
Detecting Identity-Based Attacks in Wireless Networks
Using Signalprints

Daniel B. Faria
Computer Science Department

Stanford University
dbfaria@cs.stanford.edu

David R. Cheriton
Computer Science Department

Stanford University
cheriton@cs.stanford.edu

ABSTRACT
Wireless networks are vulnerable to many identity-based attacks

in which a malicious device uses forged MAC addresses to mas-

querade as a specific client or to create multiple illegitimate iden-

tities. For example, several link-layer services in IEEE 802.11

networks have been shown to be vulnerable to such attacks even

when 802.11i/1X and other security mechanisms are deployed.

In this paper we show that a transmitting device can be robustly

identified by its signalprint, a tuple of signal strength values re-

ported by access points acting as sensors. We show that, different

from MAC addresses or other packet contents, attackers do not

have as much control regarding the signalprints they produce.

Moreover, using measurements in a testbed network, we demon-

strate that signalprints are strongly correlated with the physical

location of clients, with similar values found mostly in close prox-

imity. By tagging suspicious packets with their corresponding

signalprints, the network is able to robustly identify each trans-

mitter independently of packet contents, allowing detection of a

large class of identity-based attacks with high probability.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
Operations - Network Monitoring; C.2.5 [Computer Com-
munication Networks]: Local and Wide-Area Networks

General Terms
Design, Measurement, Security.

Keywords
Denial-of-Service Attacks, Security, Wireless LANs, Location-
Based Services, IEEE 802.11.

1. INTRODUCTION
Denial-of-service (DoS) attacks can bring networks to a

halt by saturating communication links or by flooding hosts
with requests that induce computationally expensive opera-
tions or unnecessary allocation of resources. Wireless LANs
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(WLANs) are yet another scenario for DoS attacks, though
with the added complication that the wireless medium makes
it easier for the injection of attack traffic.

Several DoS attacks in wireless LANs are possible because
these networks lack reliable client identifiers before upper-
layer authentication mechanisms are evoked and user cre-
dentials are securely established. After a client authenti-
cates successfully and session keys are used to encrypt and
authenticate packets sent over wireless links, the network
can securely verify if the source MAC address in a packet
is correct. Without this mechanism, however, wireless in-
stallations have to rely solely on MAC addresses for client
identification: two devices in a network using the same ad-
dress are treated as a single client, even if they generate
conflicting or inconsistent requests.

As MAC addresses can be easily changed through device
drivers, simple yet effective identity-based attacks can be
implemented with off-the-shelf equipment against multiple
link-layer services. IEEE 802.11 networks, for instance, have
been shown to be vulnerable to a class of attacks we refer
to as masquerading attacks, in which a malicious device tar-
gets a specific client by spoofing its MAC address or the
address of its current access point. Bellardo and Savage
have demonstrated that a 10-second deauthentication at-
tack can immediately knock a client off the network and
possibly incur minute-long outages given the interaction be-
tween 802.11 and TCP [5]. With such tools, a malicious user
could render a WiFi hotspot unusable by targeting all active
clients or simply maximize the throughput achieved by his
own laptop by periodically deauthenticating devices using
the same access point as him. These attacks can be cur-
rently implemented even if networks deploy recent security
standards such as IEEE 802.11i [2].

Another class of identity-based attacks target resource de-

pletion: an attacker can generate high rates of requests with
random MAC values in order to consume shared resources.
For example, authentication protocols such as TLS (popu-
lar with 802.11i/802.1X) demand milliseconds of processing
time, making servers vulnerable to attacks that consume
in the order of 200 Kbps of attack bandwidth [7]. As an-
other example, the attack could target a DHCP server in
a publicly available part of the network and consume all IP
addresses reserved for visitors. A PDA device left behind in-
side a corporation could act as a “wireless grenade”, going
off at a programmed time and flooding the authentication
server with random requests, possibly affecting clients well
beyond its communication range.
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In this paper we show that reliable client identifiers, which
we call signalprints, can be created using signal strength
information reported by access points and used to detect
misbehaving devices. As a packet of interest (e.g. a deau-
thentication request) is transmitted over the wireless link, it
is sensed by access points within range, which report signal
strength measurements (a.k.a RSSI levels) to a centralized
server. The request is then “tagged” with a signalprint, a tu-
ple constructed by aggregating all measurements reported.
Transmitters at different locations produce distinct signal-
prints because signal decays with distance, allowing the sys-
tem to robustly distinguish clients located geographically
apart. We present measurements performed within an office
building with an IEEE 802.11 network that demonstrate
that signalprints can be used to detect masquerading and
resource-depletion attacks with high probability.

2. ATTACK MODEL
We assume that malicious clients are provided with stan-

dard wireless transmitters. First, we assume they employ
omni-directional antennas, much like most portable wire-
less devices. The use of directional antennas is discussed
in section 6.5. Second, we assume they are able to mod-
ify the contents of each outgoing packet. This allows them,
among other things, to change source and destination MAC
addresses, a capability needed to implement the attacks we
are interested in. For example, Bellardo and Savage have de-
scribed a mechanism that can be used to accomplish this [5].
Finally, we assume that they are provided with multiple
transmission power levels and that they can also change that
setting on a per-packet basis. In this paper we restrict our-
selves to 802.11 networks, but the ideas presented can be
equally applied to other wireless LAN technologies.

In terms of their physical location, we assume attackers
can move freely around the area covered by the wireless net-
work. Note that in practice, this is only possible in environ-
ments with little or no physical security, such as in cafeterias
and other hotspots. The probability of mounting successful
attacks would be lower in environments with tighter security
measures, such as in enterprise installations.

