z∈{1,...,Q}N

P (X,Z = z|Π)

cannot be simplified and the Expectation Maximization (EM)
algorithm requires the posterior P (Z|X) which is also in-
tractable. In [17] a variational approach is taken to parameter
estimation while a classification EM approach is taken in
[18], in which the complete likelihood is maximized with
respect to (Z,Π). An online estimation approach is used where
the parameters are incrementally updated using the current
value of the parameters and new observations. The algorithm
is essentially a greedy maximization strategy. The ERMG
assumes a fixed number of communities. To decide between
different values of Q, both [17] and [18] use an Integrated
Classification Likelihood (ICL) criterion to decide between
competing models.

1) Overlapping Stochastic Block Modeling: In [19], the
standard ERMG is expanded to allow for overlapping commu-
nities and the new model is named the Overlapping Stochastic
Blockmodel (OSBM). Now the community assignments of a
node i may be described by a vector Zi = (Zi1, . . . , ZiQ)T ,
such that

Ziq =
{

1 node i in community q
0 otherwise.

The full latent structure may be described by the N×Q matrix
Z, with ith column Zi. As with the ERMG, it is assumed
that all the edges are independent, given Z and drawn from
a Bernoulli distribution, with the probability π(zi, zj) that an
edge exists dependent on the (vector) community assignments
zi and zj of its end-points, leading to a joint distribution of
the same form (1), with πzizj

replaced by π(zi, zj).
The authors assume that the connection probabilities,

π(zi, zj) can be written as sigmoid functions of a quadratic
form ziAzj for a parameter matrix A. Moreover, they choose
a prior distribution on Z of the form:

P (Z|α) =
N∏

i=1

Q∏
q=1

αziq
q (1− αq)1−ziq , (2)

for parameters αq ∈ [0, 1]. The parameters of the model are
estimated using a variational strategy similar to that used in
[17].

While the models of [16] and [19] allow for a large number
of parameters, in practice, when evaluating on real datasets, the
parameter space is usually restricted to a much smaller num-
ber. In [19] for instance, this is done by considering restricted
forms of the matrix A, with only two free parameters. The
community-finding algorithm of [19] is shown to out-perform
the CPM algorithm of [5] on synthetic data. As the model is
fitted using a variational approach, it will not scale to large
graphs.

III. THE MOSES MODEL

The model that drives MOSES is essentially an OSBM but
with some important differences to that presented in [19]. In
particular:

1) The connection probabilities π(zi, zj) take a different
form to those used in [19];

2) The prior takes into account that community assignments
that differ only by a relabeling of the communities are
equivalent;

3) A distribution is placed on the number of communities
Q, allowing Q to be integrated from the prior.

We elaborate on these differences in the following:

A. Connection Probabilities
Let πqr ∈ [0, 1] represent the probability that a node

in community q connects to a node in community r and
let po denote a general underlying probability that nodes
connect, independent of community structure. Assume that
these probabilities are all mutually independent. Hence, the
probability that an edge does not exist is given by:

P (Xij = 0|Z,Π) = 1− π(zi, zj) (3)

= (1− po)
Q∏

q=1

Q∏
r=q

(1− πqr)ziqzjr .

In practice, we use Π = diag(pin). Thus, there is a single con-
nection probability pin of within-community connections and
there is no tendency for inter-community connections, other
than the general tendency of nodes to connect represented by
po. With this simplification, (3) becomes,

P (Xij = 0|Z, pin, po) = (1− po)(1− pin)sZ(i,j) .

where sZ(i, j) is a count of the number of communities
assigned to both node i and node j in Z.

B. Prior on Z
Assuming a uniform distribution on the parameters

{α1, . . . αQ} in (2) and integrating over them, we obtain a
prior of the form

P (Z|Q) =
1

(N + 1)Q

(
Q∏

q=1

1(
N
nq

)) ,

where nq is the number of nodes assigned to community
q. Furthermore, while there are 2NQ possible values for Z,
any permutation of the columns of Z results in the same
community assignment, with just a different labeling on the
communities. The 2NQ possible matrices can be partitioned
into equivalence classes of matrices that differ only in a
permutation of their columns. Let cz(Q) be the size of the
equivalence class that Z belongs to. Using CZ to denote the
community assignment corresponding to the cz(Q) matrices in
this equivalence class, we note that P (CZ|Q) = cz(Q)P (Z|Q).
Let Qz be the number of non-empty communities observed in
Z. If the actual number of communities is Qz + k, then Z
should contain k columns of all zeros. It follows that

cZ(Qz + k) =
(
Qz + k

k

)
cZ(Qz) , (4)

since the k communities with no nodes assigned to them must
be allocated k labels out of the Qz + k possible community
labels. Furthermore,

