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ABSTRACT

Models of non-trivial objects resulting from a 3d data acquisition process (e.g. Laser Range Scanning) often contain

holes due to occlusion, reflectance or transparency. As point set surfaces are unstructured surface representations

with no adjacency or connectivity information, defining and detecting holes is a non-trivial task. In this paper we

investigate properties of point sets to derive criteria for automatic hole detection. For each point, we combine sev-

eral criteria into an integrated boundary probability. A final boundary loop extraction step uses this probability and

exploits additional coherence properties of the boundary to derive a robust and automatic hole detection algorithm.
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1 Introduction
Point set surfaces have become popular with the rise

of 3D data acquisition techniques such as laser-range

scanning. Their conceptual simplicity makes them

suitable for both modelling as well as high quality ren-

dering. Usually, these 3D data acquisition methods

deliver unstructured point clouds, possibly equipped

with normals and additional surface properties, such

as colour. The surface is encoded implicitly therein

and can only be extracted using some neighbourhood

relation between samples. Compared to mesh based

representations, the lack of explicit connectivity in-

formation simplifies the definition and implementa-

tion of many tasks encountered in geometric mod-

elling, such that for instance free-form deformation

techniques for point sets become increasingly popular

[PKKG03, BK05]. On the other hand, the detection of

holes in the surface – trivial in the case of meshes –

becomes an ill-defined problem.

The knowledge of holes in the data, however, is vi-

tal for many applications dealing with point set sur-

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.14, ISSN 1213-6972

WSCG’2006, January 30-February 3, 2006

Plzen, Czech Republic.

Copyright UNION Agency–Science Press

faces and it can be exploited in several ways. It can

be used to reconstruct surfaces with boundaries or to

direct a further scanning step, gathering missing infor-

mation in holes, either manually or even automatically.

In postprocessing, a smoothing step to remove noise

profits from boundary information as many smoothing

operators usually fail on boundaries and special han-

dling is required at the borders. Identification of points

on the boundary of a hole is obviously required before

any attempt to algorithmically fill holes, an application

useful not only in surface repairing but also in mod-

elling and interactive editing [BSK05, SACO04].

While several authors proposed sampling conditions

for surfaces to ensure correct reconstruction (most no-

tably [ABE98]), we are not primarily concerned with

undersampling but are interested in holes that a human

user might identify when inspecting a point cloud, of-

ten unaware of the original surface. Also we want to

provide a user with intuitive parameters making it easy

to find the holes needed for a given application.

2 Previous Work
The problem of detecting holes in point set surfaces

is closely related to surface reconstruction as well as

feature extraction. Thus, many algorithms in those ar-

eas include criteria to identify holes or undersampled

surface patches.

[GWM01], [LP02] as well as [CN04] apply what we

shall call the angle criterion. The angle criterion con-

siders for each sample point p a set of neighbouring

samples and examines the maximum angle between

two consecutive neighbours. [GWM01] also use the



Figure 1: The steps of the boundary detection algorithm. From left to right: A boundary probability Π(p) is

computed for every point (the points are shaded in red according to their boundary probability). Then points

are classified into boundary and interior points, exploiting coherence. Finally, for each hole a boundary loop is

extracted.

correlation matrix formed by the neighbourhood. The

eigenvectors and eigenvalues of this matrix define a

correlation ellipsoid. Its shape, expressed in the ratios

of the eigenvalues, is used to identify corner, crease

and boundary points and also gives an approximation

to crease and boundary direction. In order to find con-

tinuous crease lines, a neighbourhood graph on the

point set is built and its edges are weighted according

to the crease probability. Edges with high probability

are then collected and constitute the feature patterns.

In [DG01], undersampled regions are detected using

the sampling requirement of [ABE98]. This sampling

condition is based on an approximation of the medial

axis by so called poles of each sample’s Voronoi cell.

