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Abstract Human falls are one of the leading causes of fatal unintentional injuries

worldwide. Falls result in a direct financial cost to health systems, and indirectly,

to society’s productivity. Unsurprisingly, human fall detection and prevention is

a major focus of health research. In this chapter, we present and evaluate several

bidirectional long short-term memory (Bi-LSTM) models using a data set provided

by the Challenge UP competition. The main goal of this study is to detect 12 human

daily activities (six daily human activities, five falls, and one post-fall activity)

derived from multi-modal data sources - wearable sensors, ambient sensors, and

vision devices. Our proposed Bi-LSTM model leverages data from accelerometer

and gyroscope sensors located at the ankle, right pocket, belt, and neck of the subject.

We utilize a grid search technique to evaluate variations of the Bi-LSTM model and

identify a configuration that presents the best results. The best Bi-LSTM model

achieved good results for precision and f1-score, 43.30% and 38.50%, respectively.
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1 Introduction

Falls are a major global public health problem. Research by the World Health Organ-

isation (WHO) suggests that every year, approximately 37.3 million falls are severe

enough to require medical attention and that falls are the second leading cause of

fatal unintentional injuries (approx. 646,000 per annum), second only to road traffic

injuries [1]. While older people have the highest risk of death or serious injury

arising from a fall, children are also a high risk group for fall injury and death due

to their stage of development associated characteristics and ’risk-taking’ behaviors

[1, 2]. Falls result in a significant direct financial cost to health systems, both in terms

of in-patient and long term care costs, but also in indirect costs resulting from lost

societal productivity of the focal person and caregivers [2]. To illustrate this impact,

falls are estimated to be responsible for over 17 million lost disability-adjusted life

years in productivity per annum [1]. Furthermore, fear of falling not only contributes

to a higher risk of falling but can result in indirect negative health consequences in-

cluding reduction or avoidance of physical activity and psychological issues, which

can contribute to a lower quality of life [3].

Unsurprisingly, fall detection and prevention is a major focus of public health

initiatives and research. Preventative initiatives include clinical interventions, envi-

ronmental screening, fall risk assessment and modification, muscle strengthening

and balance retraining, assistive devices, and education programs [1, 2]. Fall detec-

tion systems include non-wearable (sometimes referred to as context-aware systems)

and wearable systems whose main objective is to alert when a fall event has occurred

[4]. Research on fall detection systems suggests that these systems both reduce the

fear of falling and actual falls as well as mitigating negative consequences of falls

due to faster fall detection and intervention in the instance of a fall [5].

Advances in low-cost sensing devices and their integration into both mobile

and so-called ‘smart’ environments have accelerated research into human activity

recognition (HAR). Researchers are increasingly able to draw on a combination of

wearable devices and fixed location data sources to inform HAR research efforts

by providing different perspectives of a given event or human activity [6]. Making

sense of this heterogeneous multi-modal data is not without challenges, not least

those presented by the volume, variety, and velocity of such time-series data but

also the specific human activity being explored and the efficacy of a given HAR

technique [7, 8, 9, 10].

In this chapter, we present a deep learning model to detect falls using multi-modal

sensor data. We propose a bidirectional long short-term memory (Bi-LSTM) model

that leverages data accelerometer and gyroscope sensors located at the ankle, right

pocket, belt, and neck of the subject. We propose two model configurations, one

identified empirically and a second identified using a grid search technique.

The rest of this chapter is organized as follows. In Section 2, we describe the basic

concepts of LSTM and Bi-LSTM. We then present the methodology applied in this

study in Section 3, both describing the data set and the evaluation metrics. Section

4 describes our Bi-LSTM model and Section 5 presents the results achieved by our
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models. Section 6 briefly presents related work. We conclude with a summary of our

work and directions for further research in Section 7.

2 Long short-term memory (LSTM)

Deep learning networks, such as Multilayer Perceptron (MLP), Convolutional Neural

Networks (CNN), and Radial Basis Function Networks amongst others, assume that

all inputs are independent of each other. As such, they are not appropriate for time-

series data related to human activities. Recurrent Neural Networks (RNNs) are able

to overcome this limitation by using a recurrent connection in every neuron [11]. The

activation of a neuron is fed back to the neuron itself in order to provide a memory

of past activations and to learn the temporal dynamics of time-series data [11].

However, RNNs have limitations when it comes to discovering patterns over long

temporal intervals [12] as they are subject to both exploding and vanishing gradient

problems [13, 14]. While the former is relatively easy to address using gradient

clipping [12, 15], vanishing gradient problems are more challenging [16]. Long

short-term memory (LSTM) is a variant of traditional RNN which overcomes both

problems [16]. LSTM networks make use of recurrent neurons with memory blocks,

working with the concept of gates [17, 11]. While they overcome vanishing and

exploding gradient problems, each unit of an LSTM requires intensive calculations

resulting in long training times [14]. Figure 1 presents a basic schema of an LSTM

block.