P (Z|Qz + k) =
1

(N + 1)k
P (Z|Qz) . (5)

Now, choosing a Poisson distribution for Q with mean value
m, using (4)and (5), and summing over Q to obtain a prior
on CZ that is independent of Q, we get

P (CZ) =
∞∑

k=0

P (CZ|Q = Qz + k)
e−mmQz+k

(Qz + k)!
(6)

=
cz(Qz)

(N + 1)Qz

(
Qz∏
q=1

1(
N
nq

)) e−(N
N+1)mmQz

Qz!

Finally, if there are p unique non-zero columns in Z, which
occur with multiplicity o1, . . . , op, such that Qz =

∑p
k=1 ok,

we note that cz(Qz) is the multinomial coefficient:

cz(Qz) =
Qz!

o1! . . . op!

With (6) and (1), letting L(.) = logP (.), it is now possible
to write down the complete data log likelihood as

F (CZ, pin, po) = L(X|Z, po, pin) + L(CZ) . (7)

As methods such as [17] that attempt to find the maximum
likelihood estimators from the observed likelihood L(X) are
too computationally expensive for large-scale networks, we
follow an approach similar to [18] and seek the (Z, pin, po)
that maximizes (7). Maximization of the complete data likeli-
hood has been shown to result in good clusterings in practice
in the context of Gaussian mixture models. In the remain-
der of the paper, we will simply write F (CZ), rather than
F (CZ, pin, po), to emphasize our primary objective of finding
an optimal CZ.

IV. THE MOSES MAXIMIZATION ALGORITHM

MOSES, similarly to algorithms based on modularity, is
driven by a global objective function, F (CZ). Except in the
smallest of networks, it is not feasible to exhaustively search
every possible community assignment, calculating F (CZ) for
each, and then remembering which got the best score. In order
to handle graphs with millions of edges, we use a greedy
maximization strategy in which communities are created and
deleted, and nodes are added or removed from communities,
in a manner that leads to an increase in the objective function.

The change in the objective when an entire community is
added or removed can be decomposed into a set of single
node updates. A single node update, adding it to, or removing
it from, a community, changes ziq to z′iq = 1 − ziq . In order
to avoid considering a node being connected to itself in the
following expression, which is not allowed in this model, we
focus on the addition of a community in this discussion. For
convenience we define ψin = 1− pin and ψo = 1− po.

The conditional likelihood of X changes where node i is
being added to community q, where j iterates over the set of
nodes already within q,

∆L(X|CZ) = nq logψin −
∑

zjq=1

xij logψin

+
∑

zjq=1

xij log

(
1− ψoψin

s′
Z(i,j)

1− ψoψin
sZ(i,j)

)
,

where s′Z(i, j) = (−1)ziq +sZ(i, j) is the number of common
communities between i and j after the node update has taken
place. We note that we need the values of sZ only for those
pairs of nodes that are connected, the edges.

The change in likelihood of CZ, ∆L(CZ), is more compli-
cated as it depends on whether the node update results in a
change to Qz or not. We estimate m, the mean value of Q to
be m̂ = Qz , which allows us to simplify (6) when considering
small changes to Qz ,

P (CZ) ∝ cz(Qz)
(N + 1)Qz

(
Qz∏
q=1

1(
N
nq

))

Moreover, changes to cz(Qz) depend on whether the node
update results in a change to the number or multiplicity of
unique columns in Z. In the MOSES algorithm as currently
implemented, we assume that all the communities we have
found are unique, estimating cz = Qz!. This introduces an
overestimate of the multinomial cz , and we would expect
that this would introduce a bias towards finding duplicate
communities. However, we have not yet observed a duplicate
community in the output of the algorithm.