The distance of each point to the medial axis gives

the local feature size. Every point on the true surface

needs at least one sample point within a ball defined

by the local feature size and a factor r. Consequently,

[DG01]’s approach fails to identify holes in flat areas

of the surface, where only very few samples are re-

quired to fulfill this requirement (in flat areas the me-

dial axis is far away). In these areas, though, often

holes are present and clearly visible for a human ob-

server. Similarly, we are not interested in regions de-

clared undersampled at sharp creases where the sam-

pling requirement can never be met (at sharp edges the

medial axis touches the surface).

3 Overview
Let S be a 2-manifold surface and let the set of points

P = {p1, . . . ,pn} ⊂ ❘
3 be a (not necessarily reg-

ular) sampling of S. Suppose also that n1, . . . ,nn

are the corresponding surface normals. The problem

is now to define an operator

BP : P → 2P ; BP(P) 7→ {p ∈ P|p is boundary}

that identifies the set of boundary points B = BP(P)
circumscribing holes in P . We denote the boundary

operator with a subscript P to stress that the assign-

ment boundary or non-boundary is strictly a property

of the point set under consideration itself.

The basic layout of our hole detection scheme (de-

picted in figure 1) is as follows: For each point p ∈ P
we compute a boundary probability Π(p), reflecting

the probability that p is located on or near a hole in

the surface sampling (section 4). Thereafter, we ex-

ploit that the boundary property is coherent, i.e. that

boundary points have proximate neighbours that are

also boundary, and construct closed loops circumscrib-

ing the hole in a shortest cost path manner (section 5).

Results and applications of our hole detection scheme

are given in sec. 6.

4 Boundary Probability
The property of being boundary inherently is a prop-

erty of the local neighbourhood of p rather than of

the point p itself. In order to define and evaluate the

boundary criteria, we therefore have to seize the local

neighbourhood Np more formally.

4.1 Neighbourhood Collection
A very common definition of local neighbourhoods

around a point p found in the literature is the k-

neighbourhood Nk
p

, consisting of the k nearest sam-

ples in P to p. This simple definition, though, be-

comes unreliable in areas of varying sampling density.

In points lying on the edge of a densely sampled re-

gion, the k-neighbourhood will be biased towards the

densely sampled region (fig. 2, left).

This problem can be alleviated somewhat by the Nkǫ
p

neighbourhood, that includes not only the k nearest

points but also all points inside a small sphere with ra-

dius ǫ. By selecting an appropriate value for ǫ, the bi-

asing effect can be reduced, but the neighbourhood of

points in densely sampled regions will contain more

points than necessary, increasing the cost of evalu-

ating the boundary criteria, which effectively limits

the range of a feasible ǫ. For sharp sampling density



Figure 2: Left: The kǫ-neighbourhood is biased towards densely sampled regions. Middle: kǫ-neighbourhoods

of points in the sparsely sampled region contain points of the densely sampled area. Right: The symmetric kǫ-

neighbourhood is not affected by the change in sampling density.

changes (as often encountered in point sets stemming

from registered range images), this alleviation alone is

not sufficient.

However, whereas the kǫ-neighbourhood for points

situated on a sampling density drop will include only

points in the densely sampled region, these points will

be contained in the neighbourhood of nearby points,

located in the sparsely sampled region (fig. 2, middle).

To overcome the biasing effect, it therefore typically

suffices to include these nearby points in the neigh-

bourhood (fig. 2, right). To complete the neighbour-

hood for the critical points, we hence define:

Np = {q ∈ P | q ∈ Nkǫ
p

∨ p ∈ Nkǫ
q
},

i.e. q is considered one of p’s neighbours, already if p

is one of q’s.

To efficiently find the neighbourhood for each point, a

kd-tree is built, containing all points in P . The kd-tree

supports the collection of the k nearest neighbours to a

point in O(klog3|P|) and can also be used to quickly

retrieve all points in a sphere of radius ǫ. After the

kd-tree has been constructed, we build the proximity

graph G(P, E), with P as vertices and edges

E = {(i, j) | pj ∈ Npi
}.