In this paper we focus on the two classes of attacks already
mentioned: masquerading and resource depletion attacks.

3. SIGNALPRINTS
3.1 Network Architecture.

We assume a network architecture as shown in figure 1,
composed of multiple access points (APs) distributed across
the environment that feed traffic information to a central-
ized server, which we call a wireless appliance (WA). We
focus on the access points deployed as sensors: they observe
the traffic on a channel specified by the WA and collect in-
formation such as the received signal strength level for each
packet successfully received. This information is then for-
warded to the WA, which is able to create a signalprint for
each packet of interest.

Our proposed mechanism can be readily deployed. For
instance, the architectural requirements just presented are
currently satisfied by some 802.11-based wireless intrusion
detection systems (WIDSs) and network installations that
employ lightweight access points. Some WIDSs work ex-
actly as described above, with a server aggregating infor-

Figure 1: Signalprint creation.

mation from all APs in order to detect security events of
interest. Networks with lightweight APs require a central
point of control, a device similar in function to what we call
a WA. In this case, access points implement minimum func-
tionality – sometimes acting simply as remote radio inter-
faces – and delegate all other functions to the WA, which is
computationally more powerful. An example is the architec-
ture being currently standardized by the CAPWAP Working
Group at IETF [6], which should allow installations to scale
to large numbers of access points by simplifying network
management.

3.2 Signalprint Representation
Conceptually, a signalprint is the signal strength charac-

terization of a packet transmission. Each signalprint is rep-
resented as a vector of signal strength measurements, with
one entry for each access point acting as sensor. Values in
signalprints always appear in the same order, i.e., position
i always contains the signal strength level (in dBm) reported
by the ith AP. We use the notation S[i] to refer to the ith

entry in a signalprint. If an access point does not report
an RSSI level for a given packet, a default value equal to
its sensitivity is used. (The sensitivity of a receiver with re-
spect to a given data rate is defined as the minimum signal
strength level needed to achieve a target packet error rate.)

The size of a signalprint is the number of non-default el-
ements it contains, i.e., the number of entries created from
actual RSSI measurements. For instance, figure 2(a) shows
two signalprints, S1 and S2, both with 7 entries (the number
of APs in the network) but with sizes 5 and 6, respectively.
(In this case, default values of -95 dBm were used.) Signal-
print S1 was created using RSSI levels reported by APs 1,
3, 4, 5, and 7, while S2 has values from APs 1, 2, 4, 5, 6,
and 7. As an alternative notation, S1 can also be written as
S1 : (−50, ,−80,−73,−88, ,−60), where default values are
omitted.

3.3 Signalprint Generation
Figure 1 illustrates how signalprints are created for wire-

less transmissions. A client (Client1) is shown transmitting
an authentication request through its current access point
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(solid line). Before forwarding the packet to the WA, the
AP tags it with the RSSI level measured during reception.
(Signal strength estimates are commonly made available by
IEEE 802.11 device drivers for each packet received.) The
other two APs shown in the figure are also configured as
sensors and tuned to the same channel. As Client1 is also
within their ranges, they send similar reports to the WA
with their own RSSI measurements. As shown at the top
of the figure, the WA aggregates all reports and creates the
following signalprint for Client1: SC1 : (−73,−51,−67). A
signalprint for a second client, Client2, is also shown at the
WA. The signalprints produced by both clients are quite dif-
ferent – for example the clients could be located in different
offices within a building.

The WA can identify identity-based attacks by compar-
ing signalprints produced by multiple packets. For exam-
ple, if Client1 submits a high rate of requests trying to
clog the authentication server, the WA can detect it given
that many of Client1’s transmissions produce similar sig-
nalprints. Likewise, the WA can detect if Client2 mounts
a DoS attack against Client1 by sending 802.11 deauthen-
tication requests with Client1’s MAC addresses, as the sig-
nalprints produced by the two devices are different.

We assume that a subset of the deployed access points
report RSSI measurements to the WA for all transmissions
they can detect. In the case of a WIDS that relies on a
separate wireless infrastructure, some APs are already per-
manently configured as sensors. In a CAPWAP network,
the WA is responsible for selecting the APs for signalprint
processing. In an over-provisioned installation, the WA can
select the access points that are not actively serving clients.

Signalprint-based attack detection should be implemented
as a reactive mechanism whenever the number of sensors is
not sufficient to cover all active channels. For instance, dense
802.11 deployments have at least 15 non-overlapping chan-
nels available across both 2.4 and 5 GHz frequency bands.
The objective is to maximize the size of the signalprints
produced: the more measurements are received for a packet
transmission, the more accurate is the information gathered
about the location of the corresponding device. For that
to be possible, sensor APs need to be listening simultane-
ously to the proper channel. In large networks, where more
channels are required to serve active clients, dividing the
sensors across all channels to be monitored would produce
short, inaccurate signalprints. For this reason, a two-step
monitoring process should be implemented in these situa-
tions. First, the WA identifies any abnormal behavior using
both active and sensor APs, which are scattered across all
channels. When abnormal behavior is detected – such as a
surge in the number of 802.1X authentication requests or a
high number of association events related to a single client –
the WA sets enough sensors to the proper channel to create
signalprints for the relevant packets.

