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ABSTRACT
In complex networks it is common for each node to belong to sev-
eral communities, implying a highly overlapping community struc-
ture. Recent advances in benchmarking indicate that the exist-
ing community assignment algorithms that are capable of detect-
ing overlapping communities perform well only when the extent
of community overlap is kept to modest levels. To overcome this
limitation, we introduce a new community assignment algorithm
called Greedy Clique Expansion (GCE). The algorithm identifies
distinct cliques as seeds and expands these seeds by greedily opti-
mizing a local fitness function. We perform extensive benchmarks
on synthetic data to demonstrate that GCE’s good performance is
robust across diverse graph topologies. Significantly, GCE is the
only algorithm to perform well on these synthetic graphs, in which
every node belongs to multiple communities. Furthermore, when
put to the task of identifying functional modules in protein inter-
action data, and college dorm assignments in Facebook friendship
data, we find that GCE performs competitively.

Categories and Subject Descriptors: H.2.8 Database Manage-
ment: Database Applications – Data Mining

Keywords: Community Assignment, Overlapping, Local Cluster-
ing Algorithm, Complex Networks

1. INTRODUCTION
Community structure has been recognized in networks that come

from a wide range of domains, such as social and biological net-
works. While concrete definitions of community vary by domain, a
community may generally be described as a set of nodes with dense
internal connections, exhibiting comparatively sparse connections
to the rest of the network. Knowledge of community structure can
reveal functional organization in networks, much as identifying or-
gans in the body can reveal the role of various tissues. In recent
years, numerous community assignment algorithms (CAAs) have
been suggested, as computer scientists and physicists have taken
on the problem of algorithmicly finding communities (for an excel-
lent recent review of the field, see Fortunato [1]).
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Despite their proliferation, it is difficult to determine the perfor-
mance of CAAs for two reasons. On the one hand, there is a lack
of large empirical datasets where the a priori or ground truth com-
munities are known; and on the other hand, most synthetic data—
especially the most popular, the GN model [2]—is overly simplistic
and unrealistic, lacking key topological features such as a hetero-
geneous degree distribution, varied community sizes, and triadic
closure, while also requiring that every node belong to exactly one
community. The lack of realistic benchmark graphs has led to a sit-
uation where researchers know that many algorithms perform well
on simple networks, but are unaware how these perform on more
complex empirical data.

This problem is so pronounced that in his comprehensive review
of the field, Fortunato states with regard to benchmarking: “...the
issue of testing algorithms has received very little attention in the
literature on graph clustering. This is a serious limit of the field.
Because of that, it is still impossible to state which method (or sub-
set of methods) is the most reliable in applications...”

In the last year, Lancichinetti and Fortunato [3] have addressed
this uncertainty by specifying a means of creating more realis-
tic synthetic benchmark graphs, which have scale-free degree and
community size distributions as well as overlapping communities.
Using their specification (called LFR), they and others have subse-
quently discovered—with a level of subtlety previously unattained—
under what topological conditions a wide range of CAAs perform
well or poorly [4, 5].

One surprising result revealed by this recent benchmarking is the
poor performance of many CAAs when it comes to detecting mod-
erately overlapping community structure. It is intuitive from our
knowledge of real world domains that many complex networks will
have communities that overlap, potentially to a high degree. Con-
sider, for example, a social network site like Facebook. On average,
a Facebook user has 130 “friends,” who typically belong to multi-
ple distinct social groups [6]. These groups may correspond to ties
formed in high-school, college, professional settings, and family.
Figure 1, which depicts the ego-centric network of a Facebook user,
demonstrates this tendency for a user to belong to multiple groups.
The analysis of Marlow et al. [7] suggests that the groups appar-
ent in this user’s ego-centric network correspond to acquaintances
formed at different stages of life, and that most of these groups
are dormant. Clearly, if this type of ego-centric network is typical
of Facebook users, then any CAA that partitions nodes into non-
overlapping communities (henceforth, non-overlapping CAA) will
perform poorly: such CAAs can assign each node to only one of its
many communities. Similarly, in complex networks of interactions
between proteins, it has been claimed that many proteins belong to
multiple communities, each of which in turn corresponds to some
biological function [8, 9]. Since 2005, the year in which Palla et al.
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Figure 1: The ego-centric network of a Facebook user [7]. Note
that this user belongs to several distinct communities, which we
have outlined with dashed lines.

[9] published a groundbreaking CAA capable of detecting over-
lapping communities, a number of algorithms have been developed
that are able to assign nodes to more than one community [5, 9–16].
However, using LFR networks [4, 5] and other synthetic networks
[8], recent work has indicated that many CAAs that are supposed to
be capable of detecting overlapping community structure perform
quite poorly when more than a minority of nodes belong to multiple
communities.

The purpose of this paper is two-fold. On the one hand, in sec-
tions 2 and 3 we introduce a new algorithm, called Greedy Clique
Expansion (GCE)1,that is designed to perform well in domains with
highly overlapping community structure. On the other hand, in sec-
tion 4 we thoroughly benchmark this algorithm alongside several
other leading CAAs that are designed to detect overlapping com-
munity structure. We run benchmarks on graphs with high levels
of community overlap to clear up uncertainty of the performance
of CAAs designed for this domain. None of these CAAs have been
subjected to such benchmarks. Our results indicate that GCE is the
only algorithm capable of accurately detecting communities when
nodes belong to several communities. We follow up these syn-
thetic benchmarks with two empirical benchmarks, one based on
data from a protein-protein interaction network, and the other on
Caltech’s Facebook friendship network.