Please note that this graph is symmetric, and the

adjacency lists of the graph correspond to the Np-

neighbourhood of each point.

4.2 The Angle Criterion
The angle criterion projects all neighbouring points

contained in Np on the tangent plane and sorts them

according to their angle around the centre sample, see

figure 3, and computes the largest gap g between two

consecutive projected neighbours. The basic idea is

that g will be significantly larger for a boundary point

than for an interior point, as illustrated in figure 3.

Consequently, the boundary probability is given as

Π6 (p) = min

(
g − 2π

|Np|

π − 2π
|Np|

, 1

)
.

Figure 3: The three steps in the evaluation of the angle

criterion for an interior point (top row) and a bound-

ary point (bottom row). After projection into the tan-

gent plane the difference vectors are generated (left).

The projected points are sorted according to their an-

gle around p (middle). The largest angular gap be-

tween two consecutive points is used to compute the

boundary probability (right).

In contrast to the standard angle criterion, we ignore

points q ∈ Np with a small scalar product 〈np,q−p〉.
This way the angle criterion becomes less susceptible

to small inaccuracies in normal direction.

4.3 The Halfdisc Criterion
In 2D-image processing, edge detection algorithms

identify pixels, whose luminance deviates consider-

ably from the average luminance of its neighbouring

pixels. The same rationale can also be applied in our

problem setting. On a 2-manifold, the neighbourhood

of points in the interior of the surface is homeomorphic

to a disc such that we can expect the difference be-

tween the point p itself and the average µp of its neigh-

bours to be small, as opposed to points on a boundary.

Their neighbourhood is homeomorphic to a halfdisc

(see figure 4), such that µp will deviate from p sig-

nificantly. Therefore, to derive a boundary probability,

we compare µp with the centre of mass of an ideal

halfdisc in the tangent plane. To reduce the influence



(a)

(b) (c)

Figure 4: (a) The local neighbourhood of points lo-

cated on the surface boundary is homeomorphic to a

halfdisc as opposed to the full disc of an interior point.

(b) For an interior point, the average of the neighbour-

hood points will coincide with the interior point itself,

while for a boundary point (c), it will deviate in direc-

tion of the interior surface.

of variations in the sampling density, we compute µp

as a weighted average of Np using the Gauss kernel

gσ(d) = exp

(
−d2

σ2

)
,

where σ depends on the average distance to the neigh-

bouring points rp (namely σ = 1

3
rp), such that the

influence of points outside the neighbourhood Np can

be neglected. This delivers:

µp =

∑
q∈Np

gσ(‖q − p‖)q
∑

q∈Np
gσ(‖q − p‖)

.

To filter out properties of the surface itself and to in-

clude in our criterion properties of the sampling itself

only, we compute the projection µ
p

of µp into the tan-

gent plane and define the boundary probability as

Πµ(p) = min(
‖p − (µ

p
)‖

4

3π
rp

, 1).

4.4 The Shape Criterion
As noted in [GWM01], the shape of the correlation el-

lipsoid of Np approximates the general form of the

neighbouring points. The shape of the ellipsoid is

encoded in the eigenvalues λ0 ≥ λ1 ≥ λ2 of the

weighted covariance matrix Cp:

Cp =
∑

q∈Np

w(q)(µp − q)(µp − q)t

(a) (b)

Figure 5: (a) The triangle formed by all Λ values with

highlighted characteristic points for certain shapes.

The circles passing through the triangle centroid c are

shown for every shape in the respective colour. (b) The

tentative probability Π̃boundary is computed by evalu-

ating the kernel around the characteristic Λ for bound-

ary points.