We use a combination of heuristics in an attempt to find
good communities. These are edge-expansion, community-
deletion and single-node fine-tuning. In the following, it is
more useful to think of a community assignment CZ as a set
of communities, with each community consisting of a set of
nodes. We will use CZ ∪C for C ⊆ V to denote the addition
of a new community to CZ.

a) Edge expansion: In the initial phase of the algorithm,
edges are selected at random from the graph and a community
is expanded around each selected edge in turn. Initially the
community consists of two nodes C = {v, w}. New nodes are
added to C from its frontier i.e. the set of nodes not in C but
directly connected to nodes in C. Nodes are added in a greedy
manner, selecting the node v∗ in the frontier that maximizes
F (CZ ∪ {C ∪ v}). Expansion continues while the objective is
the highest found so far. When a community is very small, its
contribution to the objective may be negative even if it is a
clique. Hence, we use a small lookahead, whereby expansion
of a community will continue, even if it would decrease the
objective, unless l consecutive expansions fail to raise the
objective. In practice, we use l = 2 and have found that large
values of l slow down the algorithm, without any significant
improvement to the quality of the results.

Edges are chosen randomly with replacement to be subject
to expansion. Note that each subsequent time an edge is
selected, it may expand into a different community, as, with
each addition of a new community, the overlap counts sZ(i, j)
change. For the first community expansion v∗ is simply the
node with most connections to C. Then, as more expansions
are performed, and more and more edges are ‘claimed’ by
found communities, and sZ(i, j) increases, the expansion will
favour edges with lower sZ(i, j). Informally, we can say
that F (CZ) favours finding communities of nodes which are
densely connected by edges which are not edges contained

within many other communities.
b) Community Deletion: Periodically all the communi-

ties are scanned to see if the removal of an entire community
will result in a positive change in the objective. This check
occurs after each 10% of the edges have been expanded, so
will happen 10 times. The output of the algorithm will be the
assignments after the last community deletion phase.

F (CZ \ {C}) > F (CZ)

c) Single-Node Fine Tuning: The fine tuning phase takes
place at the end of the edge expansion phase. It is inspired by
the method of Blondel et al. [20]. In this phase, each node is
examined in turn by removing it from all the communities it is
assigned to and then considering adding it to the communities
to which it is connected by an edge. As always, the decision
to insert a node into a neighbouring community depends on
whether it results in a positive change to F (CZ).

d) Estimating pin and po: It can be shown that, for a
given Z and X , and as a function of pin and po, the value of
F (CZ, pin, po) depends on simple summary quantities such as
the frequency of various values of sZ(i, j) across the edges.
This allows us to efficiently select the values of pin and po

which maximize F (CZ).

V. EVALUATION

A. Evaluation on benchmark data with variable overlap

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Overlap

N
M

I

1 15

MOSES
LFM (default)

LFM (last Collection)
GCE

Louvain method
copra

5−clique percolation
4−clique percolation (dashed)

Iterative Scan (dashed)

Fig. 2. NMI of various algorithms as average overlap increases. Mean +/-
standard deviation of twenty realizations of the graph. IS was run just once,
due to time constraints.

To evaluate the accuracy of MOSES and other algorithms,
we created a set of simple benchmark graphs with increasing
levels of overlap. To generate the graphs, a number of com-
munities of size 20 are initially assigned to a set of 2,000
nodes. For each community, 20 nodes are selected at random,
without regard to whether these nodes have been assigned to
other communities or not. Hence the community overlap of the

nodes is not fixed across the network. A note on terminology:
we use overlap, and highly overlapping, to mean nodes that are
members of many communities, and not necessarily to mean
pairs of communities that share many nodes.

These communities are referred to as the ground truth
communities. The graph is then generated by joining an edge
between every pair of nodes that share a community. Finally,
every pair of nodes is joined with probability 0.005 to add
a number of non-community edges. This process results in a
graph with a large number of 20-cliques. We further confirmed
that, in our evaluation, all graphs generated are connected,
even those with the smallest number of communities. We
use an extension of normalized mutual information (NMI) to
calculate how similar the ground truth communities are to
the communities found by the various algorithms.2 Results
on these synthetic graphs are shown in fig. 2. We plot the
accuracy, as measured by NMI, of a variety of overlapping
CAAs. On the horizontal axis, we plot the average overlap
within the benchmark graph. For example, where the average
overlap is 1.0, this means there were 100 communities, each
of 20 nodes, placed in the 2,000-node graph.