3.4 Signalprint Properties
Three properties concerning signalprints enable their use

as reliable client identifiers:

Signalprints are hard to spoof. Signal attenuation is a
function of the distance between clients and access points,
with a strong dependence on environmental factors such
as construction materials and obstacles such as furniture
items [13, 18]. Consequently, transmitters have little or
no control over signal attenuation within the environment,

being unable to considerably change the signalprints they
produce. We show that the use of differential signalprints
makes the system robust against devices that employ multi-
ple transmission power levels, further decreasing their con-
trol over the signalprints generated.

Signalprints are strongly correlated with the physi-
cal location of clients, with similar signalprints found
mostly in close proximity. In our measurements, per-
formed within a 45m×24m office environment with a total
of 12 802.11 access points, devices need to be as close as 5
meters in order to generate similar signalprints with high
probability, even when only 6 APs are used. This allows the
detection of masquerading attempts when attacker and vic-
tim are not in close proximity. If an attacker aims to DoS
a specific client and avoid detection, he is forced to move
closer to the infrastructure, thus risking exposure.

This property has also been demonstrated by WLAN lo-
calization systems that employ an offline training phase where
signal strength patterns (essentially signalprints) are created
for a set of selected locations (usually called a signal map,
or radio map). These systems have consistently achieved
average localization errors below 3 meters, mapping areas
as large as 19,000 s.f. and with numbers of access points
varying between 4 and 20 [4, 20, 17, 24].

Packet bursts transmitted by a stationary device
generate similar signalprints with high probability.
Our measurements show that while RSSI levels for a sta-
tionary device do oscillate over time due to multiple factors,
over 90% of variations are within 5 dB from the median RSSI
level. This correlation between consecutive samples has also
been reported by other researchers [24]. Consequently, an
attacker that mounts a resource depletion attack using ran-
dom MAC addresses can be easily spotted. While not all
signalprints may match each other, the network would still
be able to detect that a single transmitter is responsible for
a high rate of requests.

Signalprints allow a centrally controlled WLAN to reliably
single out clients. Instead of identifying them based on MAC
addresses or other data they provide, signalprints allow the
system to recognize them based on what they look like in
terms of signal strength levels.

4. MATCHING SIGNALPRINTS
In this section we demonstrate how matching rules are

specified to detect identity-based attacks. In section 4.1 we
describe the use of differential signal strength values during
matching. In sections 4.2 and 4.3 we describe how values
within signalprints are compared using max-matches and
min-matches. In section 4.4 we describe how matching rules
are specified in terms of these operations.

4.1 Differential Values
Values within a signalprint can be written as absolute val-

ues (e.g. RSSI levels in dBm) or as relative values (e.g. with
respect to its higher or lower value). We use the term dif-

ferential signal strength to refer to the difference between
the value at a given position and the maximum value found
in that signalprint. Signalprints are either written with
absolute or differential values: for example, a signalprint
S : (−50,−62,−76) written using differential signal strength
becomes S : (0,−12,−26). Figure 2(b) shows S1 and S2
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(a) Signalprint size. (b) 10-dB max-matches. (c) 20-dB min-matches.

Figure 2: Signalprint matching examples. Figure 2(a) shows two signalprints and their corresponding sizes.
Figures 2(b) and 2(c) demonstrate how max-matches and min-matches are computed.

written with both absolute and differential values (the lat-
ter shown respectively above and below S1 and S2). When
matching two signalprints, both need to be written in either
absolute or differential values.

The use of differential values increases the robustness of
signalprint operations against devices (possibly malicious)
that vary their transmission power levels between frames.
It is a trick borrowed from differential GPS, where a sec-
ond, stationary receiver is used to remove timing errors that
occur in both paths, between a satellite and each one of the
receivers. In our case, this error or unknown quantity is the
power level used by a transmitter. With absolute values,
changes in transmission power create similar changes in the
detected RSSI, which could cause the system to attribute
multiple packets sent by a single client to multiple devices.
Using differential values, transmissions performed by a sta-
tionary transmitter generate similar signalprints, increasing
changes of attack detection.

4.2 Max-Matches
Matches are found by comparing values at the same posi-

tion in two different signalprints. A “max-match” of ε dB is
found whenever values differ by at most ε dB. I.e., a 10-dB
max-match is found at position i if abs(S1[i] − S2[i]) ≤ 10
and both S1[i] and S2[i] are non-default values. The total
number of ε-dB max-matches found by comparing signal-
prints S1 and S2 is denoted by maxMatches(S1, S2, ε).

We decided to remove default values from match compu-
tations because they can arise from two distinct scenarios.
On one hand, a client can be simply outside the range of
an access point, in which case its packets are not detected
and RSSI measurements are simply not reported. On the
other hand, many events may cause an AP to fail to re-
ceive packets independently of signal quality. For instance,
two packets sent on the same channel but on different cells
may overlap in time, in which case both packets might be
incorrectly decoded and dropped by the AP.

In this paper matches are always computed using differ-
ential signal strength values. Figure 2(b) shows that 3 10-
dB max-matches are found when comparing S1 and S2, i.e.
maxMatches(S1, S2, 10) = 3. Signalprints are shown with
both original and differential signal strength values, with
matches found at positions 1, 4, and 7. Note that position
5 does not yield a 10-dB max-match when using differential
values: the difference equals 21 dB instead of the 8 dB when
absolute values are used.

Max-matches are especially useful when looking for sig-
nalprints produced by the same transmitter. As we show in
section 6, RSSI values produced by a stationary client tend
to oscillate within 5 dB from its median value. As a result,

high numbers of max-matches with low values of ε (e.g. 5
dB) are likely to occur for a pair of signalprints sent by the
same device.