2. METHOD
Given a graph G with vertices V and edges E, GCE works by

first detecting a set of seeds in G, then expanding these seeds in
series by greedily maximizing a local community fitness function,
and then finally accepting only those communities that are not near-
duplicates of communities that have already been accepted.

In this section, we begin by reviewing the core concepts of GCE:
fitness functions, greedy expansion, seed selection, and community
distance measures. Finally, we fully specify GCE. Throughout, we
note how GCE differs from and resembles previous CAAs, and
argue why our modifications lead to better results on graphs that
possess highly-overlapping community structure, a claim which we
substantiate with benchmarking results in section 4.

1GCE reference implementation available at:http://sites.
google.com/site/greedycliqueexpansion/

Figure 2: An idealized representation of a community, show-
ing the seed clique in the center, surrounded by nodes added
through greedy expansion. The external edges, shown dashed,
connect the community to its frontier.

Community fitness functions. A community fitness function F :
S → R takes an induced subgraph S of G and returns a real value
that indicates how well S corresponds to some notion of commu-
nity. In our discussion, the higher the value returned by the fitness
function, the better community structure. Many similar local fitness
functions have been used in the context of local CAAs [10, 13–
15, 17], all of them different ways of formalizing the idea that a
community’s internal edge density should be high when compared
to its external edge density.

The fitness function is of central importance to the GCE algo-
rithm; it can be interpreted as steering the growth of a seed such
that it expands into the desired community. Just as there is no uni-
versally correct concept of community that spans all domains, one
cannot argue that any given fitness function will be appropriate for
all types of network data.

Nevertheless, in our experiments, we found that the fitness func-
tion defined by Lancichinetti et al. [14] provided good results on a
wide range of synthetic and empirical data. They define the fitness
of a community S in terms of S’s internal degree kSin and external
degree kSout. kSin is equal to twice the number of edges that both
start and end in S (i.e., it is the sum of the internal degrees of the
nodes in S), and kSout is the number of edges that have only one
end in S. In this notation, they define community fitness as

FS =
kSin

(kSin + kSout)
α
, (1)

where α is a parameter that can be tuned. Lower values of α result
in larger communities being fitter. We found that α values in the
range 0.9 − 1.5 provided the best results, which is in line with
the experience of Lancichinetti et al. We resume discussion of this
parameter below.

Expanding a single seed. Assume, as above, that S is an induced
subgraph of G that can be thought of as the “seed” or core of a
community C. In other words, S is embedded in some larger com-
munity C, such that all of its nodes are part of C, but not all nodes
in C are included in S. The task at hand is to expand S by adding
nodes to it until it includes all nodes in C. Previous work in com-
munity assignment suggests that—by utilizing a community fitness
function such as in eq. (1)— S can be efficiently expanded into C

http://sites.google.com/site/greedycliqueexpansion/
http://sites.google.com/site/greedycliqueexpansion/


through a technique of greedy local optimization. [10, 14, 15, 17]
This technique can be varied, but can be generally summarized in
the following steps:

1. For each node v in the frontier of S (e.g., the red nodes in
fig. 2), calculate v’s node fitness, i.e., how much the addition
of v to S would raise or lower the community fitness of S.

2. Select the node with the largest fitness, vmax.

3. If vmax’s fitness is positive, then add it to S and loop back to
step 1. Otherwise, terminate and return S.

The works cited above vary this technique by either using differ-
ent fitness functions or, for example, after each addition, removing
any nodes in S if their removal would improve F(S). Also, they
vary in their approach of finding starting seeds. In general, this ap-
proach of greedy local optimization scales well with the size and
order of the network because it works locally; we discuss complex-
ity in more detail in section 3.

While GCE shares this general strategy of expanding seeds via
greedy local optimization, one key difference from previous algo-
rithms is the choice of starting seed.

Cliques as starting seeds. Various approaches have been used to
find the seeds of communities in the above-mentioned greedy algo-
rithms. Lancichinetti et al. [14]’s LFM algorithm keeps randomly
selecting nodes that have not yet been assigned to any community,
until every node belongs to at least one community. This method
assumes that each node belongs to at least one community, and that,
as soon as every node has been assigned to at least one community,
there are no further communities that should be found. We take is-
sue with both of these assumptions; we believe that the latter—by
implicitly placing an upper bound on the number of communities
that can be found at |V |—is responsible for the declining perfor-
mance of LFM as each node tends to belong to more communities
in the benchmarks that follow.

Baumes et al. [15]’s Iterative Scan algorithm selects random edges
as seeds, and keeps expanding seeds until the new seeds produce
communities that are duplicates of previously-found communities.
While this method of seed selection is less arbitrary than [14]’s, it
is inefficient because, if one wants to exhaustively search for seeds,
the algorithm is unlikely to terminate before it has expanded a vast
number of duplicate communities.