The algorithms used are LFM [11], COPRA[9], , Iterative
Scan (IS) [12] , clique percolation and GCE [1]. We include
the Louvain method [20] as an example of a popular parti-
tioning algorithm. We have used implementations supplied by
the authors, except for clique percolation where we used our
own implementation as existing implementations, [5, 21], were
slow on many of the evaluated datasets. The LFM software
creates many complete collections from a graph, each of which
is a complete community assignment. As recommended by the
authors, we select the first such community assignment for use
in this comparison. However, we have noticed that the results
obtained from LFM when selecting the last collection, instead
of the first, can be better. For completeness, we have included
this in our comparison. In fig. 3, we plot the average overlap
found by the various algorithms. Only MOSES is able to
obtain good estimates of the average overlap, up to an average
overlap of 15 communities-per-node.

2For creating the LFR graphs with fixed overlap-per-node and measuring
overlapping NMI, we use the implementations provided by the authors, both
of which are freely available at http://sites.google.com/site/andrealancichinetti/
software. For the specification of overlapping NMI, see the appendix of
Lancichinetti et al. [11].

2 4 6 8 10 12 14

0
5

10
15

Average Overlap

A
ve

ra
ge

 F
ou

nd
 O

ve
rla

p

1 15

MOSES
LFM (default)

LFM (last Collection)
GCE

5−clique percolation
Louvain method

copra
{Ground Truth}

Fig. 3. Estimated overlap of various algorithms as average overlap increases.

http://sites.google.com/site/andrealancichinetti/software
http://sites.google.com/site/andrealancichinetti/software

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Overlap

N
M

I

1 15

MOSES
LFM (default)

LFM (last Collection)
GCE

Louvain method
copra

5−clique percolation
4−clique percolation (dashed)

Iterative Scan (dashed)

2 4 6 8 10 12 14

0
5

10
15

Average Overlap

A
ve

ra
ge

 F
ou

nd
 O

ve
rla

p

1 15

MOSES
LFM (default)

LFM (last Collection)
GCE

5−clique percolation
Louvain method

copra
{Ground Truth}

Fig. 4. Graphs with lower levels of “background” edges.

In fig. 4, we consider graphs with a lower probability, 0.001,
for the probability of a non-community edge between two
nodes. This will assign approximately two non-community
edges, on average, to each node. This improves the perfor-
mance of many algorithms as the number of noisy edges has
significantly decreased. We should note that these graphs are
not necessarily connected, and some algorithms operate only
on the largest connected component. For each of these sparser
graphs, at least 90% of the nodes are in the largest connected
component.

In the benchmarks described so far, each community was a
clique, rendering it simple for MOSES to detect. To investigate
further, we generated a series of benchmarks where the edges
inside communities are connected with a lower probability.
These are presented in fig. 5 where we see that MOSES’s
performance drops as pin drops below 0.4. Even at pin=0.3
however, when all other algorithms have NMI under 30%, the
performance of MOSES is excellent as long as the average
overlap in the ground truth is under five communities-per-
node. We have not thoroughly investigated the parameter of the
k-clique percolation algorithm, but can confirm that 4-cliques
give the best NMI in the particular dataset used in fig. 5(a).
On much denser graphs, with little noise, clique percolation’s
performance would improve.

B. Evaluation on LFR Graphs

The LFR benchmark generation software can be used to
generate more interesting datasets than those just analyzed.
One drawback of the LFR graphs is that all the overlapping
nodes must be assigned to the same number of communities.
We used the LFR software to generate graphs not unlike those
just analyzed in the last section. The number of nodes is again
2,000. The community sizes range uniformly from 15 to 60.
The mixing parameter,µ, is 0.2 meaning that 80% of the edges
are between nodes that share a community.

We varied the overlap to range from one community per
node to ten communities per node. Then the degree of all the
nodes was fixed to be 15 times the overlap. We present these
results in fig. 6(a), where the horizontal axis is logarithmic.
LFR can create graphs where only a portion of the nodes are
assigned to more than one community, we use this feature
to investigate graphs with on average 1.2, 1.4, 1.6, 1.8

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Overlap

N
M

I

1 15

MOSES
LFM (default)

LFM (last Collection)
GCE

Louvain method
copra

5−clique percolation
4−clique percolation (dashed)

Iterative Scan (dashed)

(a) pin = 0.4

2 4 6 8 10 12 14

0
5

10
15

Average Overlap

A
ve

ra
ge

 F
ou

nd
 O

ve
rla

p

1 15

MOSES
LFM (default)