4.3 Min-Matches
Analogous to a max-match, a “min-match” of ε dB is found

whenever values differ by at least ε dB. A 10-dB min-match is
found at position i if abs(S1[i] − S2[i]) ≥ 10 and both S1[i]
and S2[i] are non-default values. The total number of ε-
dB min-matches found when comparing signalprints S1 and
S2 is denoted by minMatches(S1, S2, ε). As shown in fig-
ure 2(c), a single 20-dB min-match is found when comparing
S1 and S2, at position 4.

Min-matches allow the system to identify, with high prob-
ability, when two packets are sent by distinct devices. While
small variations in received signal strength occur even for a
stationary client, rarely does it change by more than 10 or
15 dB. Consequently, the system can classify two packets as
coming from different devices with high confidence if large
differences are seen in a signalprint.

4.4 Matching Rules
We say that a pair of signalprints “match” if they sat-

isfy a specified matching rule, a boolean expression involv-
ing numbers of max-matches and min-matches, and possi-
bly signalprint properties such as size. The matching rule
maxMatches(S1, S2, 5) ≥ 4 requires two signalprints to have
RSSI values within 5 dB of each other in at least 4 positions.

When specifying matching rules, it is important to ac-
count for both signal strength oscillation and lack of feed-
back from access points. Constant RSSI oscillation makes
it unlikely that even signalprints produced by the same sta-
tionary device have the exact same RSSI values in multi-
ple positions. Consequently, we usually write max-match
clauses with values of ε of at least 5 dB. The lack of feedback
from some APs prevents matches in all signalprint positions.

As with intrusion detection systems, matching rules are
specified with the objective of minimizing false positives, i.e.,
we want a match to be a strong indication that an attack is
taking place. The reason is cost: a match raises an alarm
that is likely to be handled by the network administrator.
Rules can be made more precise (fewer false positives) by
increasing the minimum number of matches and changing
the value of ε.

5. ATTACK DETECTION
Three attack properties are important to our analysis: R

denotes the rate in packets per second (pps) required for
a given DoS attack to be effective, S denotes the speed of
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the device, while A denotes the number of antennas under
the control of the attacker. In this section we assume that
devices are stationary (S = 0) and provided with a single
omni-directional antenna (A = 1). In section 6.4 we address
the effects of moving devices, while in section 6.5 we assume
attackers with directional antennas. Finally, we discuss at-
tacks with multiple antennas in section 7.

5.1 Resource Depletion Attacks
In this scenario, an attacker sends high rates of request

messages using random MAC values in order to emulate
a high number of clients and consume scarce resources in
the network. For example, an attacker can send enough
DHCP requests in a hotspot as to consume all available IP
addresses, flood access points with association requests in
the hopes of exceeding allowed limits, or send high rates
of authentication requests to slow down or even disable a
shared authentication server.

As an example, Dean et al. [7] have also shown that ef-
fective low-bandwidth DoS attacks can be mounted against
TLS, one of the preferred authentication methods to be used
in 802.11i/802.1X [2, 1]. TLS requires cryptographic oper-
ations (e.g. RSA and Diffie-Hellman) that when executed
in software demand tens of milliseconds even on a dedicated
processor. In situations where a dedicated server is not avail-
able – some lightweight AP architectures perform authenti-
cation at the WA – the overhead imposed by each request
could be much higher. A server could therefore be over-
loaded by a device that generates 100 requests per second,
which can be injected into the network while demanding far
less than 1Mbps of attack bandwidth.

In this case, the input to the signalprint matching process
is a set of packets (e.g. authentication requests) with distinct
MAC addresses and their corresponding signalprints. Effec-
tive DoS attacks in this category require high packet rates
(R >> 1 pps), so many signalprints should be available for
processing. By comparing pairs of signalprints, the system
can identify subsets generated by the same device.

Matching rules should require multiple max-matches with
low values of ε because we are looking for signalprints that
were generated by the same device and therefore expected
to have similar RSSI values in multiple positions. Using
6 APs as sensors, the first rule we evaluate in section 6
for this purpose is maxMatches(S1, S2, 5) ≥ 4. We can
decrease the probability of false positives by increasing the
required number of max-matches or decreasing the value of
ε. The second rule we evaluate – maxMatches(S1, S2, 5) ≥ 5
– tends to be satisfied by signalprints generated at locations
that are physically closer to each other.

In order to further decrease the probability of false posi-
tives, these rules can be extended with min-match clauses.
For instance, consider two signalprints that satisfy the sec-
ond matching rule above by having similar RSSI levels in 5
positions. Now consider the single position that did not pro-
duce a max-match. If one of the signalprints has a default
value at that position, the likelihood of these signalprints be-
ing from the same device does not change much. However,
if values are defined in both signalprints and differ by 8 or
10 dB, this likelihood decreases substantially. Therefore, we
evaluate a third matching rule that extends the second rule
above with a min-match clause: maxMatches(S1, S2, 5) ≥

5 ∧ minMatches(S1, S2, 8) = 0.

5.2 Masquerading Attacks
In masquerading attacks, an attacker targets a specific

client by cloning its MAC address or the address of its ac-
cess point. For instance, Bellardo et al. have shown that
deauthentication and disassociation attacks can be easily
mounted in 802.11 networks and are very effective [5]. Be-
fore a client can send packets over the wireless link, it needs
to authenticate and associate itself with an AP. In a deau-
thentication attack, deauthentication requests are sent by
an attacker with the MAC address of the victim. The ac-
cess point, after granting the attacker’s request, removes the
victim from the authenticated state and drops all its pack-
ets until association is reestablished. Bellardo et al. discuss
other equally effective masquerading attacks that exploit the
association service and the power saving mechanism [5].