An LSTM network updates its block state according to gate activation. Thus, the

input data provided to the LSTM network is fed into the gates that define which

operation should be performed: write (input gate), read (output gate), or reset (forget

gate). The mechanisms of these gates are based on component-wise multiplication

of the input. The vectorial representation of each gate is as follows [11]:

it = σi(Wxi xt +Whiht−1 +Wcict−1 + bi) (1)

ft = σf (Wx f xt +Wh f ht−1 +Wc f ct−1 + b f ) (2)

ct = ftct−1 + itσc(Wxc xt +Whcht−1 + bc) (3)

ot = σo(Wxoxt +Whoht−1 +Wcoct + bo) (4)

ht = otσh(ct ) (5)

where i, f , o, and c represent the outputs of input gate, forget gate, output gate,

and cell activation vectors, respectively; all of them have the same vector size ht
therefore defining the hidden value (i.e., the memory state of the block). σi , σf , and
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Fig. 1: Example of an LSTM block (adapted from [18])

σo are, respectively, the non-linear functions of input, forget, and output gates. Wxi ,

Whi , Wci , Wx f , Wh f , Wc f , Wxc , Whc , Wxo, Who, and Wco are weight matrices of the

respective gates, where x and h are the input and the hidden value of LSTM block

respectively. bi , b f , bc , and bo are the bias vectors of input gate, forget gate, cell,

and output gate, respectively [11].

The main difference between an RNN and a feed-forward model is the ability of

the RNN to consider past information at each specific time step [19]. However, in

some use cases, a wider context must be taken into account. In speech recognition,

for example, the correct classification and interpretation of a given sound depends

on the proceeding phoneme [20]. Correct classification of other data types, such as

text and time-series, also depends on both preceding and subsequent data.

Bidirectional RNNs (Bi-RNNs) are able to process both past and future infor-

mation at each time step [21]. In order to do so, each hidden layer of a Bi-RNN

is composed of two hidden layers i.e. one for processing the past time steps and

another for processing future time steps. The outputs are then combined to compose

a new output that is forwarded to the next hidden layers [19]. Therefore, the output

of each time step includes more complete clues related to the wider context of each

specific input data. For the study described in this chapter, we use Bi-LSTM, a type

of Bi-RNN.
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3 Methodology

3.1 The data set

The data set used for this study, UP-Fall Detection, was made available as part of

the Challenge UP: Multi-modal Fall Detection competition [22, 23]. The data set

includes five falls and six daily activities performed by 12 subjects (see Table 1).

Subjects performed five different types of human falls (falling forward using hands,

falling forward using knees, falling backwards, falling from a sitting position on

an empty chair and falling sideward), six simple human daily activities (walking,

standing, picking up an object, sitting, jumping, and lying down), and an additional

activity labeled as "on knees" where a subject remained on their knees after falling.

Table 1: Description of activities [22].

Activity ID Description

1 Falling forward using hands

2 Falling forward using knees

3 Falling backwards

4 Falling sideward

5 Falling from sitting in a chair

6 Walking

7 Standing

8 Sitting

9 Picking up an object

10 Jumping

11 Lying Down

20 On knees

3.2 Data collection

The data was collected using a multi-modal approach from wearable sensors, am-

bient sensors, and vision devices distributed as per Figure 2. The experiments were

conducted in a controlled laboratory environment in which light intensity did not

vary; the ambient sensors and cameras remained in the same position during the data

collection process.

For our study, we used data from five Mbientlab MetaSensor wearable sensors

collecting raw data from a 3-axis accelerometer, a 3-axis gyroscope, and the ambient

light value. These wearable sensors were located on the left wrist, under the neck,

at the right trouser pocket, at the middle of the waist (on/in the belt), and at the

left ankle. Also, data from one electroencephalograph (EEG) NeuroSky MindWave
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Fig. 2: Distribution of the sensors used to collect data: (a) Wearable sensors and EEG headset

located on the human body, and (b) Layout of the context-aware sensors and camera views [22].

headset was used to measure the raw brainwave signal from a unique EEG channel

sensor located at the forehead.

For context-aware sensors, six infrared sensors above the floor of the room mea-

sured the changes through interruption of the optical devices.

Lastly, two Microsoft LifeCam Cinema cameras were located above the floor, one

for a lateral view and the other for a frontal view.

3.3 Evaluation metrics

For the Challenge UP competition [22], the F1-score measure was used to evaluate

proposed models, considering both precision and sensitivity (recall). The F1-score

is calculated as shown in Eq. 6:

F1 = 2 ×
Precisionµ × Sensitivityµ

Precisionµ + Sensitivityµ
(6)

where Precisionµ is the average number of the number of true positives (TP) across

all activities and falls divided by the sum of true positives (TP) and false positives

(FP) (Eq. 7); and Sensitivityµ is the average number of TP across all activities and

falls divided by the sum of TP and false negatives (FN) (Eq. 8).

