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Abstract

This notebook paper summarizes Team NEC-UIUC’s ap-

proaches for TRECVid 2009 Evaluation of Surveillance

Event Detection. Our submissions include two types of sys-

tems. One system employs the brute force search method

to test each space-time location in the video by a binary

classifier on whether a specific event occurs. The other

system takes advantage of human detection and tracking to

avoid the costly brute force search and evaluates the candi-

date space-time cubes by combining 3D convolutional neu-

ral networks (CNN) and SVM classifiers based on bag-of-

words local features to detect the presence of events of inter-

ests. Via thorough cross-validation on the development set,

we select proper combining weights and thresholds to mini-

mize the detection cost rates (DCR). Our systems achieve

good performance on event categories which involve ac-

tions of a single person, e.g. CellToEar, ObjectPut, and

Pointing.

1. Introduction

Event detection based on human action recognition in

uncontrolled environments shows great potentials for many

emerging video-content analysis applications, thus it at-

tracts more and more research interests and experiences

rapid advances in recent years. Nevertheless, most of the

existing approaches [3, 5, 9, 17, 4, 18, 10, 7] first address

human action detection with some simplified assumptions

such as known spatial locations and temporal segmentations

of actions, no (or very little) scale and viewpoint changes, as

well as static and clean background. Therefore human fig-

ures can be reliably extracted and aligned. However, these

assumptions seldom hold in real-world surveillance videos.

Even the same type of actions may exhibit enormous varia-

tions due to cluttered background, different viewpoints and

many other factors (e.g. human-body occlusions and low-

resolution videos) in unconstrained real-world environment.

This line of research suffers from a lack of stan-

dard benchmark video dataset which provides sufficient

clearly defined video events together with ground truth

annotations in unconstrained real-world environment. To

our best knowledge, TREC Video Retrieval Evaluation

(TRECVid) [14] has made the largest effort to bridge the re-

search efforts and the challenges in real-world conditions by

providing an extensive 144-hour surveillance video dataset

recorded in London Gatwick Airport. There are 10 required

events in TRECVid 2009 Evaluation, we concentrate on the

events that involve the actions of a single person, such as

CellToEar, ObjectPut, Pointing, and PersonRuns.The ap-

proaches developed by the Video Analysis Group at NEC

Laboratories America based on 3D Convolutional Neural

Networks and bag-of-words of local features are first elab-

orated in Sec. 2– 5. Then, we present the approach using

brute force search in videos developed by the Image For-

mation and Processing (IFP) group at UIUC in Sec. 6. The

experiments as well as implementation issues about compu-

tational complexity and parameter selection are discussed in

Sec. 7. Concluding remarks are given in Sec. 8.

2. System Overview

For the tasks in TRECVid 2009 Event Detection Eval-

uation, we focus on 3 events that require understanding of

articulated body motions of a single person, i.e. CellToEar,

ObjectPut, and Pointing. We mainly follow the framework

we employed in TRECVid 2008 Evaluation, which incorpo-

rates hypothesis generation, feature extraction, and classifi-

cation modules. The candidate regions are generated based

on human detection and tracking which not only signifi-

cantly reduces the searching space but also eases the tough

1



Hypothesis generation

Feature extraction

Classification Post-processing

Human detection

Human tracking

 Annotation 

statistics

Motion edge 
history images

DHOG descriptors

Spatial Pyramid 
Matching (SPM)

ASGD
SVM

3D-CNN

ASGD

SVM

Link 
frames to 

segments

Video 
frames

Event 
segments

w1

w2

w3

+
>T

VQ

Multi-frame cubes

Spatial Pyramid 

Matching (SPM)

DHOG descriptors

VQ

Raw gray images

Figure 1. The system diagram of NEC’s approach on human action detection.

requirements of collecting sufficient negative samples. Oth-

erwise, the classifier in the action detector has to fulfill the

job of discerning human from non-human regions and deter-

mining whether they are performing the actions of interests

simultaneously. Afterwards, for each candidate region we

calculate dense DHOG descriptors and build bag-of-words

features based on raw gray-level images and motion edge

histogram images (MEHI) to train two binary SVM classi-

fiers for each action category. At the same time, we learn

convolutional neural networks (CNN) classifiers based on

3D cubes. The classification scores of these 3 classifiers are

combined to make the final decision. In the post-processing

stage, the frame-based classification results are linked to

event segments by heuristics. The system diagram is illus-

trated in Fig. 1.