We collect the relative magnitudes of the eigenvalues

in a decision vector Λp = (λ0

α
, λ1

α
, λ2

α
), with α = λ0+

λ1 + λ2. There are four characteristic situations φ ∈
Φ = {Boundary, Interior, Corner/Noise, Line}:

φ = Boundary Λφ = ( 2

3
, 1

3
, 0)

φ = Interior Λφ = ( 1

2
, 1

2
, 0)

φ = Corner/Noise Λφ = ( 1

3
, 1

3
, 1

3
)

φ = Line Λφ = (1, 0, 0)

The latter three values of Λ span a triangle TΛ con-

taining all possible values for Λ (fig. 5). We can

now extract tentative classification probabilities Π̃φ

for each of the situations described above from Λp

by evaluating a spatial kernel around the characteris-

tic Λφ. Again, we use a Gauss kernel gσ with σφ =
1

3
‖Λφ − centroid(TΛ)‖2, effectively defining a radius

of influence for the characteristic point (see figure 5,

left). Now Π̃φ is for each shape φ ∈ Φ given as

Π̃φ(p) = gσφ
(‖Λp − Λφ‖)

Obviously, the regions for different shapes overlap.

Therefore we normalise and define

Πφ(p) =
Π̃φ(p)

∑
ϕ∈Φ

Π̃ϕ(p)
.

4.5 Combining the Criteria
Every criterion has its own advantages. Compared to

the angle criterion, the halfdisc criterion is better capa-

ble of detecting small holes, especially when the hole

is crossed by some edges of the neighbourhood graph,

see figure 6.

On the other hand, while the halfdisc and the ellip-

soid criterion typically find narrow bands of boundary



(a) (b)

Figure 6: A small hole, crossed by some edges of

the neighbourhood graph G. Points with a boundary

probability (as computed with the angle criterion (a)

and the halfdisc criterion (b)) above a threshold of 0.5
are coloured in red.

(a) (b)

Figure 7: Boundary points detected by the halfdisc

criterion form a band of boundary points (b), whereas

the angle criterion finds a sharp boundary (a).

points around holes (in particular for larger k) the an-

gle criterion is sharper and better exposes thin lines

of boundary points (see figure 7). In the presence of

noise, finally, the shape criterion performs best (see

figure 8).

In order to make use of the different capabilities of the

criteria and to increase the robustness of the bound-

ary probability computation, we derive a combined

boundary probability into a weighted sum

Π(p) = w6 Π6 (p) + wµΠµ(p) + wφΠBoundary(p).

The weights w6 , wµ and wφ, where w6 +wµ +wφ =
1, can be adjusted by the user upon visual inspec-

tion. As default, a uniform weighting scheme pro-

duces good results, but for noisy models, the weight

of the shape criterion should be increased.

4.6 Normal Estimation
Both, the angle and the average criterion, depend heav-

ily on the normal at the point p. Therefore, if the data

comes without normal information, a good estimation

(a) (b)

Figure 8: The angle criterion (a) identifies many false

boundary points in the presence of noise, while the

shape criterion (b) is not affected.

of the normal is mandatory. Following the normal esti-

mation method by Hoppe et al. [HDD+92], the normal

is given as the eigenvector corresponding to the small-

est eigenvalue of the weighted covariance matrix of

Np. In addition to that, we integrate information gath-

Figure 9: In sharp creases the fitting plane sometimes be-

comes normal to the surface. These cases can be detected

with the angle criterion and the normal can then be flipped.

ered during the computation of the angle criterion in

the normal estimation process as suggested in [LP02].

Sometimes, at sharp creases, the fitting plane is normal

to the surface, see figure 9. To detect this situation, the

angle criterion is evaluated after the normal has been

estimated. If the boundary probability Π6 (p) exceeds

a given threshold, the estimated normal is rotated by

90 degrees about the axis defined by the two points

on both sides of the maximum gap, projected into the

tangent plane. Then the angle criterion is evaluated

again, this time using the rotated normal, and the new

normal is kept if the boundary probability has been re-

duced significantly, i.e. by more than 50%. This helps

at sharp creases where sometimes the fitting plane is

normal to the surface, see figure 9.

Please note that the estimation algorithm does not

yield consistently oriented normals. Although this is

required for neither of our criteria, it can easily be



achieved by applying the minimum spanning tree tra-

versal introduced in [HDD+92] on the neighbourhood

graph. We use this approach for visualisation pur-

poses.