Precision =
TP

TP + FP
(7)

Sensitivity = Recall =
TP

TP + FN
(8)

In addition to the requirements of the Challenge UP competition outlined above,

we also consider specificity and accuracy. While sensitivity is used to determine the

proportion of actual positive cases predicted correctly and thus avoid false negatives,

specificity is used to determine the proportion of actual negative cases predicted
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correctly i.e. the avoidance of false positives. Together, sensitivity and specificity

provide a more informed decision on the efficacy of a given model. Specificity is

calculated as the average number of true negatives (TN) divided by the sum of TN

and FP (Eq. 9).

Speci f icity =
T N

T N + FP
(9)

Accuracy is a metric widely used to compare machine and deep learning models

because it evaluate generally how many samples of test data were labeled correctly.

Accuracy can be calculated as the average number of TP and TN across all activities

and falls divided by the total number of cases examined (Eq. 10).

Accuracy =
TP + T N

TP + T N + FP + FN
(10)

4 A Bi-LSTM model for human activities detection

We propose a Bi-LSTM model to identify human activities. The proposed empirical

model (Figure 3) is composed of three bidirectional layers containing 200 LSTM cells

each (above this, the model started to obtain worse results), interspersed by dropout

layers with a 25% probability rate in order to reduce the overfitting of the model.

Hyperbolic tangent and sigmoid were set as functions of activation and recurrent

activation of these cells, respectively. The output layer is a fully connected layer with

12 units (the data set contains 12 different activities to be classified; see Table 1)

with softmax activation function. Figure 4 presents the code that implements our

Bi-LSTM model1. The model implementation was done using the Keras framework2

with TensorFlow3 as the backend.

As we are dealing with multi-label classification, we used categorical cross-

entropy as a loss function [24]. Equation 11 illustrates the categorical cross-entropy

function, where y is the array of real values, ŷ is the array of predictions, N is the size

of predictions, and M is the number of classes. The Adam algorithm as an optimizer

[25].

L(y, ŷ) = −

M∑

j=0

N∑

i=0

(yi j ∗ log(ŷi j)) (11)

The learning rate is equal to 0.001, β1 and β2 equal to 0.9 and 0.999, respectively.

These parameters were defined empirically. For the training of this model, a pattern of

at least 12 epochs was identified as the maximum reach of the network performance.

Above 12 epochs, the performance tended to stabilize.

1 The entire code is available for download at https://github.com/GutoL/ChallengeUP.

2 http://keras.io/

3 https://www.tensorflow.org/
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Fig. 3: Bidirectional LSTM Network

Fig. 4: Code that implements our Bi-LSTM model
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4.1 Data pre-processing

In order to fit the data set to our model, we performed data pre-processing. Firstly,

we sampled the data set on a per second basis (totaling 9,187 samples). The number

of data points per second was not constant in our data set as each sensor may have

collected data at different points in time. Thus, we used data padding in order to

generate samples with a similar size. Thence, we considered the length of the greater

sample (the second with more data points i.e. 22 points) and applied the padding;

this was repeated until the sample comprised 22 points. In the end, the data set

comprised 9,187 complete samples.

Finally, we divided the data set in to two parts, allocating 80% (7,349 samples)

for training and 20% (1,838 samples) for testing, an approach widely used in the

literature [26] [27].

5 Results

5.1 Selecting the best Bi-LSTM model

We utilized a grid search technique to evaluate different Bi-LSTM architectures and

then selected the best performing architecture for further evaluation.

Grid search identifies tuples from the combination of suggested values for two

or more parameters, trains the model for each possible combination and compares

the results of a predefined metric. Despite some limitations (see [28] for a more

detailed discussion), grid search still represents the state of the art for hyper-parameter

optimization and has been adopted in several machine learning studies (e.g., [29],

[30], [31] and [32]).

As shown in Table 2, we defined different levels for different parameters of the

model. The grid search was run 10 times and the average of all metrics was calculated

in order to take into account the variation of results due to the stochastic nature of

the optimization process [25].

Table 2: Parameters and levels

Parameters Levels

Number of layers From 1 to 3, step 1

Number of nodes From 100 to 250, step 25

Figures 5, 6, 7, 8, and 9 show the results for accuracy, precision, recall, specificity,

and f1-score for all model configurations used in grid search, respectively.

Regarding accuracy (Figures 5), the best model configuration uses 1 layer and

250 units, reaching, on average, 70%; while the model configuration with 3 layers

and 200 units obtained the worst result, 65.9%, on average.
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Fig. 5: Accuracy results for all model configurations used in the grid search approach.

Fig. 6: Precision results for all model configurations used in the grid search approach.

Fig. 7: Sensitivity results for all model configurations used in the grid search approach.

For precision (Figure 6), the model configuration that gives, on average, the best

result was 1 layer and 200 units (45.5%); while the worst average precision result

(38.3%) was obtained by the model configuration with 2 layers and 100 units.