LFM (last Collection)
GCE

5−clique percolation
Louvain method

copra
{Ground Truth}

(b) pin = 0.4

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Overlap

N
M

I

1 15

MOSES
LFM (default)

LFM (last Collection)
GCE

Louvain method
copra

5−clique percolation
4−clique percolation (dashed)

Iterative Scan (dashed)

(c) pin = 0.3

2 4 6 8 10 12 14

0
5

10
15

Average Overlap

A
ve

ra
ge

 F
ou

nd
 O

ve
rla

p

1 15

MOSES
LFM (default)

LFM (last Collection)
GCE

5−clique percolation
Louvain method

copra
{Ground Truth}

(d) pin = 0.3

Fig. 5. NMI, and average found overlap, for low pin. po = 0.005.

1 2 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Communities per node

N
M

I

3 4 6 7 8 91.2 1.6

MOSES
LFM2−firstCol
LFM2−lastCol

GCE
Louvain method

copra
SCP−4

(a) Fixed degree. k̄ = 15× overlap

1 2 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Communities per node

N
M

I

3 4 6 7 8 91.2 1.6

MOSES
LFM2−firstCol
LFM2−lastCol

GCE
Louvain method

copra
SCP−4

(b) Maximum degree is triple average

Fig. 6. NMI scores as the amount of overlap increases in the LFR fixed-
overlap graphs. We mark the mean +/- standard deviation, along with lines
through the mean, over twenty realizations of the benchmark.

communities-per-node. In these graphs, both the degree and
the overlap is fixed, making the structure relatively simple.
It is not surprising that many algorithms, such as LFM and
the partitioning algorithm by Blondel et al. [20], perform well
when there is no overlap and each node is assigned to exactly
one community.

In the previous section we saw that a partitioning algorithm,
such as [20], can fail on graphs with low levels of overlap. This
demonstrates that, even in empirical graphs where overlapping
communities are not expected to be major feature, it may not
be wise to use a partitioning algorithm. Partitioning algorithms
succeed only where each node is known to be in exactly
one community. This is an unrealistic assumption in many
empirical datasets.

The LFR software can generate networks with a power law
degree sequence. In fig. 6(b) we analyzed that same datasets
as in fig. 6(a) but where the maximum degree was set to be
three times the average degree. The slope parameters to the

1 2 5 10

1e
−

02
1e

+
00

1e
+

02

Communities per node

T
im

e(
s)

3 4 6 7 8 91.2 1.6

MOSES
LFM2−firstCol
LFM2−lastCol

GCE
blondel

copra
SCP−4

(a) Fixed degree. k̄ = 15× overlap

1 2 5 10

1e
−

02
1e

+
00

1e
+

02

Communities per node

T
im

e(
s)

3 4 6 7 8 91.2 1.6

MOSES
LFM2−firstCol
LFM2−lastCol

GCE
blondel

copra
SCP−4

(b) Maximum degree is triple average

Fig. 7. Run time, in seconds, as overlap increases in the LFR benchmarks.

degree distribution is another parameter to the LFR software
and we set it to 2.0. In these datasets, when the overlap is
low, MOSES does not perform as well as GCE, LFM or
clique percolation. On the other hand, MOSES is the only
algorithm capable of detecting significant structure when the
overlap approaches 10 communities per node. The NMI of
the community assignments found by MOSES is consistently
above 60% whereas the other algorithms’ scores are well
below 40% when there are more than six communities per
node. The MOSES model does not explicitly model degree
distribution, and this may explain its failure to get the highest
NMI scores in fig. 6(b). This may be an area for future
development of the model. The superior community model
of MOSES enables it to detect some structure in the graphs
with heaviest overlap.

C. Scalability

In fig. 7 we investigated the run time of these algorithms.
The graphs are the same as in fig. 6, but instead we plot the
logarithm of the running time on the y-axis. GCE is the fastest
of all the algorithms on the less overlapping data. While there
are many algorithms faster than MOSES and LFM, the only
one of those algorithms capable of getting reasonable NMI
scores is GCE. The high quality NMI scores of MOSES do
not carry a penalty in performance. MOSES is as fast as many
scalable algorithms on overlapping data, and gets the highest
quality results on the very highly overlapping data.

D. Evaluation on a real-world social network.

Traud et al. [22] gathered data on Facebook users and
friendships in five US universities. There are no ground truth
communities as such in this dataset. We ran MOSES on the
five datasets.