We use maximal cliques (i.e., fully-connected sets of nodes that
are not completely contained in any larger set of fully-connected
nodes), as seeds; we will henceforth refer to maximal cliques sim-
ply as cliques. This choice of seeds is motivated by the observa-
tion that, on the one hand, cliques are one of the characteristic
structures contained within communities [18], while on the other
hand—if one discards smaller cliques that are highly embedded in
larger cliques— they are rare structures. We note that other CAAs
exploit these properties of cliques [9, 16, 19], but none of them uti-
lize cliques as seeds in the greedy expansion strategy mentioned
above.

One of the key parameters of our algorithm, k, is the minimum
number of nodes that a clique must contain if it is to be accepted
as a seed. On the one hand, k should be sufficiently large such that
any clique of size k or larger indicates the presence of a commu-
nity; otherwise, one risks expanding a seed into a region with no
community structure. For example, if k = 3, then triangles can be
accepted as seeds. In some networks, one cannot assume that all
triangles are embedded in a community. In such cases, if k = 3,
then one risks accepting seeds that are not embedded in any com-
munity, and these seeds could expand into a region of the graph

with no community structure. Such communities can be thought of
as false positives. On the other hand, one should choose k to be suf-
ficiently small such that all of the communities that one wishes to
detect contain at least one clique of size k. If k is chosen to be too
large, then those communities that ought to be detected, but contain
no sufficiently large cliques, will not be detected. Such cases could
be considered false negatives. We find that k values of 3 or 4 will
generally satisfy these constraints, and that one can decide between
these two possibilities by considering whether one’s preferred se-
mantic definition of community includes small structures.

This choice of seeds comes with an implicit requirement that any
community that can be found by GCE must contain a clique with k
or more nodes. One might object that this assumption is too strict
and will result in many false negatives. However, our results on the
LFR benchmark graphs indicate otherwise. The LFR benchmarks
provide a challenge in this respect because the process which cre-
ates communities does not favor the generation of cliques. In par-
ticular, creates edges such that the probability that any pair of nodes
in a community is connected by an edge is independent of whether
those two nodes share neighbors, much as in a classic Erdős-Rényi
random graph [1]. This generation technique does not lead to the
high number of triangles and cliques that have been observed in
empirical graphs. Empirical networks show a strong tendency for
transitivity, i.e., for two neighbors of a given node to be connected
to each other [20, 21], a process which leads to higher clustering
coefficients and more cliques than one would expect to find in cor-
respondingly sparse Erdős-Rényi graphs. Thus, the fact that GCE
performs well on these synthetic graphs—despite the fact that one
expects fewer cliques in these than in empirical data—indicates that
this minimum clique size requirement does not cripple the sensitiv-
ity of GCE.

Duplicates and community distance. Overlapping CAAs must
include some implicit or explicit strategy for dealing with near-
duplicate communities (in contrast to the more numerous, non-
overlapping CAAs, whose communities can share no nodes). This
problem arises from the fact that many seeds can grow into near-
duplicate versions of the same community. This is undesirable from
the perspective of the network analyst because results that contain
a large number of near-duplicate communities are hard to interpret
and report statistics on.

To rid our results of near-duplicate communities, we must for-
mally define what we mean by near-duplicate communities. Along
the lines of Baumes et al. [15], we begin by defining a community
distance measure. We choose a symmetric measure of community
distance that can be thought of as the percent non-embedded. Given
two communities S and S′, this measure is defined as

δE(S, S′) = 1− |S ∩ S′|
min(|S|, |S′|) , (2)

which can be interpreted as the proportion of the smaller commu-
nity’s nodes that are not embedded in the larger community.

Given a set of communities W and a community S, we can de-
fine the near-duplicates of S to be all communities in W that are
within a distance ε of S, where ε is the minimum community dis-
tance parameter.

Overview of GCE. Now that we have covered the requisite con-
cepts of community fitness, expanding a seed, choosing seeds, and
near-duplicate seeds, we can outline the GCE algorithm. Given a
graphG, a minimum clique size k, a minimum community distance
ε, and a scaling parameter α, our algorithm:

1. Finds seeds by detecting all maximal cliques in G with at



least k nodes.

2. Creates a candidate community C′ by choosing the largest
unexpanded seed and greedily expanding it with a commu-
nity fitness function F until the addition of any node would
lower fitness.

3. If C′ is within ε of any already accepted community C, then
C and C′ are near-duplicates, so discard C′. Otherwise, if
no near-duplicates are found, accept C′.

4. Continues to loop back to step 2 until no seeds remain.

We note that although GCE allows the user to specify the values
of three parameters, two of these—k and ε—allow for versatile de-
fault values. The value of k should usually be 4; if one is interested
in very small communities (as in the case of the protein complexes
presented in section 5), then k should be set to 3. We find 0.25 to
be a good default value for ε—if one finds too many near-duplicate
communities in the output, then ε should be increased.

The scaling parameter α lends itself least to a versatile default
value. For best results, one should first run GCE with α set to 1.0,
look at the results, and decide whether the communities found by
GCE should be larger (using a lower α) or smaller. However, in
cases where the user knows little about the community structure,
such tuning may be difficult. For this reason, in the synthetic and
empirical benchmarks that follow, we report results where α is set
to 1.0, rather than tuning this parameter for best results. The good
benchmarking results indicate that even if one cannot tune α, GCE
will often return good results with all parameters set to their default
values.