The sensitivity results (Figure 7) suggest the configuration with 3 layers and 225

units presented the best recall result, achieving, on average, 39.4%; and the simplest

model configuration, with 1 layer and 100 units presented the worst result, 36.3%,

on average.



Detecting human activities based on a multimodal sensor data set 11

Fig. 8: Specificity results for all model configurations used in the grid search approach.

Fig. 9: F1-score results for all model configurations used in the grid search approach.

The specificity results, as shown in Figure 8, suggest the model configuration

that obtained the best result was composed of 1 layer and 250 units, achieving

96.10% specificity, on average. On the other hand, for this metric, different model

configurations obtained the same worst level of specificity, on average, 95.40%. Such

models were: 3 layers and 100, 150, 175, 200, and 250 units; and 2 layers and 100

units obtained.

Finally, considering the f1-score, as illustrated in Figure 9, the model configura-

tion that presented the best result was 1 layer and 200 units, with 40.60%, on average.

The model with 1 layer and 225 units also achieved a good f1-score, 40.30%, and

the model with 3 layers and 200 units found 40.20%. On the other hand, the model

configuration that obtained the worst f1-score level was the simplest configuration,

with 1 layer and 100 units, achieving 37.70%, on average; followed by the models

with 2 layers and 100 and 125 units, both with 37.80%.

From the grid search results, one can note that there is no common behavior when

analyzing the best performance per metric, meaning that for each metric, a different

model can achieve the best result. The only exception was the model with 1 layer

and 250 units, that found the best results for accuracy and specificity metrics.

The best model configuration in terms of accuracy (Figure 5) uses 1 layer and

250 units, reaching, on average, 70%; while the model configuration with 3 layers

and 200 units obtained the worst result with an average accuracy score of 65.9%. For
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precision (Figure 6), the model configuration that gives the best performing model

uses 1 layer and 200 units (average score 45.5%) while the worst model (average

score 38.3%) uses 2 layers and 100 units. For sensitivity (Figure 7), there seems to

be a positive relationship between complexity and average sensitivity score with the

simplest model configuration (1 layer and 100 units) showing the worst performance

(average score 36.3%) with the second most complex model (3 layers and 225 units)

providing the best results (average score 39.4%). In the case of specificity (Figure

8), the model configuration that provides the best result uses 1 layer and 250 units

(average score 96.10%) while a number of different configurations demonstrated

poor performance (average score 95.40%). Finally, for the f1-score (Figure 9), the

model configuration using 1 layer and 200 units, the model using 1 layer and 225

units, and the model using 3 layers and 200 units, achieved similar results (average

score 40.60%, 40.30%, and 40.20% respectively). On the other hand, the simplest

model configuration (1 layer and 100 units) achieving the worst results (average

score of 37.70%).

Interestingly, the results of the grid search suggest that there is no single model

specification with consistently superior performance across different metrics. The

model configurations achieving the best results according to one metric did not

provide comparable results for any other metric. The only exception is the model

with 1 layer and 250 units, that provides the best results for accuracy and specificity.

Another interesting observation relates to the number of layers in the model. In

deep learning models, the concept of "depth" is related to the presence of several

interconnected hidden layers with tens or hundreds of neurons. However, based on

the results of our experiment, adding additional hidden layers does not always result

in better model performance. For instance, the best result in terms of precision was

obtained with 1 layer and 200 units (Figure 6). Increasing the number of layers to

3, resulted in a 2.2% decrease in precision. A similar relationship appears across all

other metrics with the only exception being sensitivity, where models with 3 layers

tended to provide better results.

It is also worth highlighting that specificity is the metric with the highest average

values, while sensitivity has the lowest. This suggests that our models are more able

to predict true positives than true negatives.

Due to time constraints, we did not perform the grid search when initially de-

signing the model submitted to the Challenge UP competition. Consequently, we

present the results from two model configurations below, one identified empirically

(Challenge UP results) and a second identified using grid search.

5.2 Challenge UP results

Figure 10 presents the confusion matrix regarding the test results using the Bi-

LSTM model presented in Challenge UP. The model did not obtain good results

in predicting falls (activities from 1 to 5). For example, all samples of activities 1

(falling forward using hands) and 3 (falling backwards) were misclassified by the
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model. This occurred because the data set has few samples of falls, and deep learning

models perform better with data sets that contain larger sample sizes.

Fig. 10: Confusion matrix of the Challenge UP model

The Bi-LSTM model achieved the best results with classes that have more sam-

ples. Class 11 (lying down) achieved 638 correct predictions, followed by Class 7

(standing) with 419 hits. These classes obtained better results due to the simplicity

of the activities captured by the sensors - the person remains still i.e. without making

any movement. However, for those same classes (11 and 7), the model also misclas-

sified a lot. For Class 11, the model misclassified 171 samples as Class 8 (sitting);

and for Class 7, the model misclassified 223 samples as Class 11 (lying down).

Table 3 shows the evaluation results (in percentages) for precision, sensitivity,

specificity, and f1-score for each activity presented in Table 1. Note that accuracy is

not measured in this case because it is a global metric.