3. Human Detection and Tracking

We apply a human detector based on Convolutional Neu-

ral Networks (CNN) [12] and a detection-driven multiple

hypotheses based tracker [2, 6, 19] integrating color, shape

and texture cues to locate human heads. For the develop-

ment set of TRECVid 2008 dataset, we annotated all human

heads every 750 frames. The first 70% of heads are used to

train the CNN human detector and the remaining 30% are

used to test the performance. Denote the labeled rectangle

of a head as RL and the detected or tracked rectangles as

RD and RT , respectively. We regard a detection as a cor-

rect one if the overlapped area is larger than one half of both

the labeled and the detected head, i.e. Area(RL ∩ RD) >
Area(RL)/2 and Area(RL ∩ RD) > Area(RD)/2. This

criterion examines both location and scale of a detection,

which is quite strict for head detection in fact. The reason

to train a human head detector rather than a pedestrian de-

tector based on the whole body is due to the crowded scenes

in the TRECVid videos where partial occlusions of human

bodies happen very frequently.

For 4 different camera views, the number of frames la-

beled (# of frames), the average number of tagged heads per

frame (avg. # of labels), the average number of detected

heads (avg. # of detected heads), the average number of

tracked heads (avg. # of tracked heads), the recall rates and

precision rates of the detector and tracker are summarized in

Tab. 1. The performance is quite good given the extremely

complex and crowded scenes in the TRECVid test videos,

e.g., on average there are over 24 persons in the videos of

CAM2. Certainly, wrong human detections may degrade

the action detection performance later on. However, in prac-

tice, applications have to cope with such imperfect detection

and tracking results and do not expect accurate annotations

of human figures. Some typical human detection and track-

ing results from different camera views are shown in Fig. 2.

The detection and tracking results are stored into hard drives

which are loaded when extracting training features or per-

forming action detection on the evaluation set. The human

detection and tracking runs at 0.5-2 fps depending on the

number of persons in the scene, so it may take up to 48

hours to process a 2-hour video.

4. BoW Features based SVM

Given the human detection and tracking results, we crop

an enlarged candidate image region or an cube around every

tracked head. Then, we train binary one-against-all SVM

classifiers for each action category based on bag-of-words

(BoW) of dense local features extracted from the candidate

region or cube. The flow chart is shown in Fig. 3 and the

technical details are elaborated as follows.

We extract dense DHOG features, where DHOG is es-

sentially a fast implementation of the SIFT descriptor [13],



Table 1. Performance of detection and tracking (per head)

Per frame CAM1 CAM2 CAM3 CAM5 Overall

# of frames 3775 3774 3774 3772 15095

avg. # of labels 5.505 24.315 11.486 7.330 12.159

avg. # of detected heads 3.349 16.122 7.236 5.459 8.042

avg. # of tracked heads 4.120 21.545 8.940 8.070 10.668

recall of the detector 43.53% 46.25% 42.58% 45.25% 44.81%

precision of the detector 74.40% 67.37% 66.09% 62.21% 66.99%

recall of the tracker 51.68% 56.76% 48.66% 54.11% 53.65%

precision of the tracker 70.80% 62.42% 61.19% 51.03% 60.80%

Figure 2. Sample human detection and tracking results for camera view 1,2,3,5.

from both raw gray images and motion edge history images

(MEHI). Local features on raw gray images preserve the ap-

pearance information. On the other hand, MEHI proposed

in [20] only concerns with the shape and motion pattern.

Therefore, the bag of local features extracted from these two

different kinds of images are complementary to each other.