3. OPTIMIZATIONS
We begin this section by underscoring the point that one cannot

satisfyingly characterize the average complexity of GCE purely in
terms of |V | or |E|; rather, the complexity depends on subtler local
characteristics of G that are difficult to specify rigorously. Despite
this, we can clearly discuss several important parts of the algorithm,
and the heuristics and optimizations we have used to improve their
performance.

First, we discuss finding the maximal cliques that form seeds,
and consider the complexity of greedily expanding each seed. The
remainder of this section is devoted to various problems related to
detecting near-duplicate communities: We consider the cost of de-
ciding whether a candidate community is sufficiently distinct to ac-
cept, and two heuristics to discard potentially indistinct seeds early.
While our solutions to these problems are somewhat trivial, we de-
scribe them in detail both for replicability and because the compu-
tational savings that they afford are so significant.

We note that GCE makes extensive use of set operations, such
as set insertion and deletion and testing for set membership. In
our implementation, we use the C++ standard template library to
provide these operations.

Finding Maximal Cliques. Although finding all of the cliques
in a graph is generally computationally expensive, cliques can be
found quickly in graphs that are sufficiently sparse. To this end,
our implementation makes use of the Bron-Kerbosch [22] clique
enumeration algorithm to efficiently find the maximal cliques that
form seeds. In the large synthetic and empirical networks that
we analyze in section 4 and section 5, the computation required
for finding cliques was a small part of the overall run time, com-
pared to the computation required to expand seeds and check for
near duplicates. To futher support the claim that finding cliques in

sparse graphs is scalable, we point out that Schmidt et al. [23] have
recently introduced a parallel variant of the Bron-Kerbosch algo-
rithm, which they demonstrate can achieve a linear parallel speed-
up even when using 2048 processors.

Greedy Expansion. Greedy seed expansion requires that the fron-
tier f(S) of each initial seed be identified, and that f(S) be updated
as S is expanded.

The initial frontiers may be identified by calculating, for each
edge, the symmetric difference of the sets of seeds for the end-
points of that edge. Identifying the initial frontiers therefore has
complexity O(|E| ×M), where M is the number of cliques to be
expanded.

As each seed is expanded by adding the fittest node from the
frontier vmax, its frontier becomes:

f(S ∪ vmax) = (f(S) ∪N(vmax)\S)− {vmax}

where N(vmax) is the set of neighbors of vmax. This requires at
most θ insertions into f(S), where θ is the maximum degree in G.
We note that the fitness FS∪{vmax} depends only on the internal
and external degree of vmax and the total internal and external de-
grees of the vertices already in S. To facilitate fast identification of
vmax, kSin and kSout are stored, along with the internal and external
degrees of each v in f(S). These stored values are updated each
time f(S) is updated, noting that kSin and kSout each change only
by the internal and external degree of vmax and that the frontier
degrees need only be updated for v ∈ N(vmax).

Identifying Near-duplicate Communities. To identify if a candi-
date community, C, is a near-duplicate of an accepted community,
it is necessary to calculate the overlap between community pairs.
Finding the intersection between sets C1 and C2 has complexity
2(|C1| + |C2|) − 1, assuming sorted sets. In a naive implementa-
tion, after each seed expansion has completed, this must be carried
outO(ζ) times, with ζ the number of accepted communities, result-
ing in at least O(ζ2) set intersetions in total. Instead, we maintain,
for each node v, the set c(v) of accepted communities it belongs
to. In a first pass, we identify those communities that have a non-
empty overlap with the candidate community as

⋃
v∈C c(v). The

full intersection is then calculated only on the communities with
non-empty overlap. At the cost of extra storage, this results in sig-
nificant time savings as the number of accepted communities grows
large.

Clique Coverage Heuristic (CCH). While developing this algo-
rithm, we observed that many empirical datasets exhibited the fol-
lowing phenomenon: given some maximal clique, there exist nu-
merous smaller cliques that are almost, but not fully, subgraphs of
it. Shen et al. [16] have also observed this property; in fact, this is
the key property exploited by k-clique percolation. [9] (Remember,
whenever we use the term “clique” here and throughout our paper,
we mean “maximal clique.”) Typically, these cliques are within ε
distance of the larger clique and thus are near-duplicates of it.

We also observed that when expanded, such sets of near-duplicate
cliques were likely to grow into the same or very similar regions of
the graph, leaving us with many near-duplicate communities that
would later need to be removed (as specified in subsection “Dupli-
cates and community distance” above). We could thus skip the ex-
pansion of these near duplicate seeds without significantly affecting
our results and enjoy a significant savings in memory and compu-
tation time. We developed a simple heuristic to quickly prune such
near-duplicate cliques from the our initial set of seeds. This method
is designed solely as a heuristic computational speedup, and has
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nodes, GCE’s performance degrades as degree increases. The
CCH optimization increases GCE’s scalability.

been found to effectively discard large numbers of near-duplicate
cliques while not significantly altering benchmark results.