The model obtained good specificity results for all classes, achieving the best

results for Class 9 (99.69%). Similarly, the model has a f1-score of 0% for Classes 1,

3, 9 and 20. However, for the other metrics, poor results were achieved. For example,

for Classes 1, 3, 9, and 20, the value of the precision, sensitivity, and f1-score was

0%. In contrast, Classes 6, 7, 8, 10, and 11 achieved the best results for f1-score -

75.72%, 66.46%, 60.53%, 65.77%, and 65.81%, respectively. This is explained by

the greater volume of samples for these classes in the data set.

One can see from Table 3 that the most critical metric for the Bi-LSTM model is

sensitivity, which corresponds to the true positive rate. As the model misclassified

several samples (Figure 10), the overall sensitivity results are considered poor. Class

11 returned the highest sensitivity rate because it was the most correctly classified

class in the data set. Table 4 presents the overall results for accuracy, precision,

sensitivity, and f1-score for the model presented in Challenge UP. One can see that
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Table 3: Evaluation results (in %) for all activities using the Bi-LSTM model presented in Challenge

UP competition

Activity Precision Sensitivity Specificity F1-score

1 0 0 98.6639 0

2 3.9216 11.7647 97.5089 5.8824

3 0 0 96.5795 0

4 18.7500 18.7500 99.3264 18.7500

5 5.2632 12.5000 97.2603 7.4074

6 91.7098 64.4809 97.9975 75.7219

7 70.5387 62.8186 89.5585 66.4552

8 58.6777 62.5000 86.2259 60.5286

9 0 0 99.6885 0

10 88.4848 52.3297 98.9403 65.7658

11 60.1887 72.5825 75.2347 65.8071

20 0 0 98.9691 0

the model achieved 62.89% for accuracy, while other metrics achieved c. 32%. Since

the data set used was unbalanced, the model classified the classes with more samples

correctly (see Table 3).

Table 4: Overall metrics of the Bi-LSTM model presented in Challenge UP competition

Metrics Results

Overall accuracy 62.89%

Mean global precision 33.13%

Mean global sensitivity 32.52%

Global f1-score 32.82%

5.3 Bi-LSTM model results (grid search)

Figure 11 presents the confusion matrix for the best model configuration found by

the grid search based on F1-score i.e. 1 layer and 200 units. The model did not obtain

good results in predicting falls (activities from 1 to 5). In fact, activities 1 to 5 were

largely misclassified. This is most likely related to the limited number of falls in

the data set; deep learning models perform better with large samples. The Bi-LSTM

model achieved the best results with classes that had more samples. For example,

for Class 11 (lying down) and Class 7 (standing), the model generated 693 and 450

correct predictions respectively.

Table 5 presents the evaluation results (in %) for precision, sensitivity, specificity,

and f1-score for each activity. Note that accuracy is not measured in this case because

it is a global metric.
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Fig. 11: Confusion matrix of the best model configuration found by the grid search

In, general, the model achieved very good specificity results for all classes (achiev-

ing 100% when considering Class 4). However, the model performed poorly for

Classes 1, 2, 3, and 20 presenting a score of 0% for precision, sensitivity, and

f1-score.

Table 5: Evaluation results (in %) for all activities using the best Bi-LSTM model found by the grid

search

Activity Precision Sensitivity Specificity F1-score

1 0 0 99.9536 0

2 0 0 99.9072 0

3 0 0 99.8146 0

4 100 6.2500 100 11.7647

5 16.6667 3.8462 99.7682 6.2500

6 89.6341 80.3279 97.1072 84.7262

7 65.7895 67.1642 87.9195 66.4697

8 76.5766 59.8592 94.5749 67.1937

9 33.3333 4.3478 99.9071 7.6923

10 74.5875 81.0036 96.1577 77.6632

11 63 78.5714 78.2003 69.9294

20 0 0 98.8068 0

These results illustrate some weaknesses of the proposed Bi-LSTM model con-

figurations when working with an unbalanced data set. The classes that presented

metrics equal to 0% were classes comprising relatively small samples.

Finally, Table 6 presents the overall results for accuracy, precision, sensitivity, and

f1-score of the proposed model configuration. Similar to the results of the Challenge
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UP model, the model obtained the best result for accuracy (70.22%) when compared

to the other metrics, reflecting the previously discussed uneven samples in the data

set. The overall precision score was 43.30%; the sensitivity score was 34.67%, and

the f1-score was 38.50%. One can note an improvement in all metrics from the initial

model presented in Challenge UP to the revised model obtained using the grid search

method.