The procedure to calculate MEHI is illustrated in Fig. 4. For

consecutive frames, we first calculate the frame difference

images which only retain the motion information, and then

we perform Canny edge detection to make the observations

cleaner. The motion edges are accumulated to a single im-

age with a forgetting factor.

The spatial pyramid matching (SPM) [11] of a bag of in-

terest point descriptors demonstrates superb performance in

object and scene categorization due to its power to delin-

eate the spatial layout of shape patterns. Given the location

of a head output by the human tracker, we crop a candi-

date region with 4 times of the head width by 6 times of

the head height, as shown in Fig. 5. Afterwards, we cal-

culate DHOG features on a dense grid within the candidate

regions, i.e. every 6 pixels with two patch sizes 7 × 7 and

16 × 16. Each 128D DHOG feature is softly quantized

using a codebook with 512 words , then we construct the

BoW features from both 2 × 2 and 3 × 4 cells in the candi-

date cube. The dimensionality of the final feature vector is

512×(2×2+3×4) = 8192. We test such BoW features ex-

tracted from a single frame or from a cube. The cube based

BoW features are constructed from 7 frames with frame in-

terval 2 (e.g. frame -6, -4, -2, 0, 2, 4, 6 if the current frame is

frame 0). Note we do not align human figures and the cube

is composed of regions at the same location in successive

frames as illustrated in Fig. 3.

x4

x6

Figure 5. Extraction of the candidate regions.

To train the SVM classifier for each action category, we

label the positive samples as many as possible and collect a

vast number of negative samples. The total number of train-

ing samples is about 520K where each sample is an 8192D

feature vector. Thus, only the storage for one set of training

data requires 17G bytes (520K × 8192 × 4 ≃ 17G). The

huge memory requirements and the enormous computations

make learning of SVM classifiers extremely challenging for

this task. As far as we know, no off-the-shelf SVM pack-

age can fulfill this task. Thus, we develop a new averaged

stochastic gradient descent (ASGD) method to train linear

SVM classifiers to deal with the huge amount of data. The

first order stochastic gradient descent (SGD) [15] is as good

as any second order SGD with optimal matrix valued step

size. Our ASGD based SVM learning is very efficient since

we only need to access each sample once in an iteration.

The training of 5 classifiers for 5-fold cross-validation and
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Figure 4. Illustration of MEHI extraction. From left to right: (a) the original frame, (b) the frame difference image, (c) Canny edge

detection, (d) the accumulated motion edge history image

the final classifier for 3 events using the 520K samples takes

about 12.5 minutes in total on a 64bit blade server with CPU

Intel Xeon 2.5GHz (8 cores) and 16GB RAM.

5. Cube based Convolutional Neural Networks

Conventional paradigm of pattern recognition usually

consists of two steps in which the first step computes hand-

crafted features from raw inputs and the second step learns

classifiers based on the obtained features. The overall per-

formance of the system is largely determined by the first

step, which is, however, highly problem dependent and re-

quires extensive human intervention. Convolutional neural

networks (CNN) are a class of deep networks in which mul-

tiple stages of learned feature extractors are applied directly

on the raw input images and the entire system can be trained

end-to-end in a supervised or unsupervised manner [12, 16].

It has been shown recently that, when trained with appropri-

ate regularization, CNN can achieve superior performance

on image classification tasks [1, 21]. We consider the ap-

plication of CNN to video action recognition in TRECVid.

A simple approach for CNN in video processing is to treat

the video frames as still images. However, such approach

does not take advantage of the motion information carried

by multiple contiguous frames. We propose a 3D CNN ar-

chitecture, in which the motion information of video data is

captured by performing convolution in both space and time.

In traditional CNN, convolution and subsampling are ap-

plied on the 2D feature maps in the previous layer to com-

pute the feature maps in current layer. When applied to

video processing problems, it is desirable to capture the mo-

tion information conveyed by multiple contiguous frames.