In normal situations, 802.11 devices are not expected to
generate high rates of authentication or association mes-
sages. However, there are situations in which well-behaved
clients switch between access points with a frequency that is
abnormally high. For example, in their study of a large-scale
802.11 network, Kotz et al. showed that clients sometimes
are overly aggressive when selecting the best access point,
which causes them to reassociate more often than neces-
sary [16]. In these cases, multiple APs are within the client’s
range with comparable RSSI levels, which may cause it to
change APs with small variations in signal strength.

So the WA can detect an unusual traffic pattern, but is an
attack really happening? Signalprints can be used to detect
attacks with high probability, providing a level of assurance
that cannot be achieved by only looking at packet contents.

The input now consists of two sets of packets that rep-
resent conflicting requests (e.g. authentication vs. deau-
thentication messages), all transmitted with the same MAC
address. An attack is detected by comparing pairs of sig-
nalprints, one from each set. Given that continuous attacks
are needed to severely affect a victim’s throughput, large
input sets are also expected in this case. For example, to
keep a victim off the network, Bellardo et al. used up to 10
deauthentication frames per second in their experiments [5].

To detect these attacks, matching rules should require
min-matches with large values of ε, because we are look-
ing for considerable differences in RSSI that would indi-
cate two (or more) distinct transmitters. In this case, rules
can be more precise by either increasing the number of
min-matches or increasing the value of ε. In our evalua-
tion section, using 6 access points, we look for 10-dB min-
matches. We evaluate the performance of two matching
rules for this purpose: minMatches(S1, S2, 10) ≥ 1 and
minMatches(S1, S2, 10) ≥ 2.

6. EVALUATION
In this section we show that signalprints are strongly cor-

related with the physical locations within an environment,
which allows them to be used as robust, location-dependent
client identifiers.

6.1 Testbed
Our testbed consists of a 45×24m (147×78 ft) section of

an office environment (the 4A Wing of the Gates Building
at Stanford University). As shown in figure 3, it contains
a mix of offices (most 3×6m), large labs (at least 8×4.5m),
and long corridors. We have installed a total of 12 IEEE
802.11b/g access points, which are mounted at the ceiling
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Figure 3: Our testbed and locations sampled.

(height of 2.5 m) and connected to a centralized server. The
access points are off-the-shelf Linksys WRT54G units run-
ning a Linux distribution (OpenWrt rc3), their exact place-
ment depicted by triangles in figure 3(a). An application
running at each AP monitors the wireless channels and re-
ports signal strength information back to the server.

In order to evaluate our mechanism, we created a test
dataset by manually sampling 135 locations across the floor,
as shown in figure 3(b). At each location a laptop provided
with a Cisco 340 PCMCIA card transmitted ping packets
at rates between 10 and 20 packets per second for approxi-
mately one minute, as our access points had to hop through
the three 802.11b/g non-overlapping channels. The client
annotated each packet with the location ID, while each ac-
cess point in range tagged it with an RSSI level and for-
warded it to the localization server, which logged all mea-
surement traffic. At all locations the laptop was held at
waist level and with the same orientation, with the user fac-
ing North as indicated in figure 3(b). A total of over 420,000
signal strength samples were collected, and we created a dis-
tinct signalprint for each location by using the median RSSI
level with respect to each access point.

6.2 Signal Strength Oscillation
We first demonstrate that while stationary, a wireless client

tends to create similar signalprints, despite the inherently
unpredictable nature of wireless propagation. This is an
important property when we consider the performance of
our system against DoS attacks with high rates of requests.
For example, even a small fraction of matching signalprints
would allow the network to detect a malicious device that
sends over 100 authentication requests per second.
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Figure 4: RSSI oscillation for a stationary device.
Each graph was created by choosing one of the loca-
tions sampled and one access point within its range.
It shows the variation in signal strength for con-
secutive frame transmissions relative to the median
RSSI (shown as 0 dBm) for that location-AP pair.

Our measurements suggest that most signal strength os-
cillations are small, within 5 dB from the median RSSI level.
Each graph in figure 4 was created by choosing one of our
sampled locations and one of the access points within its
range. Each graph shows the variation in signal strength
for successive transmissions: the difference between the de-
tected RSSI and the median value for the corresponding
location-AP pair (the median, or base level, is shown as 0
dBm). The top two graphs in figure 4 are examples of the
behavior detected for most locations: the majority of RSSI
oscillations are within 5 dB from the median. Aggregating
all the measurements in our dataset – all locations with re-
spect to all access points – we have that over 71%, 90%, and
93% of RSSI oscillations are respectively within 2, 5, and 10
dB from the median RSSI levels.

However, the tail of the distribution is long, and some
strong, mostly destructive oscillations do occur. The bottom
two graphs in figure 4 are examples of this case. In one of
them, the RSSI level is somewhat stable, with a couple of
strong oscillations (>25 dB). In the other example, periods
with strong RSSI degradation seem to happen with a certain
frequency, with a difference in signal strength between the
two levels of over 30 dB. 1

While strong RSSI oscillations do occur in our measure-
ments, the path loss between a stationary client and each
AP is stable most of the time. In theory, multipath prop-

1We do not have a definitive explanation for these signal
strength variations we have observed.
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(a) maxMatches(S1, S2, 5) ≥ 4.
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(b) maxMatches(S1, S2, 5) ≥ 5.
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(c) maxMatches(S1, S2, 5) ≥ 5 ∧
minMatches(S1, S2, 8) = 0.
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(d) maxMatches(S1, S2, 5) ≥ 3 ∧
minMatches(S1, S2, 8) = 0.