Table 6: Overall metrics for the best Bi-LSTM model configuration found by the grid search

Metrics Results

Overall accuracy 70.22%

Mean overall precision 43.30%

Mean overall sensitivity 34.67%

Overall f1-score 38.50%

6 Related work

Human activity recognition (HAR) can play an important role in people’s daily

lives due to its ability to learn important high-level knowledge about human activity

from raw sensor inputs [33]. The increasing popularity of HAR is correlated with the

diversity and popularity of wearable and on-body sensing devices such as accelerom-

eters, gyroscopes, sound sensors, and image capture devices amongst others. HAR

has drawn extensive attention in health and computer science research and is playing

an increasingly important role in various research areas including home behaviour

analysis [34], health monitoring [35], and gesture recognition [36].

There is a well established literature on HAR using machine learning. Historically,

many studies focused on data with a single modality such as single sensor-based data

[37, 38, 39, 33]. Single modality data is inherently limited for HAR studies in real-

world settings due to high intra-class and low inter-class variations in the actions

performed for a particular application [10]. Therefore, to exploit the benefits of

machine learning techniques for a learning-based HAR, it is extremely important to

have multi-modal data sets [33]. Multi-modal machine learning aims to build models

that can process and relate information from multiple modalities [40].

More recently, there has been an increasing focus on the study of learning-based

HAR using multi-modal data, and in particular, multi-modal time-series data. Exist-

ing methods can be divided into two categories: shallow learning-based HAR and

deep learning-based HAR. The former relies on extracting a set of features from

time-series sensor signals and mapping these handcrafted features to various human

activities. Subsequently, a shallow supervised machine learning algorithm is ap-

plied to recognize activities. The most popular learning algorithms include decision

trees [41, 42], K Nearest Neighbour (KNN) [43, 44], and Support Vector Machines

(SVM) [45, 46]. For example, [46] extracts 561 features from an accelerometer and
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gyroscope, and applies a multi-class SVM to classify six different activities. The

common characteristic of these methods is that they perform feature extraction man-

ually which is task-dependent and requires human intervention, thereby impacting

effectiveness. As a result, many researchers have turned their attention to deep learn-

ing approaches for automatic feature extraction. At the same time, implicit features

can be learned by models that may not be possible using manual or handcrafted

methods [47].

Many different deep learning models have been used to recognize human activities

in a wide range of contexts including CNN, RNN, and particularly in the context

of this chapter, LSTM networks. A very recent paper [48] proposed a baseball

player behavior classification system using LSTM that accurately recognizes many

baseball player behaviors. The classifier is trained on multi-modal data collected from

multiple heterogeneous IoT sensors and cameras. [49] also used an LSTM network

to detect daily human activities including eating and driving activity. The authors

adopted a two-level ensemble model to combine class-probabilities of multiple

sensor modalities, and demonstrated that a classifier-level sensor fusion technique

for multi-modality can improve the classification performance compared to single

modality data.

Authors in [50] used LSTM in a biometrics application to identify individual

humans based on their motion patterns captured from smartphone features i.e. ac-

celerometer, gyroscope and magnetometer data. The use of LSTM demonstrated that

human movements convey necessary information about the person’s identity and it

is possible to achieve relatively good authentication results. The authors also demon-

strated that the same LSTM algorithm can also be applied to other time-series data

e.g. for gesture detection in a human conversation. In [51], inertial signals from a set

of wearable sensors were used and fed as images into a CNN network to recognize

human activities. Using both CNN and LSTM as a hybrid model, authors in [11]

classified human activities. They used CNN to automatically extract spatial features

from raw sensor signals, and LSTM to capture the temporal dynamics of the human

movement.

Several surveys on recent advances on deep learning methods for multi-modal

HAR have been completed and are worth reviewing for those interested in the domain

[7, 8, 9, 10].

While significant progress has been made, HAR remains a challenging task. This

is partly due to the broad range of human activities as well as the rich variation

in how a given activity can be performed. Deep learning shows great potential for

a high-level abstraction of data. Therefore, more deep learning models need to be

developed as self-configurable frameworks for HAR [47]. In this chapter, we propose

a Bi-LSTM deep learning model to detect twelve types of human daily activities,

and in particular, human falls. We use a multi-modal sensors data set generated from

three different sources(i.e. wearable sensors, ambient sensors, and vision devices).
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7 Conclusions

In this chapter, we propose a Bi-LSTM model to detect five different types of falls, six

common daily human activities, and one post-fall activity. The data set was provided

by the Challenge UP competition and was collected using a multi-modal approach

generated from wearable sensors, ambient sensors, and vision devices.

Our Bi-LSTM model makes use of two wearable sensors (accelerometer and

gyroscope) located at the ankle, right pocket, belt, and neck of the subject. In the

training phase, the model was able to make good predictions of a selection of specific

human activities (walking, standing, sitting, jumping and lying down). Our model is

able to identify when a subject is lying down (when a fall has occurred) but it does

not detect the type of fall (forward using hands, forward using knees, backwards,

sideward, or falling after sitting on a chair). This result can be explained by the

uneven samples of data by activity in the data set.