The Clique Coverage Heuristic (CCH) is as follows: We order
the maximal cliques, largest first. Each clique is then either ac-
cepted or rejected. A clique is accepted if less than a certain propor-
tion φ of its nodes are contained in at least two of the larger cliques
that have already been accepted. We found that even values of φ
close to 0 resulted in the large numbers of near-duplicate cliques
being rejected from consideration. Simultaneously, it appears that
in each of the clique-dense areas of the graph that are likely to be
embedded in a community, at least some of the original cliques are
always preserved. Thus, each of these areas remains “seeded” with
at least one clique, but most of the smaller, near-duplicate versions
of this clique are removed. In our evaluation we choose a value of
.25 for φ – meaning that a clique will only be discarded if at least
75 percent of its nodes have already been covered twice by other,
larger, accepted cliques.

Due to the potentially vast number of near-duplicate cliques found
in complex networks, the impact of CCH can be large. For exam-
ple, we ran GCE on the Oklahoma State Facebook subnetwork,
which contains 17425 nodes and 829528 edges (the source of this
data set is Traud et al. [24], which is described in section 5). On
this data, CCH reduced the number of cliques from over 46 million
to around 5000. To address concerns that pruning seeds using CCH
may adversely affect the accuracy of GCE, we refer the reader to
fig. 5, which includes one line displaying the results of GCE with

the CCH, and one line for GCE without the CCH. The results are
almost identical.

Abandoning suspiciously overlapping seeds. Let us call any seed
that is undergoing expansion that is within some distance ∆ of
an already accepted expanded community ‘suspicious’. We call it
suspicious because for an appropriate value of ∆, such expanding
seeds frequently expand to within ε (i.e. become near-duplicates)
of an already accepted community. In these cases, the computation
required to expand the suspicious seed into a near-duplicate com-
munity is essentially wasted. One simple optimization, which we
employ in all of the evaluations below, is to discard these suspi-
cious seeds. In practice, we have found that the benchmark results
of our implementation are not very sensitive to a range of ∆ values,
and we use the value of .6 for both ∆ and ε.

Performance characteristics. We now briefly describe two ex-
periments to reveal both a strength and a weakness of GCE’s run-
time performance (we postpone discussion of accuracy, as this is
the topic of the next section). These experiemnts are based on the
above-mentioned LFR graphs, which are synthetic graphs whose
specification will be explained in detail in section 4. The parame-
ters used to constuct the graphs used in these experiments are listed
in the first two columns of table 1.

While the details of these graphs may not be clear for the reader
until the next section, the essential point is that in fig. 3, we run
GCE on a series of graphs that are identical in many ways—sharing
the same degree distribution and community size distribution—but
which have ever-more nodes and communities. In this figure we
observe that as the size of the graph increases along the x-axis, the
runtime of GCE scales favorably when compared to the runtime
of other overlapping CAAs (which are also introduced in the next
section).

In fig. 4 we again observe the runtime of GCE on a series of
graphs that are nearly identical; however, in these graphs we do
not vary the number of nodes (keeping it fixed at 5000), but rather
we vary the degrees of the nodes. As the average degree increases
along the x-axis, the runtime of GCE increases quite rapidly when
compared with the quickest algorithm run on this experiment, CO-
PRA (which is also introduced in the next section). We observe that
even on these relatively small graphs, the runtime of GCE is quite
sensitive to the average degree. In this figure, we also see the effect
of the CCH optimization.

4. SYNTHETIC BENCHMARKS
In the following section, we pursue two objectives. First, we

perform the central experiment of this paper: we benchmark many
CAAs on the synthetic graphs in which nodes belong to to up to
five communities. Benchmarks with such a high degree of commu-
nity overlap are uncharted territory. The results of the benchmarks
are surprising, indicating that many algorithms that are specifically
designed for detecting overlapping community structure perform
poorly when more than a fraction of nodes belong to more than
one community. While one other algorithm performs well up to
the point where nodes belong to an average of 1.9 communities,
GCE returns good results even when every node belongs to four
communities.

Unfortunately, because benchmarks with such high levels of com-
munities have not yet been carried out, we had to choose many of
the parameters for creating the benchmark graphs. The secondary
purpose of this section is to show that GCE also performs well on
benchmarks graphs whose parameters have been defined by other,



Description fig. 3 fig. 4 fig. 5 fig. 6
N number of nodes 500-1mil 5000 2000 1000/5000
k average degree 10 20-200 18-90 20
kmax max degree 40 200 120 50
Cmin min comm. size 10 k 60 10/20
Cmax max comm. size 50 500 100 50/100
τ1 degree exponent −2 −2 −2 −2
τ2 comm. exponent −1 −1 −2 −1
µ mixing parameter 0.4 0.4 .2 0.1-0.85
On num. overlap nodes k/2 0 2000 0
Om comms per node 2 1 1-5 1

Table 1: Parameters for LFR synthetic benchmark graphs for
various figures. Bolded values indicate the the variable on the
x-axis of each plot.

less interested parties. To this end, we replicate a set of partitioning
benchmarks performed by [4] in a recent review of several CAAs.
We demonstrate that GCE performs competitively against the best
known CAAs. This is significant, because these other algorithms
are specialized for graph partitioning, while GCE is designed to
handle the more general case of overlapping communities.