We propose the 3D CNN architecture in which multiple

contiguous frames are fed into CNN and the convolution

is performed in both space (in a single frame) and in time

(among multiple contiguous frames). In particular, the fea-

ture maps in the 3D convolution layer is connected to mul-

tiple contiguous frames in the previous layer, and contigu-

ous feature maps are connected to contiguous feature maps

in the previous layer in a overlapping manner similar to

the convolution in space. To perform convolution opera-

tions along the time axis, we also require that the same set

of weights are applied repeatedly with a specified tempo-

ral window size. Fig. 6 shows the 3D convolution with a

temporal window size of 3.

For the TRECVid video data, bounding boxes for the hu-

mans that perform the actions have been obtained by human

detection, tracking, and manual labeling. To apply the 3D

CNN, we also apply the same bounding box to frames be-

fore and after the current frame with certain step size. In this

application, the step size is set to 2. So, suppose the current

frame is 0, we extract a bounding box at the same position

from frames -6, -4, -2, 0, 2, 4, and 6. From the multiple
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Figure 6. The 3D CNN architecture in which the convolution is performed both in space and in time. In the 3D convolution layer, the

connection weights with the same color share the same set of weights. The 3D convolution and sampling can be applied alternately

multiple times.

input frames, we first compute the gradients on each input

frame and the optical flow from contiguous frames along

x and y directions. Along with the gray image of each in-

put we obtain a total of 5 channels in which three of them

contain 7 feature maps and the other two that derived from

optical flow contain 6 feature maps. In this architecture, the

3D convolution is performed separately on the the different

channels (RGB, gradient, and optical flow) with a tempo-

ral window of size 3. The proposed architecture is shown in

Fig. 7. The bounding box on each frame is scaled to 60×40
and the sizes of the filters and the subsampling ratios are

shown in Fig. 8. The classification scores of this method is

denoted by 3D-CNN.

6. Alternative System

We also demonstrate an alternative system developed at

the University of Illinois. We take a general approach for

detecting a variety of short duration actions (average dura-

tion of one second) with characteristic motion or appear-

ance patterns. The system is applied on 4 events: Pointing,

ObjectPut, PersonRuns, CellToEar. We follow the sliding

window detection paradigm, in which all possible locations

in every frame of the video are evaluated to see whether

it contains the event or not. The candidate windows for

event detection are 30 frames in time and of varying spa-

tial size depending on the camera and horizontal location

of the bounding box. However, the horizontal to vertical

aspect ratio of the bounding box is always fixed at 4 to 6.

That means our candidate windows are space-time rectan-

gles with the vertical edge longer than the horizontal one.

This is consistent with the shape of the most subjects in the

video corpus (unless they are seated). We infer the size-

location relation of subjects in the video corpus by comput-

ing the linear relation between the locations and head sizes

of manually annotated people in each of the five cameras.

To accomplish the goal of event detection, we take ad-

vantage of two types of features describing appearance and

motion respectively. The framework uses a bag of features

approach for motion features, while the appearance feature

is extracted from a dense grid on the entire candidate win-

dow. Finally the two sets of descriptors in each candidate

window are concatenated together and classified with a lin-

ear kernel SVM as shown in Fig. 9. To accelerate the sliding

window search, K-nearest neighbor (KNN), feature extrac-

tion and SVM kernel evaluation are all completely or par-

tially CUDA, which gives us a 15x to 30x speed boost in

most cases 1.

6.1. Appearance features

We construct histograms of oriented gradients (HoG) [8]

to describe the appearance of the subject in the candidate

window. We have empirically found that the 10th frame

of each annotated event contains the most characteristic ap-

pearance of the subjects for each event (e.g. for Pointing

subject usually have their arms fully extended). HoG fea-

ture is a static image feature, which we extract from the

10th frame of each candidate window. The bins of the his-

tograms are over the orientations. We use eight orientation

1The CUDA source codes are available to download at

http://libvivid.sourceforge.net
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bins equally spaced from 0 to 180 degrees of image gradient

direction.