Future studies may explore other deep learning models, such as bidirectional

gated recurrent units (bi-GRU), a simplified version of LSTM layers, or CNNs, and

compare the sensitivity, specificity, precision, and accuracy of a range of different

models. Given the limitations of the data set used in this study and the impact on

results, larger data sets with sufficiently large samples of each activity are required

for wider use. Future research may involve creating actual or synthetic data sets to

address these needs and leverage these and other multi-modal datasets (e.g. cameras

and environmental sensors) for further study.

Acknowledgements This work is partly funded by the Irish Institute of Digital Business (dotLAB).



Detecting human activities based on a multimodal sensor data set 19

References

[1] World Health Organization. Falls, Fact Sheet. http://www.who.int/

news-room/fact-sheets/detail/falls (2018). Accessed: 2018-10-08

[2] W.H. Organization, WHO Global Report on Falls: Prevention in Older Age

(World Health Organization, 2007)

[3] A.C. Scheffer, M.J. Schuurmans, N. Van Dijk, T. Van Der Hooft, S.E. De Rooij,

Fear of falling: measurement strategy, prevalence, risk factors and conse-

quences among older persons, Age and ageing 37(1), 19 (2008)

[4] R. Igual, C. Medrano, I. Plaza, Challenges, issues and trends in fall detection

systems, Biomedical engineering online 12(1), 66 (2013)

[5] S. Brownsell, M.S. Hawley, Automatic fall detectors and the fear of falling,

Journal of telemedicine and telecare 10(5), 262 (2004)

[6] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learn-

ing, in Proceedings of the 28th international conference on machine learning

(ICML-11) (2011), pp. 689–696

[7] P.V. Rouast, M. Adam, R. Chiong, Deep learning for human affect recognition:

Insights and new developments, IEEE Transactions on Affective Computing

(2019)

[8] T. Baltrušaitis, C. Ahuja, L.P. Morency, Multimodal machine learning: A survey

and taxonomy, IEEE Transactions on Pattern Analysis and Machine Intelligence

41(2), 423 (2019)

[9] H.F. Nweke, Y.W. Teh, G. Mujtaba, M.A. Al-Garadi, Data fusion and multiple

classifier systems for human activity detection and health monitoring: Review

and open research directions, Information Fusion 46, 147 (2019)

[10] C. Chen, R. Jafari, N. Kehtarnavaz, A survey of depth and inertial sensor fusion

for human action recognition, Multimedia Tools and Applications 76(3), 4405

(2017)

[11] F. Ordóñez, D. Roggen, Deep convolutional and lstm recurrent neural networks

for multimodal wearable activity recognition, Sensors 16(1), 115 (2016)

[12] Y. Bengio, P. Simard, P. Frasconi, et al., Learning long-term dependencies with

gradient descent is difficult, IEEE transactions on neural networks 5(2), 157

(1994)

[13] S. Hochreiter, The vanishing gradient problem during learning recurrent neural

nets and problem solutions, International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems 6(02), 107 (1998)

[14] H.Y. Lin, Y.L. Hsueh, W.N. Lie, Abnormal event detection using microsoft

kinect in a smart home, in Computer Symposium (ICS), 2016 International

(IEEE, 2016), pp. 285–289

[15] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation

9(8), 1735 (1997)

[16] R. Jozefowicz, W. Zaremba, I. Sutskever, An empirical exploration of recur-

rent network architectures, in International Conference on Machine Learning

(2015), pp. 2342–2350



20 Ramos de Assis Neto et al.

[17] K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, J. Schmidhuber, Lstm:

A search space odyssey, IEEE transactions on neural networks and learning

systems 28(10), 2222 (2017)

[18] Understanding lstm and its diagrams. https://medium.com/mlreview/

understanding-lstm-and-its-diagrams-37e2f46f1714 (2016). Ac-

cessed: August, 2018

[19] R. Zhao, R. Yan, J. Wang, K. Mao, Learning to monitor machine health with

convolutional bi-directional lstm networks, Sensors 17(2), 273 (2017)

[20] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, vol. 1 (MIT

press Cambridge, 2016)

[21] M. Schuster, K.K. Paliwal, Bidirectional recurrent neural networks, IEEE

Transactions on Signal Processing 45(11), 2673 (1997)

[22] Challenge up website. Available at: https://sites.google.com/up.

edu.mx/challenge-up-2019/overview?authuser=0.Lastaccess:

April,2019. (2019)

[23] L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-Albor, J. Núñez-Martínez,

C. Peñafort-Asturiano, Up-fall detection dataset: a multimodal approach, Sen-

sors 19(9), 1988 (2019)

[24] K. Zhao, W.S. Chu, H. Zhang, Deep region and multi-label learning for facial

action unit detection, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (2016), pp. 3391–3399

[25] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980 (2014)

[26] R.v.d. Berg, T.N. Kipf, M. Welling, Graph convolutional matrix completion,

arXiv preprint arXiv:1706.02263 (2017)

[27] A. Mathis, P. Mamidanna, K.M. Cury, T. Abe, V.N. Murthy, M.W. Mathis,

M. Bethge, Deeplabcut: markerless pose estimation of user-defined body parts

with deep learning. Tech. rep., Nature Publishing Group (2018)