The degree distributions of all five appears to be very
approximately log-normal, as can be seen in the logarithmic
histograms of fig. 8(c). The distribution does not fit the
power law distributions often assumed as an approximation
for the degree distribution of empirical graphs. The relative
narrowness of this degree distribution may improve the results
of MOSES as it is a more reasonable fit for the MOSES model
than a strict power law distribution would be. The average
degree ranges from 43.3 to 102.4. Assuming that communities

TABLE I
SUMMARY OF TRAUD ET AL. [22]’S FIVE UNIVERSITY FACEBOOK

DATASETS, AND OF MOSES’S OUTPUT.

C
al

te
ch

Pr
in

ce
to

n

G
eo

rg
et

ow
n

U
N

C

O
kl

ah
om

a

Edges 16656 293320 425638 766800 892528
Nodes 769 6596 9414 18163 17425

Average Degree 43.3 88.9 90.4 84.4 102.4
Communities found 62 832 1284 2725 3073

Average Overlap 3.29 6.28 6.67 6.96 7.46

1 5 10 50 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Size of community

D
en

si
ty

Oklahoma
Princeton
UNC
Georgetown
Caltech

(a) Community size

1 2 5 10 20 50 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Communities−per−person

D
en

si
ty

(b) Communities per node

1 5 10 50 500

0.
0

0.
1

0.
2

0.
3

0.
4

Degree

D
en

si
ty

(c) Degree distribution

0 200 400 600 800 1000 1200

0

10

20

30

40

50

60

70

Degree

C
om

m
un

iti
er

s
pe

r
no

de

1
72

144
215
286
358
429
500
572
643
714
785
857
928
999
1071
1142

Counts

(d) Degree vs. overlap

Fig. 8. Sizes of the communities found, and degree distribution for
Georgetown, in (logarithmic) density plots. And a density plot showing high-
degree nodes are assigned to more communities by MOSES.

are not very large, and that most edges in these networks are
community edges, it must be the case that the average node
is in many communities.

A summary of the results is presented in table I. It suggests
that a Facebook user is, on average, a member of seven
communities. In an analysis of one of their own Facebook
ego-networks, Salter-Townshend and Murphy [23] found it
divided into six groups. MOSES assigns nodes each to a
different number of communities, and to communities of
varying size. In fig. 1, we present the communities of a
student at Georgetown. MOSES assigns this student to four
communities, and we visualized the subgraph based on all the
nodes in those four communities.

In fig. 8(d) we see a scatter plot of the degree of a node
versus the number of communities it is in. It shows that the
nodes with higher degree are assigned to more communities.
We see there is significant variation in the sizes of the
communities found in fig. 8(a). It may be that many of these
communities are made up of sets of sub-communities that
loosely interact with each other.

VI. CONCLUSIONS

We have demonstrated that it is possible to detect very
highly overlapping community structure in large networks
using MOSES. Existing algorithms find only relatively low
levels of overlapping community structure. It is necessary to
be able to detect highly overlapping structure, if only to rule
it out for a given observed network. For instance, our analysis
on Facebook data has shown that a typical Facebook user
can be a member of seven communities. This demonstrates
the need for further research into such community structure.
Existing algorithms work best where each node is in the same
number of communities. But this is not a realistic assumption
for social networks and we have demonstrated that MOSES
can accurately detect communities in networks where typical
nodes are in many communities, and where there is variance
in the number of communities a node is in.

ACKNOWLEDGMENTS

This research was supported by Science Foundation Ireland
(SFI) Grant No. 08/SRC/I1407.

REFERENCES

[1] C. Lee, F. Reid, A. McDaid, and N. Hurley. Detecting
highly overlapping community structure by greedy clique
expansion. KDD 2010, 2010. URL http://arxiv.org/abs/
1002.1827.

[2] Andrea Lancichinetti, Santo Fortunato, and
Filippo Radicchi. Benchmark graphs for testing
community detection algorithms. Physical
Review E (Statistical, Nonlinear, and Soft
Matter Physics), 78(4), 2008. URL http:
//scitation.aip.org/getabs/servlet/GetabsServlet?prog=
normal\&id=PLEEE8000078000004046110000001\
&idtype=cvips\&gifs=yes.