Benchmarking procedure and terminology. To benchmark the
performance of a CAA, we perform the following steps: first, we
create a synthetic graph which, by construction, contains communi-
ties planted in it. We will refer to these communities as the ground
truth communities. Next, we run a CAA on this graph; we call the
communities returned by the CAA the found communities. Finally,
we use some metric to compare the similarity of the ground truth
communities to the found communities.

To construct synthetic graphs, we use the LFR specification, which
allows one to create graphs with realistic properties such as scale-
free degree and community size distributions. [3]. To measure
the similarity of ground truth communities and found communi-
ties, we use normalized mutual information (NMI), an information-
theoretic similarity measure. This measure is normalized such that
the NMI of two sets of communities is 1 if they are identical, and
0 if they are totally independent of each other. Danon et al. [25]
first applied NMI to the problem of evaluating the similarity of two
sets of communities, but defined the measure only for partitions. In
our benchmarks, we employ a variant of NMI introduced by Lan-
cichinetti et al. [14] that is defined for covers, in which nodes may
belong to multiple communities.2

Synthetic graph description & parameters. To construct a LFR
graph, one must specify ten parameters, which are listed in table 1.
Note that the parameter On refers to the number of nodes in the
graph that are overlapping (i.e., belong to more than one commu-
nity), andOm dictates how many communities each of the overlap-
ping nodes belongs to.

There are two types of edges in LFR graphs: those that are
planted within communities, and those that are created randomly
independent of community structure. The mixing parameter µ con-
trols the proportion of random edges to total edges; for example, if
µ = 0.2, then the LFR algorithm creates a graph such that approx.
80% of each node’s edges end within that node’s communities, and
the remaining 20% end in some randomly selected community. In
general, as µ increases to 1, the community structure becomes ever
weaker.

2For creating the LFR graphs and measuring overlapping NMI, we
use the implementations provided by the authors, both of which
are freely available at http://sites.google.com/site/
andrealancichinetti/software.

Benchmarks on graphs with overlapping communities. As we
mentioned in the introduction, very little work has been done on
benchmarking CAAs on graphs with overlapping community struc-
ture. The work that includes such benchmarks is limited to graphs
with only moderate levels of community overlap, i.e., where some
fraction of nodes belong to two communities, and the rest belong
to one [4, 5, 8].

Our purpose here is to examine how CAAs perform on graphs
with a higher degree of community overlap. We specify five graphs;
in the first, each node belongs to one community, and in each suc-
cessive graph all nodes belong to one more community, so that in
the fifth graph, all nodes belong to five communities. In order for
nodes to have enough edges for membership in an increasing num-
ber of communities, in each successive graph nodes are assigned
a higher average degree. In the first graph, the average node de-
gree is k = 18, and for each extra community that a node belongs
to, the average degree increases by 18, so that by the fifth graph,
k = 90. Other parameter values remain constant across all five
graphs and are listed in the third column of table 1. In all syn-
thetic and empirical benchmarks, we kept GCE’s parameters fixed
at k = 4, α = 1.0, and ε = 0.6, with the exception that in the PPI
benchmark, we set k = 3 because the domain contains very small
communities.

In fig. 5 (A) and (B), we see the results of GCE alongside five
other CAAs that were designed specifically to detect overlapping
communities, and two that find non-overlapping communities. The
five other overlapping CAAs that we benchmarked are CFinder,
which employs a technique of k-clique percolation [9]; LFM, which
uses a local greedy optimization strategy very similar to GCE, but
selects seeds randomly [14]; COPRA, which utilizes a label prop-
agation technique [5]; abchampions, which finds all regions of the
graph with a certain difference between internal density and exter-
nal sparsity [13]; and Iterative Scan [15], which we have described
in section 2. All implementations we used were from the authors.
Just as GCE’s parameters were fixed at default values, we left the
parameters of the other algorithms set to their defaults with the fol-
lowing exceptions: CFinder, where we set k = 4, which returned
the best results overall; COPRA, where we set v = 3, Iterative
Scan, where we set the initial cluster size to 2, as recommended;
and abchampions, where we set Cmin = 5 and Cmax = 100, as
recommended by an author. For each point in the plot, we ran all
CAAs on the same 10 realizations of graphs created with the same
parameters; error bars represent the standard deviation of NMI over
the 20 runs, which also holds for the benchmarks in fig. 6.

Figure 5 (A) and (C) suggests why no benchmarks have been
carried out on graphs with such a high degree of overlap: none of
the existing algorithms perform well even when overlap is kept at
moderate levels. The robust performance of GCE as the number
of communities to which each node belongs increases is unprece-
dented. To more closely examine the limitations of the other three
algorithms, in fig. 5 (B) and (D) we run additional benchmarks on
graphs where some fraction of nodes belongs to two communities
and the rest belong to one. In these graphs, the average degree k
steadily rises from 18 (when each node belongs to one community)
up to 36 (when every node belongs to two communities).