[28] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, Jour-

nal of Machine Learning Research 13(Feb), 281 (2012)

[29] J. Li, C. Zhang, Z. Li, Battlefield target identification based on improved grid-

search svm classifier, in 2009 International Conference on Computational

Intelligence and Software Engineering (IEEE, 2009), pp. 1–4

[30] J.Y. Hesterman, L. Caucci, M.A. Kupinski, H.H. Barrett, L.R. Furenlid,

Maximum-likelihood estimation with a contracting-grid search algorithm,

IEEE transactions on nuclear science 57(3), 1077 (2010)

[31] B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning,

arXiv preprint arXiv:1611.01578 (2016)

[32] M.F. Akay, Support vector machines combined with feature selection for breast

cancer diagnosis, Expert systems with applications 36(2), 3240 (2009)

[33] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, Deep learning for sensor-based

activity recognition: A survey, Pattern Recognition Letters 119, 3 (2019)

[34] P. Vepakomma, D. De, S.K. Das, S. Bhansali, A-wristocracy: Deep learning

on wrist-worn sensing for recognition of user complex activities, in 2015 IEEE



Detecting human activities based on a multimodal sensor data set 21

12th International Conference on Wearable and Implantable Body Sensor Net-

works (BSN) (IEEE, 2015), pp. 1–6

[35] L. Ding, W. Fang, H. Luo, P.E. Love, B. Zhong, X. Ouyang, A deep hy-

brid learning model to detect unsafe behavior: integrating convolution neural

networks and long short-term memory, Automation in Construction 86, 118

(2018)

[36] J.C. Núñez, R. Cabido, J.J. Pantrigo, A.S. Montemayor, J.F. Vélez, Convolu-

tional neural networks and long short-term memory for skeleton-based human

activity and hand gesture recognition, Pattern Recognition 76, 80 (2018)

[37] K. Altun, B. Barshan, Human activity recognition using inertial/magnetic

sensor units, in International workshop on human behavior understanding

(Springer, 2010), pp. 38–51

[38] M. Ermes, J. Pärkkä, J. Mäntyjärvi, I. Korhonen, Detection of daily activities

and sports with wearable sensors in controlled and uncontrolled conditions,

IEEE transactions on information technology in biomedicine 12(1), 20 (2008)

[39] G. Lefebvre, S. Berlemont, F. Mamalet, C. Garcia, Blstm-rnn based 3d ges-

ture classification, in International conference on artificial neural networks

(Springer, 2013), pp. 381–388

[40] A. Jaimes, N. Sebe, Multimodal human–computer interaction: A survey, Com-

puter vision and image understanding 108(1-2), 116 (2007)

[41] T. Van Kasteren, A. Noulas, G. Englebienne, B. Kröse, Accurate activity recog-

nition in a home setting, in Proceedings of the 10th international conference

on Ubiquitous computing (ACM, 2008), pp. 1–9

[42] J.R. Kwapisz, G.M. Weiss, S.A. Moore, Activity recognition using cell phone

accelerometers, ACM SigKDD Explorations Newsletter 12(2), 74 (2011)

[43] S. Hasan, M. Masnad, H. Mahmud, M. Hasan, Human activity recognition

using smartphone sensors with context filtering, in Proc. Ninth International

Conference of Advances in Computer-Human Interactions (2016), pp. 67–73

[44] K. Kunze, P. Lukowicz, Dealing with sensor displacement in motion-based

onbody activity recognition systems, in Proceedings of the 10th international

conference on Ubiquitous computing (ACM, 2008), pp. 20–29

[45] A. Bulling, D. Roggen, Recognition of visual memory recall processes using

eye movement analysis, in Proceedings of the 13th international conference on

Ubiquitous computing (ACM, 2011), pp. 455–464

[46] D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain

dataset for human activity recognition using smartphones., in Esann (2013)

[47] E. Kanjo, E.M. Younis, C.S. Ang, Deep learning analysis of mobile physiologi-

cal, environmental and location sensor data for emotion detection, Information

Fusion 49, 46 (2019)

[48] S.W. Sun, T.C. Mou, C.C. Fang, P.C. Chang, K.L. Hua, H.C. Shih, Base-

ball player behavior classification system using long short-term memory with

multimodal features, Sensors 19(6), 1425 (2019)

[49] S. Chung, J. Lim, K.J. Noh, G. Kim, H. Jeong, Sensor data acquisition and

multimodal sensor fusion for human activity recognition using deep learning,

Sensors 19(7), 1716 (2019)



22 Ramos de Assis Neto et al.

[50] N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello, G. Taylor,

Learning human identity from motion patterns, IEEE Access 4, 1810 (2016)

[51] J. Yang, M.N. Nguyen, P.P. San, X.L. Li, S. Krishnaswamy, Deep convolutional

neural networks on multichannel time series for human activity recognition, in

Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)