Figure 5: Location pairs satisfying multiple matching rules. Figures 5(a)-5(c) use the 6-AP configuration
(APs shown as triangles), while figure 5(d) uses the setup with 4 access points.

agation and other phenomena generate small-scale fading,
with possibly strong RSSI variations over time caused by
people walking by, doors being closed, and other changes
in environment that affect any of the multiple paths taken
by transmissions between two devices. In practice, however,
these events do not seem to happen often. Perhaps these re-
sults are due to techniques developed to decrease the effects
of small-scale fading in wireless systems, such as antenna
diversity, implemented in most 802.11 devices.

6.3 Signalprints and Physical Proximity
In this section we explore the relationship between signal-

prints and physical proximity between transmitters in order
to detect identity-based attacks. Despite having 12 access
points deployed in our testbed, all the results presented in
this paper use two AP configurations: one with 6 access
points (numbers 3, 5, 6, 8, 10, and 11 in figure 3(a)) and
the other with 4 APs (numbers 2, 4, 6, and 8). The config-
uration with 4 access points is used to evaluate the loss in
accuracy when using fewer sensors. Each figure shows the
APs being used as triangles and omits the others.

6.3.1 Detecting Packets From a Single Device
As discussed in section 5.1, matching rules that detect

when packets are generated by the same device are useful to
detect high-rate DoS attacks. By requiring multiple max-
matches with low ε values, we show that matching similar
signalprints are found mostly in close proximity.

Locations that produce signalprints with similar values in
multiple positions tend to be physically close. Using the 6-

AP configuration, figure 5(a) shows all location pairs that
satisfy the matching rule maxMatches(S1, S2, 5) ≥ 4 con-
nected by a line segment. Even though many matches are
produced, most of them involve locations that are close to
each other. Overall, 430 matches were found (4.8% of all
pairs), with 51%, 74%, and 91% of them found respectively
for locations within 5, 7, and 10 meters from each other.
However, there are still many matches found for locations
more than 15 meters from each other. All matching results
presented in this section are summarized in table 1.

As discussed in section 5.1, matching results are improved
if we increase the number of max-matches required. Still
using 6 sensors, figure 5(b) shows the locations whose sig-
nalprints satisfy the rule maxMatches(S1, S2, 5) ≥ 5. Com-
pared to figure 5(a), there is a significant reduction in the
number of long-distance matches. A total of 150 matches
were found (1.7% of all pairs), with respectively 64%, 88%,
and 98% of them found for locations within 5, 7, and 10
meters from each other. In this case, there are no matches
for locations more than 15 meters apart.

Using min-matches, matching rules can be made even
more precise. Figure 5(c) shows that the matching rule
maxMatches(S1, S2, 5) ≥ 5 ∧ minMatches(S1, S2, 8) = 0
further reduces the number of long-distance matches. Like
in figure 5(b), this rule still requires a minimum of 5 max-
matches of 5 dB, but now rejects all the location pairs for
which any difference larger than 8-dB is found. As shown,
this rule produces only 97 matches (1.1% of all pairs), with
respectively 72%, 91%, and 99% of them found for locations
within 5, 7, and 10 meters from each other. In this case
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Matching Rule Figure # APs # Matches ≤ 5m ≤ 7m ≤ 10m

maxMatches(S1, S2, 5) ≥ 4 fig. 5(a) 6 430 (4.8%) 50.9% 74.4% 91.2%
maxMatches(S1, S2, 5) ≥ 5 fig. 5(b) 6 150 (1.7%) 64.0% 88.0% 98.0%
maxMatches(S1, S2, 5) ≥ 5 ∧ minMatches(S1, S2, 8) = 0 fig. 5(c) 6 97 (1.1%) 72.2% 90.7% 99.0%
maxMatches(S1, S2, 5) ≥ 3 ∧ minMatches(S1, S2, 8) = 0 fig. 5(d) 4 317 (3.5%) 62.2% 86.4% 99.1%
minMatches(S1, S2, 10) ≥ 1 (no figure) 6 8643 (95.6%) 4.6% 10.1% 21.9%
minMatches(S1, S2, 10) ≥ 2 (no figure) 6 7768 (85.9%) 2.6% 6.9% 17.9%

Table 1: Matching results. Each row shows a matching rule, the figure (if any) containing the signalprints
created from our measurements that satisfy that rule, the number of access points used as sensors, the
number of matches produced, and the percentages of matches created by locations within 5, 7, and 10 meters
from each other. The first four rules are used to detect packets transmitted by the same device, while the
last two detect packets sent by distinct devices.

there is a single match for locations more than 10 meters
from each other.

Finally, figure 5(d) shows that performance degrades if
we decrease the number of access points used to 4, but that
results are still satisfactory due to the use of min-matches.
With 4 APs, this matching rule requires at least 3 5-dB max-
matches and no 8-dB min-matches. It produces 317 matches,
but with respectively 62%, 86%, and 99% of matches found
for locations within 5, 7, and 10 meters from each other.
Note that these numbers are better than the ones related to
figure 5(a) even though there are two fewer access points.