With regard to CFinder and COPRA, our results here mirror the
results of [4, 5], who benchmarked these algorithms on similar
LFR-generated graphs. They also found that these algorithms could
no longer accurately assign nodes to communities if all nodes be-
longed to two communities. We benchmark LFM for the first time
on such overlapping synthetic graphs. It is interesting to note that
although LFM and GCE use the same fitness function and a similar
greedy heuristic, their results vary so greatly. uses the same fitness

http://sites.google.com/site/andrealancichinetti/software
http://sites.google.com/site/andrealancichinetti/software
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Figure 5: Accuracy of nine CAAs on LFR graphs with increasing amounts of community overlap.

function as GCE. We speculate that LFM’s performance drops be-
cause this seed selection strategy causes it to prematurely give up
on trying to expand new regions of the graph that have unidentified
communities.

Benchmarks on graphs with disjoint communities. Most of the
benchmarking of CAAs has been on graphs with non-overlapping
communities. In particular, Lancichinetti and Fortunato [4] have
benchmarked a wide variety of CAAs on a particular set of LFR
graphs. Gregory [5] have recently followed suit and benchmarked
more algorithms on this set of graphs, so we continue in this vein
and benchmark GCE and a number of other CAAs to see how they
perform on this emerging standard. There are four graph specifi-
cations that are included in this standard set. The graphs in this
quartet are either small or large (N = 1000 or N = 5000), and
have either small or large communities (ranging between 10 − 50
nodes or 20− 100 nodes). The results are displayed in fig. 6.

It is informative to compare the accuracy of GCE as displayed
in fig. 6 with the results of various disjoint CAAs in the recent
comparative benchmarking of Lancichinetti and Fortunato [4]. We
note that COPRA and CFinder have been previously benchmarked
on graphs with the same specification and returned the same results,
indicating that we have accurately replicated this benchmark and
that it is reasonable to compare our results with theirs. With regard
to this matter of comparison, we also point out that in their review,
Lancichinetti and Fortunato also used the overlapping version of
NMI, so that we can directly compare the results from fig. 6 to their
results. The comparison indicates that GCE’s accuracy on the task
of partitioning graphs with non-overlapping community structure
is among the best, even when compared to non-overlapping CAAs,

which specialize in this task.
More specifically, GCE clearly outperforms the classic divisive

GN algorithm of Newman and Girvan [26], a similar divisive algo-
rithm by Radicchi et al. [27], the EM method of Newman and Le-
icht [28], the Markov clustering algorithm (MCL) of Van Dongen
[29], an information theoretic approach by Rosvall and Bergstrom
[30], and a spectral algorithm by Donetti and Munoz [31]. Against
other algorithms, results were mixed. GCE performed better than a
method based on modularity optimization via simulated annealing
by Guimera and Amaral [32] in all cases except where the graph
size was small and the community size large. GCE performs simi-
larly to the modularity maximizing algorithm of Blondel et al. [33],
which was among the CAAs that Lancichinetti and Fortunato iden-
tified as a top performer, and slightly worse than the other two top
performers: another information theoretic algorithm from Rosvall
and Bergstrom [30], and a Potts model approach by Ronhovde and
Nussinov [34].

5. EMPIRICAL BENCHMARKS
In this section we strive to demonstrate GCE’s ability to iden-

tify meaningful communities in the context of non-trivial empirical
networks, for which ground-truths are available. We agree with
[1] that small the social networks which are typically used as em-
pirical benchmarks for CAAs, such as Zachary’s Karate club, pro-
vide insufficient validation of a CAA. While we were unable to
find an ideal, large-scale graph in which the ground-truth is com-
pletely known, we find two reasonable data sets for this purpose:
a protein-protein interaction (PPI) network which includes a set of
known protein complexes, and a collegiate Facebook network in
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Figure 6: NMI of GCE and other overlapping CAAs on all benchmarks used by Lancichinetti and Fortunato [4] and Gregory [5].

which the dorm assigmnets are known.

Protein-protein interactions and protein complexes. Protein com-
plexes tend to correspond to groups of proteins with many interac-
tions, and can thus be detected by CAAs. We use a set of known
protein complexes as an approximate, ground truth.

To construct the PPI network, we used the interaction data found
in the Combined-AP/MS network [35].3, which contains 1622 pro-
teins and 9070 interactions. For the ground truth communities, we
used the complexes listed in the CYC dataset of known complexes4,
selecting only those complexes that were also in the PPI network.
Because many of these complexes were simply edges or triangles
that are not recognizable as network communities, we removed all
complexes with fewer than four proteins from the ground truth.
Consequently, we use the value of 3 as the minimum clique size
for all clique based algorithms. Note also, we use SCP[36] instead
of CFinder here, as the latter fails to terminate on this dataset. The
resulting ground truth contains 880 proteins; 136 of these belong
to more than one complex. As the ground truth contains only a
modest amount of overlap, we compare GCE against some disjoint
CAA algorithms as well as some overlapping CAA algorithms. In
table 2, we show the NMI achieved by each algorithm, along with
the number of communities found.