We define a (nx × ny) fixed grid within the candidate

window. Each grid point corresponds to a 15 × 15 square

region from which an 8 dimensional histogram of gradient

orientations will be computed. The direction of the gradi-

ent at the pixel determines which bin of the histogram the

pixel belongs to, and the magnitude of the gradient at the

pixel determines the weight of the vote cast. Finally the

histograms of all blocks are concatenated to form the holis-

tic appearance feature vector of the candidate window. The

spatial dimensions of the candidate windows are re-scaled

to 90 × 60 pixels, and we set nx and ny to 15 and 9 pro-

ducing a 15× 9 × 8 = 1080 dimensional feature vector for

appearances.

6.2. Motion Features

As opposed to shape and appearance, it is hard to local-

ize motion patterns. Therefore for describing motion, we

pursue a bag of features approach, where the location of

the motion within the candidate window has no effect on

the feature descriptor. We first find points of motion in the

candidate window and we randomly sample a fraction of

them. Then we use motion history images [3] to describe

the motion around each sampled point. In the next step, we

find the nearest codeword from a dictionary of motion his-

tory descriptors which was learned offline by clustering a

large number of motion history descriptors randomly col-

lected from the video corpus. Finally we count the number

of nearest neighbors to each dictionary codeword from the

extracted motion history image descriptors in the candidate

window. This gives us a histogram equal to the size of our

codeword dictionary. We use this histogram as our motion

feature. The size of the trained dictionary is 1000 code-

words.

6.2.1 Random sampling on the motion boundary

(RSMB)

To find the points of motion in the candidate windows, we

randomly sample from the motion boundaries obtained by

thresholding the pixel-wise difference between two consec-

utive frames. This sampling method is rather naive, yet it

is still more structured than uniformly sampling from all

pixels in the video. It is logical in this case since mo-

tion information relevant to action detection is mostly con-

tained around the pixels of the motion boundary. The ran-

dom sampling process is conducted by finding all the mo-

tion boundary pixels in a candidate window and then ran-



Figure 9. Diagram of the UIUC System. Two types of features are concatenated at the classification stage to improve the detection accuracy

domly selecting 50% of them. This approach has the ad-

vantage that more samples are collected from frames with

large amounts of motion and few get selected from frames

with little motion. Thus we can quickly discard candidate

windows with little to no motion. Our studies indicate that

densely sampling points from the motion boundary, even

randomly, yields superior results to the recognition per-

formance obtained with state of the art space-time interest

point detectors.

6.2.2 Motion history images (MHIST)

Motion History Images [3] are one of the first features pro-

posed for representation and recognition of simple action

categories. The initial studies have assumed that the sub-

jects are well localized and their scales are known. Unfor-

tunately we do not have such kind of clean environment in a

general surveillance setting, and despite our sliding window

approach, we have to allow for flexibility of the features

in both time, space and scale space. Therefore we make

a slight adjustment to the original definition of the motion

history image, where we use MHIST as a local region de-

scriptor in which we extract the motion history image of an

(X×Y ×T ) region centered around the sampling point. The

drawback of MHIST features is that the non moving pixels

of the foreground objects are not registered in the descrip-

tor. However we use this feature to specifically describe

motion and augment it with the static appearance descriptor

explained in the previous sub section. This approach allows

us to cover a significant range of information relevant for

characterizing the action in the candidate window.

The motion history image H of a (X × Y × T ) sized

region R centered around a point (x0, y0) at time t0 in the

video volume V (x, y, t) is described as follows:

D(x, y, t) = |V (x, y, z) − V (x, y, t − 1)| (1)

h(x, y, t) =

{

0, D(x, y, t) < k

1, D(x, y, t) ≥ k
(2)

Hx0,y0,t0(x̂, ŷ) = max
0≤t̂≤τ

(1 − t̂
τ
)h(x0 + x̂, y0 + ŷ, to + t̂)

(3)

|x̂| ≤ X
2

, |ŷ| ≤ Y
2

In this system, we set X = Y = 11 and T = 12.