5 Boundary Loops
The extraction stage of the boundary detection al-

gorithm aims at producing a classification for each

point, stating if it is a boundary or an interior point.

Here, in addition to the boundary probability com-

puted with the scheme described in the last section, we

will exploit the coherence between boundary points.

This greatly improves the robustness of our method.

Moreover, connected loops of points, circumscribing

a hole, will be found, providing immediate access to

the boundary.

5.1 Boundary Coherence
Any point on a boundary loop has at least one neigh-

bour to each side also belonging to the boundary. This

property can easily be exploited using a simple itera-

tive classification step. First, all points with a bound-

ary probability greater than a user defined threshold

are declared boundary points. Then, for each of these

points, the two neighbours forming the maximum gap

in the sense of the angle criterion are found. A point

stays classified as boundary point if and only if both

of these neighbouring points have also been declared

boundary points. All other points are marked as in-

terior points. This process is repeated until no more

points change their status. Note that only the neigh-

bours of points that did change status in the previous

iteration have to be reconsidered in the following step,

making the classification very efficient.

After the classification, we use an algorithm that is

built upon the one presented in [GWM01] to construct

a minimum spanning graph (MSG) based on the prox-

imity graph G. By construction, this MSG will contain

loops if and only if they correspond to the boundary

loops we are interested in.

To this end, we use an extension of Kruskal’s min-

imum spanning tree algorithm. The required edge

weights w(i, j), are derived similar to [GWM01] in

two parts. The first component penalises the boundary

probability of the adjacent points:

wprob(i, j) = 2 − Π(pi) − Π(pj).

The second component incorporates the local sam-

pling density measured by rp (defined as the average

distance to p’s neighbours (see sec. 4.3) and penalises

long edges so that the boundary loops will contain as

many boundary points as possible:

wdensity(i, j) =
2‖pi − pj‖

rpi
+ rpj

.

The total weight is then given by

wtotal(i, j) = wprob(i, j) + wdensity(i, j).

The construction of the MSG uses an extension to

Kruskal’s minimum spanning tree algorithm. In the

beginning, every vertex of G comprises a stand-alone

component in G. Then all eligible edges are processed

in ascending order, according to their weight. Here, an

edge (i, j) is considered eligible only if wprob(i, j) and

wtotal(i, j) are below pre-defined thresholds. A thresh-

old combination of 1.1 and 3 proved good in our ex-

periments and was used for all the examples given in

this paper.

If an edge (i, j) connects two distinct components of

G, the edge is added to the MSG and the two com-

ponents are joined. If, on the other hand, the edge

connects two vertices of the same component, it is in-

cluded in the MSG only if the emerging loop is longer

than a predefined minimum loop length e, measured as

the number of edges in the loop. Similar to the radius ǫ

in the construction of the neighbourhood graph G, the

minimum loop length e steers the minimal hole radius

to be found. Therefore, we link these two parameters

and set e = 2πǫ
d

, where d is the average edge length in

the graph.

5.2 Loop Extraction
With the MSG at hand, the boundary loops can be

extracted using a breadth first search. The search is

started once for each vertex in the MSG, unless it has

become part of a loop already. The algorithm main-

tains for all vertices a colour value signaling one of

three states: white (untouched vertices), grey (queued

for visitation) or black (already processed). In the be-

ginning, all vertices are white, except the origin, which

is grey (see figure 10). In every step the vertex on the

front is marked black, removed from the queue of grey

vertices, and all its white adjacent vertices are marked

grey and appended to the queue. If an adjacent vertex

is black, it is ignored, but if one of the adjacent vertices

encountered is grey, a loop has been found and can be

extracted by tracing back the steps of the breadth first

search. In a final step, points belonging to a loop are

marked as boundary points. The process is illustrated

in figure 10.