[3] Santo Fortunato. Community detection in graphs.
Physics Reports, 486(3-5):75 – 174, 2010. ISSN 0370-
1573. doi: DOI:10.1016/j.physrep.2009.11.002.

[4] MEJ Newman and M. Girvan. Finding and evaluating
community structure in networks. Phys Rev E, 69:
026113, 2004.

[5] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncov-
ering the overlapping community structure of complex
networks in nature and society. Nature, 435:814–818,
2005.

[6] A. Clauset. Finding local community structure in net-
works. Physical Review E, 72(2):26132, 2005.

[7] S. Gregory. An algorithm to find overlapping commu-
nity structure in networks. Lecture Notes in Computer
Science, 4702:91, 2007.

[8] S. Gregory. Finding Overlapping Communities Using
Disjoint Community Detection Algorithms. In Complex
Networks: Results of the 1st International Workshop on
Complex Networks (CompleNet 2009), page 47. Springer,
2009.

[9] S. Gregory. Finding overlapping communities in
networks by label propagation. Arxiv preprint
arXiv:0910.5516, 2009.

[10] Nina Mishral, Robert Schreiber, Isabelle Stanton, and
Robert E. Tarjan. Clustering social networks. Lecture
notes in computer science, 4863:56, 2007.

[11] Andrea Lancichinetti, Santo Fortunato, and Janos
Kertesz. Detecting the overlapping and hierarchical
community structure of complex networks. New Jour-
nal of Physics 11, 033015 (2009), Mar. 2009. doi:
http://dx.doi.org/10%2E1088/1367-2630/11/3/033015.

[12] J. Baumes, M. Goldberg, M. Krishnamoorthy,
M. Magdon-Ismail, and N. Preston. Finding communities
by clustering a graph into overlapping subgraphs. In
International Conference on Applied Computing (IADIS
2005), 2005.

[13] H. Shen, X. Cheng, K. Cai, and M.B. Hu. Detect overlap-
ping and hierarchical community structure in networks.
Physica A: Statistical Mechanics and its Applications,
388(8):1706–1712, 2009.

[14] A. Lancichinetti and S. Fortunato. Benchmarks for
testing community detection algorithms on directed and
weighted graphs with overlapping communities. Physical
Review E, 80(1):16118, 2009.

[15] Anna Goldenberg, Alice X. Zhang, Stephen E.Fienberg,
and Edoardo M. Airoldi. A survey of statistical network
models. December 2009.

[16] Krzysztof Nowicki and Tom A. B. Snijders. Estimation
and prediction for stochastic blockstructures. Journal
of the American Statistical Association, 96(455):1077–
1087, September 2001.

[17] J.J. Daudin, F. Picard, and S. Robin. A mixture model
for random graphs. Statistical Computing, 18:173–183,
2008.

[18] Hugo Zanghi, Christophe Ambroise, and Vincent Miele.
Fast online graph clustering via erdos-renyi mixture,
2007.

[19] Pierre Latouche, Etienne Birmelé, and Christophe Am-
broise. Overlapping stochastic block models. Oct 2009.
URL http://arxiv.org/abs/0910.2098.

[20] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008:P10008, 2008.

[21] Jussi M. Kumpula, Mikko Kivela, Kimmo Kaski, and Jari
Saramaki. A sequential algorithm for fast clique perco-
lation. Jul 2008. doi: 10.1103/PhysRevE.78.026109.

[22] A.L. Traud, E.D. Kelsic, P.J. Mucha, and M.A. Porter.
Community Structure In Online Collegiate Social Net-
works. organization, 88:92.

[23] M. Salter-Townshend and T. B. Murphy. Variational
Bayesian Inference for the Latent Position Cluster Model.
2009. URL http://snap.stanford.edu/nipsgraphs2009/
papers/townshend-paper.pdf.

http://arxiv.org/abs/1002.1827
http://arxiv.org/abs/1002.1827
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=PLEEE8000078000004046110000001\&idtype=cvips\&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=PLEEE8000078000004046110000001\&idtype=cvips\&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=PLEEE8000078000004046110000001\&idtype=cvips\&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=PLEEE8000078000004046110000001\&idtype=cvips\&gifs=yes
http://arxiv.org/abs/0910.2098
http://snap.stanford.edu/nipsgraphs2009/papers/townshend-paper.pdf
http://snap.stanford.edu/nipsgraphs2009/papers/townshend-paper.pdf