6.3. Training of the system

We used TRECVid 2008 Development corpus as our de-

velopment data since we had added location labels to a part

of the time labeled ground truth. We trained separate sys-

tems on all 4 testing events and all 5 camera views. The

labeled events are very sparse compared to the rest of the

corpus. Therefore while it is relatively easy to obtain nega-

tive non-event samples, training becomes massively unbal-

anced due to the large amounts of negative samples. To

overcome this imbalance, we adopt a bootstrap classifier

training strategy, where we start out with a balanced num-

ber of positive and negative training samples. A classifier

trained using this set and is applied to the training corpus.

The false alarms found are added to the set of negative sam-

ples from the previous round to form a new set of negative

samples. We then train a new classifier and repeat this pro-

cess adding “tougher” negative samples to the training set at

each iteration. The classifier training is terminated when a

reasonable rate for false positive production is achieved on

the training corpus. The results are denoted by UIUC-1 in

the experiments.

7. Experiments

TRECVid 2009 Event Detection Evaluation [14] pro-

vides 99 hours videos in the development set and about 44

hours videos in the evaluation set, where the videos were

captured using 5 different cameras with image resolution

720 × 576 at 25 fps. From the statistics of events in the

development set, we find out there are hardly any events

in the videos of CAM4, so we exclude those videos from

our experiments to save some computation power. Even

though, to detect human actions in such a huge dataset,

computational efficiency remains the topmost concern to

ensure the experiments can be done within reasonable time.

So we save intermediate results to hard drives to avoid re-

peated computations and try to utilize parallel computing

with multi cores as much as possible. The system is imple-

mented using C++ and compiled with Intel Compiler 10.1

to utilize multiple cores. The experiments are mainly per-

formed on 64bit blade servers with Intel Xeon 2.5GHz CPU

(8 cores) and 16GB RAM. It took about 20 days to complete

all the experiments. Next, we elaborate the details about

training sample preparation, feature extraction, parameters

selection based on 5-fold cross-validation.



7.1. Training sample preparation

Collecting training samples is not trivial. The ground

truths about time intervals of actions in the development set

were provided by NIST. We further label the locations of

the persons performing the actions of interests, i.e. Cell-

ToEar, ObjectPut, and Pointing, every 3 frames as the posi-

tive samples. We further generate 6 additional positive sam-

ples from each labeled positive sample by perturbing the lo-

cations and scales. The total numbers of positive samples

for CellToEar, ObjectPut, and Pointing are about 25.2K,

39.3K, 152.2K, respectively. The negative samples include

two subsets from human labeling and detection results: 1)

the same persons performing the actions are labeled as neg-

ative samples in two 30-frame intervals before and after the

action occurs; 2) the detected persons that are not perform-

ing the actions when the actions occur. The total number of

negative samples is about 303K. The collection of negative

samples need to ensure the classifiers do not learn action

models only for some specific persons. Quite often the per-

sons performing the actions are too hard to find even for our

labelers, so we only manage to label about one half of the

action instances in the ground truths provided by NIST.

7.2. Feature extraction and classification

We train two codebooks with 512 words on the DHOG

features extracted from gray images and MEHIs in 8 hours

videos on the day 2007/11/12 using K-Means. After load-

ing detection and tracking results from the files, we extract

BoW features and train SVM classifiers using the ASGD

algorithm described in Sec. 4. We train 4 SVM classi-

fiers based on a single image and cube of gray images

and MEHIs, where the classification results are denoted by

Gray-Frame, Gray-Cube, MEHI-Frame, and MEHI-Cube,

respectively. The training features are only extracted where

the labels are available, so it only takes about 8 hours to

obtain one set of features. Evaluation on a 2-hour video re-

quires feature extraction and classification for all persons in

every frame, which may take about 1-2 days depending on

the number of detected persons. We save the classification

scores of all persons from these 4 classifiers and those of

the 3D-CNN method to hard drives.

7.3. 5fold crossvalidation performance
For each candidate region, the classification scores of

three classifiers are combined linearly. If the combined con-

fidence is larger than a threshold T , this frame is regarded

as positive. The frame based results are linked to generate

the event segments by heuristics considering the spatial and

temporal smoothness and consistency. We limit the maxi-

mum number of output events for one 2-hour videos by 20

and output 2 events at most for the short video clips in the

evaluation set.