These results show that resource depletion attacks can be
detected with high probability, as matching signalprints are
found mostly for locations that are near each other. There-
fore, a large number of matching requests means they are
being transmitted from a specific location or area, which
could be found by coupling our mechanism with a localiza-
tion system. Some signalprints produced at the same loca-
tion may not match due to RSSI oscillations, but this does
not prevent the WA from detecting high-rate DoS attacks.

6.3.2 Detecting Packets From Distinct Devices
In this section we evaluate matching rules specified to

decrease the probability of false positives when looking for
masquerading attacks. We want signalprints to match only
if there is a high probability that they were indeed produced
by distinct devices. In this case, detecting large RSSI dif-
ferences is more important than finding similar values, so
min-matches play a more important role in these situations.

Most location pairs in our dataset generate signalprints
that satisfy the matching rule minMatches(S1, S2, 10) ≥ 1,
i.e., values in at least one position differ by 10 dB or more.
As shown in table 1 (5th row) over 95% of all location pairs
satisfy this rule. Even a large number of locations that are
physically close can be distinguished, with over 400 matches
produced for locations less than 5 meters from each other.
Overall, these results show that masquerading attacks can
be detected with high probability, as at least one access point
can tell the two locations apart.

We can decrease the probability of false positives by in-
creasing the minimum number of 10-dB min-matches to 2.
As shown in the 6th row in the table, over 85% of all loca-
tion pairs still produce a match. In this case, a match is
an even stronger indication that an attack is taking place,
as signalprints differ substantially relative to at least two
access points.

6.4 Moving Devices
We do not expect legitimate clients on the move to gen-

erate false alarms because they send requests at rates much
lower than required by most attacks. For example, consider
an 802.11 client that associates with an access point and
after some time moves to a different location and requests
disassociation. Despite the fact that the two signalprints
generated can be quite different, an alarm should not be
raised in this situation. An effective disassociation attack
requires higher rates of deauthentication requests to keep a
client off the network, so only a larger number of matching
signalprints detected during a short period of time (e.g. tens
of seconds) should generate an alarm.

Unless an attacker moves towards the victim, changing his
location does not increase the chances of having a successful
masquerading attack. What matters is not how the signal-
prints he produces compare to each other – for this matter
they could be all different – but how similar they are to the
one produced by the victim. Attacks are detected as long
as there are considerable RSSI differences, which only cease
to exist if the attacker moves close to his victim.

Whether an attacker can disguise a resource depletion at-
tack by changing his location over time depends on his speed
and the required packet rate. Let us assume that an attacker
moves at pedestrian speeds and consider an attack requir-
ing R > 10 pps (such as the attack against TLS). In this
case, attacks are still detected with high probability. If he
transmits at a uniform rate, which has to be close to R pps,
he continuously provides the system with information about
his location. Packets transmitted close in time generate sim-
ilar signalprints, allowing the system to track his location if
a localization system is available. To avoid being tracked,
an attacker needs to alternate periods of packet transmis-
sions and radio silence. During such transmission bursts,
however, he needs to send packets at rates higher than R

pps in order to compensate for the periods of silence. This
attack would be also detected because signalprints gener-
ated during each burst should match each other with high
probability. However, tracking the attacker becomes more
challenging because these bursts produce location estimates
that are further apart.

6.5 Directional and Beamforming Antennas
A single directional or beamforming antenna would be

more helpful to an attacker implementing a resource deple-
tion attack than a masquerading attack. In a masquerading
attack, it is still hard for an attacker to clone the exact
signalprint produced by his intended victim from a large
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distance. In close range, an omni-directional transmitter
would also be effective while being easier to conceal. During
resource depletion attacks, changing the transmission beam
allows an attacker to change his signalprint, which decreases
the number of matching requests. The probability of detec-
tion depends on the number of distinct patterns a trans-
mitter is able to create and the packet rate required by the
attack. If an attacker is only able to produce a small number
of antenna patterns and an attack requires high packer rates
(tens or hundreds of packets per second), some of the sig-
nalprints produced are still associated with a large number
of requests, allowing detection with high probability.

7. LIMITATIONS
Due to the use of RSSI levels to characterize wireless

clients, one inherent limitation of our mechanism is that
it may be unable to distinguish two devices located phys-
ically close to each other. Masquerading attempts can be
detected if there is a noticeable difference in RSSI with re-
spect to at least one access point. As shown in section 6.3.2,
this happens even for some locations in close range, possi-
bly due to obstacles that affect one location more than the
other. In some situations – such as multiple clients in a
conference room – the system may not have compelling evi-
dence that packets are coming from different devices, making
masquerading attacks possible. The level of physical secu-
rity in an installation dictates whether these attacks can be
mounted: compared to a cafeteria, it is harder for an at-
tacker in an enterprise building to get close enough to his
victim to mount an undetected masquerading attack.

Our mechanism may also not be able to detect DoS at-
tacks composed of few packets. The more packets are in-
volved in an attack, the more signalprints are available for
processing and the higher the probability of detection. A
single-packet deauthentication attack in a 802.11 network
may go unnoticed – for example if APs are sensing other
channels – or not provide enough confidence as to raise an
alarm. In most situations, however, attacks require high
packet rates to be effective, increasing chances of detection.

An attacker may be able to avoid detection if provided
with multiple antennas (A > 1). Suppose that an attacker
configures its antennas so that each sensor can only listen to
transmissions from a single antenna (e.g. using directional
antennas with narrow beamwidth values). To successfully
mount a resource depletion attack, the attacker can simul-
taneously transmit a different packet through each antenna.
As a single sensor detects each transmission, the signalprints
produced are too short to satisfy the rules presented in sec-
tion 5.1. To mount a masquerading attack, the attacker
simultaneously transmits the same packet using all anten-
nas. By choosing the proper transmission power level for
each of them, he is able to “compose” any arbitrary signal-
print with A values. In both scenarios, attacks would be
detected if some of the packets – even a small fraction –
were detected by multiple access points.