6 Results and Conclusions
We applied our algorithm to a variety of models.

Figure 11 illustrates the effect of our hole detection

method using the symmetric neighbourhood graph that

is designed particularly to filter out even abrupt sam-

pling density changes, a situation which causes even

well-established hole criteria to fail. For this example,



(a) (b)

(c) (d)

Figure 10: The extraction of a loop in one compo-

nent of the MSG. (a) The breadth first graph traversal

is spawned at the highlighted vertex (grey in the begin-

ning). (b) The state of the vertices after four steps of

the search. All grey vertices are queued for visitation,

black vertices have been visited. Arrows indicate the

vertices’ predecessors. (c) When the adjacent vertices

of the green vertex are examined, the grey vertex (red)

is encountered and a loop has been found. The loop

is extracted by tracing back the predecessors of both

vertices. (d) The extracted loop.

one half of the depicted data set was heavily downsam-

pled and only the angle criterion employed. Note how

well the drastic change in sampling density is handled.

Although this novel neighbourhood construction al-

ready considerably improves the performance of the

so-called angle-criterion, the robust detection of holes

in the presence of noise or also of holes of small size

remains a challenge using only this criterion. To over-

come this, we presented two novel boundary criteria:

The halfdisc criterion is the 3d-analogue to the well-

known border detection in images, whereas the ellip-

soid criterion exploits a classification scheme based on

local data analysis.

The notion of a hole is inherently and per-se ill-defined

in the context of point set surfaces, and hence any clas-

sification ultimately needs to adapt to the application’s

(or rather the user’s) interpretation. Consequently, our

probabilistic approach can be trimmed using intuitive

parameters, rendering the method easily adjustable to

the task at hand. The parameter k of the neighbour-

hood definition determines the size of the local neigh-

bourhoods. If k is increased, only larger holes can be

detected, as smaller holes will be crossed by edges

of G. We typically used a value between 12 and 25
for our test cases, depending on the amount of noise

Figure 11: The effect of the symmetric neighbourhood re-

lation. Left: k-nearest neighbours Right: Symmetric neigh-

bourhood graph

Figure 12: Boundary points identified in the mannequin

model (points only) with k = 15. The top right image is

taken from [DG01].

present in the data. If there is considerable noise,

larger values of k can be used to improve the robust-

ness of the hole detection, while the parameter ǫ can be

used to define a minimum hole size, since the neigh-

bourhood will stretch over all holes with a diameter

less than ǫ. This way the user is enabled to focus on the

important holes in the dragon for instance, as demon-

strated in figure 14.

By making use of the coherence between boundary

samples, the robustness of the hole detection is fur-

ther increased. As a by-product of this stage, boundary

loops are extracted, delivering subsequent processes

direct access to the contours of the holes.

For many applications, such as automatic hole filling,

the detection of holes has to be repeated after filling

part of the hole. A reasonable efficiency of the hole

detection is therefore desirable. In the dragon example

(containing over 400000 points) the holes depicted in

figure 14 (right) were detected in less than two minutes

on a AMD Athlon 2.21 GHz processor. Specifically,

the timings were: Construction of the kd-tree and the

symmetrised proximity graph 23s, computation of the



Figure 13: Boundary found in a scan of an echinite. All

three criteria were combined with equal weight.

Figure 14: Numerous small holes are detected in the dragon

model for k = 15, but larger holes can be isolated if all

points within 0.01 of the bounding box diagonal are also

included in the neighbourhood.

integrated boundary probability 46s, extraction of the

boundary loops 36s. In the context of hole filling,

the update of the boundary loops can naturally be per-

formed incrementally, such that here timings can be

expected to be even considerably faster; this has not

been in the scope of this paper, though.

Figure 12 shows that our method extracts holes in the

mannequin point cloud comparable to those identified

for the corresponding mesh in [DG01]. Here, a clas-

sification step with a threshold of .3 was applied. In

figure 15 the boundary of a single scan of the bunny

has been extracted as a loop. A minimum loop size of

e = 1000 was used to suppress the detection of loops

around the smaller holes.
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