We exhaustively search the combining weights (with

step 0.1) and the threshold (with step 0.01) to minimize the

DCR directly. Towards this end, we implement DCR cal-

culation with C++ which is very critical to the efficiency.

Moreover, due to the computational issue, we can only af-

ford exhaustive searching of combining weights of 3 sets

of classification scores. The videos in the development set

of TRECVid 2009 were recorded on 10 different days, so

we perform 5 fold cross-validation using the training fea-

tures from 8 days to train and test on the other 2 days. We

have tried different combinations and find the following two

are good in terms of DCR scores in the cross-validation:

Method 1 Gray-Frame + Gray-Cube + MEHI-Cube; and

Method 2 Gray-Frame + MEHI-Frame + 3D-CNN.

The average DCRs per event per camera of 5-fold cross-

validation are shown in Tab. 2 and Tab. 3, where the number

of events, true detections, and false positives are shown in

the parenthesis, e.g. (806/21/244). These tables about the

cross-validation performance guide us what methods shall

be included in the final submissions. The final combining

weights and the threshold {ω1, ω2, ω3, T } (ω1 +ω2 +ω3 =
1) are selected by exhaustively searching the best common

parameters that yield the lowest DCR per event per camera,

which are shown in Tab. 4 and Tab. 5. We expect the DCR

on the evaluation set is in between of the average DCR ob-

tained by the cross-validation and the lowest DCR obtained

by searching common parameters.

We submitted event detection results of 4 systems. Sub-

mission NEC-1 and NEC-2 correspond to the 2 aforemen-

tioned methods. Submission NEC-3 selectively combines

NEC-1 and NEC-2 based on the cross-validation perfor-

mance per events per camera. Submission UIUC-1 includes

the detection results of UIUC’s system. From Tab. 6, we

can see the evaluation performance is in line with our ex-

pectation. Our detection results on the events CellToEar,

ObjectPut, and Pointing outperform all other participants.

7.4. Discussion

The false positives rates are still fairly high. A consider-

able portion of the false positives appear similar to the true

ones in terms of the motion patterns, e.g. touching hair is

occasionally misclassified to CellToEar and it is very hard

to distinguish between ObjectPut and ObjectGet. The ma-

jority of the false positive are induced by cluttered back-

ground, occlusions in a crowd, and the complicated inter-

actions among people. The combination weights of 3 clas-

sifiers vary dramatically w.r.t different events in different

cameras, which indicates that the performance and the gen-

eralization ability are not stable.

8. Conclusions

The strengths of our system are on 3-fold: 1) the de-

scription power of the BoW features and 3D-CNN; 2) the

efficient ASGD learning algorithm to utilize vast number

of training samples; and 3) the thorough cross-validation



Table 2. 5-fold cross-validation performance of Gray-Frame + Gray-Cube + MEHI-Cube

CellToEar ObjectPut Pointing

CAM1 1.0000 (40/0/0) 0.9979 (706/9/38) 0.9973 (926/5/9)

CAM2 1.0015 (265/0/6) 0.9937 (1122/7/11) 0.9990 (999/3/8)

CAM3 1.0053 (262/0/21) 1.0010 (843/1/9) 1.0023 (1056/0/9)

CAM5 0.9526 (239/21/217) 1.0000 (432/0/0) 1.0070 (1048/2/36)

Overall 0.9896 (806/21/244) 0.9981 (3103/17/58) 1.0014 (4029/10/62)

Table 3. 5-fold cross-validation performance of Gray-Frame + MEHI-Frame + 3D-CNN

CellToEar ObjectPut Pointing

CAM1 1.0000 (40/0/0) 0.9915 (706/13/33) 0.9978 (926/4/7)

CAM2 1.0000 (265/0/0) 1.0059 (1122/2/34) 1.0000 (999/2/8)

CAM3 1.0313 (262/0/125) 1.0010 (843/0/4) 1.0033 (1056/3/25)

CAM5 0.9507 (239/17/132) 1.0003 (432/0/1) 1.0088 (1048/9/71)

Overall 0.9954 (806/17/257) 0.9997 (3103/15/72) 1.0025 (4029/18/111)

which finds the reliable working point in terms of DCR.