8. RELATED WORK
Bellardo and Savage have shown that effective DoS at-

tacks in 802.11 networks can be mounted with standard
hardware [5]. They measured the impact of several identity-
based attacks, including the ones targeting authentication
and association services, and presented practical solutions

that can be realized with low overhead and without modi-
fying clients. For example, the authors suggest that access
points buffer deauthentication and disassociation requests
for brief periods of time (5-10 seconds) before processing
them. In this case, conflicting requests would be taken as
indications of an attack.

Concurrently to our work, Demirbas et al. have proposed
the use of RSSI measurements from multiple sensors to de-
tect sybil attacks in wireless sensor networks, where a node
uses multiple identities [8]. As testbed, the authors use up
to four Mica2 motes operating as sensors at 433 MHz, with
motes always located in close proximity to each other (30 cm
to 10 m). Our research demonstrates that reliable attack
detection is possible for larger 802.11 installations, where
clients can be more than 40 meters from access points.

A technique called RF fingerprinting (RFF) has been de-
veloped to identify distinct transceivers across multiple wire-
less systems [22, 9]. The fingerprint for a transmitter is cre-
ated from several features (such as phase, and amplitude)
extracted from a period of transient behavior that occurs
as the device powers up before a transmission. These turn-
on transients are different for each tranceiver, allowing even
units build on the same factory to be distinguished. RFF
systems have been used to detect cloned phones in cellu-
lar systems [19], and several researchers have proposed their
use in wireless LANs [12, 23]. One disadvantage of RFF is
that it requires specialized hardware to measure the signal
properties needed with enough precision.

Gruteser et al. have proposed the use of temporary inter-
face identifiers to improve privacy in WLANs: clients change
their MAC addresses whenever they associate with an ac-
cess point, reducing the chances of being tracked [10]. The
authors evaluate this mechanism against an attacker that
uses signal strength information to identify MAC addresses
used by the same client. Our research extends this analysis
to show that with higher number of access points, attack-
ers may be able to track clients even after address changes,
unless the number of active devices in the network is large
enough as to create multiple similar signalprints.

Mechanisms such as client puzzles have been designed to
slow down attack sources, reducing the damages caused by
resource depletion attacks [15, 7, 3]. Before any resource
is committed to an incoming request, computational puz-
zles are sent back to clients that require CPU- or memory-
intensive operations. Despite being protocol-agnostic, puz-
zles demand that both clients and servers be modified, in-
creasing deployment overhead when compared to a signalprint-
based mechanism, implemented solely at the WA.

Our work also relates to localization algorithms, from pio-
neer systems such as RADAR [4] and SpotON [14], to more
recent approaches that use probabilistic techniques, includ-
ing the work of Roos et al. [20], Ladd et al. [17], Haeberlen
et al. [11], and the Horus system [24]. By achieving aver-
age localization errors below 3 meters these systems have
demonstrated that signalprints are strongly correlated with
the location of a wireless client. Moreover, they can be used
to complement signalprint-based mechanisms with localiza-
tion services: when an attack is detected, the corresponding
signalprint can be used as input to such systems so the lo-
cation of the offending device can be determined. Tao et

al. have in fact used differential signal strength values to
make localization services more robust against variations in
transmission power [21].
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9. CONCLUSION
In this paper we showed that reliable client identifiers,

which we call signalprints, can be created using signal strength
measurements reported by access points acting as sensors.
We showed that while malicious clients can lie about their
MAC addresses, the signalprints they produce are strongly
correlated with their physical location. We demonstrated
that by tagging packets with their signalprints and crafting
proper matching rules, a wireless network is able to detect
a large class of effective denial-of-service attacks based on
MAC address spoofing. We presented several examples of
attacks that can be easily mounted in IEEE 802.11 networks
and that can be detected by our proposed mechanism with
high probability.

Measurements in our network testbed demonstrate that
multiple packets transmitted by a stationary device pro-
duce similar signalprints with high probability. In our test
dataset, most RSSI variations for a stationary client with re-
spect to a single access point are small, within 5 dB from the
median signal strength level. This allows the network to de-
tect resource depletion attacks, in which a malicious device
transmits high rates of packets (e.g. DHCP or authentica-
tion requests) containing random, forged MAC addresses.
We presented matching rules able to detect that a large per-
centage of these packets were indeed generated by a single
device, despite the different MAC addresses.

We also showed that similar signalprints are mostly found
in close proximity. First, using 6 of our deployed access
points, we showed that locations that produce signalprints
with multiple similar RSSI values tend to be within 5 meters
from each other. Then we showed that large RSSI differ-
ences provide strong evidence that packets were generated
by distinct devices. Consequently, an attacker needs to be
physically close to his intended victim in order to mount
undetected masquerading attacks.

Overall, we showed that signalprints are tags that allow a
wireless network to identify mobile devices according their
physical location, improving security in a cost-effective man-
ner. Although signalprints can be defeated, such as by the
use of multiple synchronized direction antennas, these situ-
ations present a challenge for an intruder and increase the
likelihood of detection by physical security measurements.
Thus, like the use of fingerprints to identify humans, the
mechanism is not infallible but a significant improvement
over just believing the identity that the individual claims.
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