We see that GCE’s found communities have the highest NMI
with the ground truth, followed closely by abchampions and the
clique percolation method. However, one might object that because
we cannot assume that our ground-truth set of complexes is com-

3 Available at http://interactome.dfci.harvard.
edu/S_cerevisiae/
4 Available at http://wodaklab.org/cyc2008/

Algorithm NMI |C| Avg

GCE 0.550021 119 0.861
abchampions [13] 0.529883 63 0.485
Clique percolation [36] 0.522478 114 0.744
MCL [29] 0.414983 298 1.000
Blondel 0.328344 212 1.000
Iterative Scan [15] 0.301171 230 6.975
COPRA [5] 0.299514 513 1.101
LFM [14] 0.270601 58 0.646

Table 2: NMI of various algorithms on PPI data, along with
number of communities |C| and average comms. per node.

plete (due to the possibility of undiscovered complexes), the NMI
measure is imperfect.

For this reason, in fig. 7 we look at these PPI results in more
detail using the F1-score , a summary of the classification metrics
recall and precision. To evaluate an CAA performance, we per-
formed the following procedure. For each known complex in the
ground truth, we selected the found community with the highest F1-
score . An F1-score of 1.0 indicates a perfectly recovered protein
complex. We plotted all best F1-scores in a histogram.

The histograms show that of all the overlapping CAAs, GCE
has the most perfectly-recovered communities and the fewest poor
matches. MCL, a non-overlapping CAA, returned slightly better
results. Due to space constraints, we display the F1-score his-
tograms of only the highest performing algorithms.

We also looked at the second-best F1-score to verify that the al-
gorithms are finding each complex once, and only once; this is in-
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Figure 7: F-scores for each known complex in the PPI data

deed the case.

Facebook. As an application to social network analysis, we con-
sider the network of Facebook friendships between CalTech stu-
dents. Traud et al. [24] introduced this network data set. Their
analysis indicates that dorm assignment is particularly important to
the social life at CalTech, playing a crucial role in the formation
of communities. They argue that this data offers a good empirical
benchmark for community assignment algorithms, using the dorm
partition as an approximate ground truth. The data contains 16656
edges and 769 nodes, and includes information on the dorm assign-
ments of 75% of the nodes.

We run a number of CAAs on the CalTech Facebook network
and calculate the NMI of the communities they return with the
dorm partition. For this calculation, we leave out nodes whose
dorm assignments are unknown. The results are displayed in ta-
ble 3.

We also ran this benchmark on the other four, much larger col-
legiate Facebook networks introduced by Traud et al., and found
that no algorithm returned an NMI value greater than 0.01. A num-
ber of factors may have led to this surprisingly low value: Traud
et al. indicate that dorms play a less encompassing role in the so-
cial life of students at these four larger universities. Some of these
networks also included one dorm attribute value with an especially
large number of students; we speculate that this value stands for
“off campus,” and note that the CAAs are unlikely to (nor should
they) find that the thousands of off campus students all belong to-
gether in one community, as they are listed in the ground truth.
Finally, the value of the dorm assignment was unknown for a larger
proportion of nodes in these larger data sets.

6. CONCLUSION
We have introduced an algorithm, Greedy Clique Expansion,

which combines the graph structure based approach of clique-finding
methods with the greedy expansion strategy found in other algo-
rithms. We demonstrate that GCE can accurately recover commu-
nities on synthetic networks in which every node belongs to four

Algorithm NMI time(s)
GCE 0.338 <1
Blondel 0.288 <1
COPRA 0.285 <1
Clique percolation 0.002 15.15
Iterative Scan 0.244 782
LFM 0.007 23
abchampions 0.000 30
MCL 0.159 4.4s

Table 3: NMI of the partition created by dorm assignments and
the communites found by various CAAs when run on CalTech’s
Facebook friendship network.

communities. We found that no other algorithm performed nearly
as well on synthetic graphs in which every node belong to two or
more communities. To determine whether these good results are
robust, we performed further comparative benchmarks on a range
of LFR graphs with non-overlapping communities, and found that
GCE performed competitively. To complete our evaluation, we
used GCE to recover biological ground truth communities from
a reference protein-protein interaction network, and to infer non-
network attributes from a social graph. Compared to other overlap-
ping CAAs, GCE gave the best results.

Further Work. The community structure found in some networks
may exist at multiple scales due to hierarchical organization of the
system represented by the network. Ideally, a CAA would detect
community structure at all scales. We are currently working with a
modified version of GCE that expands all seeds in parallel, merg-
ing them as they become near-duplicates. By expanding all seeds to
encompass the entire graph, and merging them along the way, the
algorithm produces a dendrogram similar in some respects to the
dendrograms produced by classic agglomerative algorithms such
as that of Girvan and Newman [2], but which allows overlap, and
in which leaves represent seeds rather than nodes. Communities
could be extracted from this dendrogram by performing an analy-
sis of stability. This variant of GCE might have the advantage of
not only detecting hierachy, but also of decreased sensitivity to the
α parameter, because communities are selected based on stability
rather than on the first local maximum of fitness.

We considered only a simple, greedy expansion heuristic. Fu-
ture work should investigate using more sophisticated local heuris-
tics that cleverly explore the most promising sections of the search
space. Furthermore, due to the local nature of GCE, a parallel im-
plementation should be straigtforward to implement and would in-
crease its scalability.

Finally, we would like better benchmarking abilities. On the one
hand, we need a utility that uses synthetic graphs to systematically
explore under what topological conditions the performance of a
CAA breaks down. On the other hand, we need better empirical
networks with ground truth communities to ensure that CAAs do
not merely perform well on synthetic data.
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