TRECVid Event Detection Evaluation not only provides the

chance to test the performance of the state-of-the-art ap-

proaches in realistic settings but also motivates us to inves-

tigate parallel computing and learning algorithms dealing

with huge number of samples. Event detection in uncon-

strained surveillance videos remains an open and challeng-

ing problem for computer vision and machine learning in

the near future.
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Table 4. Parameter selection of Gray-Frame + Gray-Cube + MEHI-Cube

CellToEar ObjectPut Pointing

CAM1 1.0003 (40/0/0) (0.3,0.3,0.4,1) 0.9871 (706/17/33) (0.3,0,0.7,0.67) 0.9971 (926/6/10) (0,0.6,0.4,0.77)

CAM2 1.0003 (265/0/0) (0.3,0.3,0.4,1) 0.9944 (1122/7/12) (0.7,0,0.3,0.72) 0.9968 (999/6/10) (0.2,0.2,0.6,0.65)

CAM3 1.0003 (262/0/0) (0.3,0.3,0.4,1) 1.0002 (843/1/3) (0,0.3,0.7,0.74) 1.0001 (1056/0/1) (0,0.5,0.5,0.92)

CAM5 0.9591 (239/20/218) (0,0.3,0.7,0.15) 0.9991 (432/1/0) (0.2,0.3,0.5,0.86) 0.9963 (1048/8/11) (0.2,0,0.8,0.81)

Overall 0.9892 (806/20/218) 0.9946 (3103/26/48) 0.9970 (4029/20/32)

Table 5. Parameter selection of Gray-Frame + MEHI-Frame + 3D-CNN

CellToEar ObjectPut Pointing

CAM1 1.0003 (40 0 0) (0.3,0.3,0.4,1) 0.9866 (706/16/30) (0.5,0.3,0.2,0.54) 0.9961 (926/6/6) (0.6,0.3,0.1,0.74)

CAM2 1.0003 (265/0/0) (0.3,0.3,0.4,1) 0.9974 (1122/9/32) (0.1,0.5,0.4,0.55) 0.9982 (999/4/6) (0.3,0.7,0,0.73)

CAM3 1.0000 (262/0/0) (0.3,.3,0.4,1) 1.0000 (843/1/2) (0.5,0.5,0,0.67) 0.9994 (1056/3/7) (0.5,0.1,0.4,0.59)

CAM5 0.9529 (239/17/152) (0,0.6,0.4,0.41) 0.9994 (432/1/1) (0.4,0.4,0.2,0.67) 0.9968 (1048/18/59to) (0,0.6,0.4,0.46)

Overall 0.9877 (806/17/152) 0.9953 (3103/27/66) 0.9970 (4029/31/78)

Table 6. Evaluation performance of our submissions.

CellToEar #Ref #Sys #CorDet #FA #Miss Act.DCR Min.DCR

NEC-1 194 35 3 32 191 0.995 0.991

NEC-2 194 20 1 19 193 1.001 0.998

NEC-3 194 20 1 19 193 1.001 0.998

UIUC-1 194 183 0 58 194 1.019 1.060

ObjectPut #Ref #Sys #CorDet #FA #Miss Act.DCR Min.DCR

NEC-1 621 10 2 8 619 0.999 0.997

NEC-2 621 11 3 8 618 0.998 0.998

NEC-3 621 5 2 3 619 0.998 0.997

UIUC-1 621 555 1 190 620 1.061 1.020

Pointing #Ref #Sys #CorDet #FA #Miss Act.DCR Min.DCR

NEC-1 1063 6 2 4 1061 0.999 0.999

NEC-2 1063 5 2 3 1061 0.999 0.998

NEC-3 1063 6 2 4 1061 0.999 0.999

UIUC-1 1063 774 13 225 1050 1.062 1.006


