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Abstract Distance covariance is a quantity to measure the dependence of two random vec-
tors. We show that the original concept introduced and developed by Székely, Rizzo and
Bakirov can be embedded into a more general framework based on symmetric Lévy measures
and the corresponding real-valued continuous negative definite functions. The Lévy measures
replace the weight functions used in the original definition of distance covariance. All essential
properties of distance covariance are preserved in this new framework.

From a practical point of view this allows less restrictive moment conditions on the under-
lying random variables and one can use other distance functions than Euclidean distance, e.g.
Minkowski distance. Most importantly, it serves as the basic building block for distance mul-
tivariance, a quantity to measure and estimate dependence of multiple random vectors, which
is introduced in a follow-up paper [Distance Multivariance: New dependence measures for
random vectors (submitted). Revised version of arXiv: 1711.07775v1] to the present article.
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1 Introduction

The concept of distance covariance was introduced by Székely, Rizzo and Bakirov
[37] as a measure of dependence between two random vectors of arbitrary dimen-
sions. Their starting point is to consider a weighted L2-integral of the difference of
the (joint) characteristic functions fX, fY and f(X,Y ) of the (Rm- and R

n-valued) ran-
dom variables X, Y and (X, Y ),

V2(X, Y ; w) =
∫∫

Rm+n

|f(X,Y )(s, t) − fX(s)fY (t)|2 w(s, t) ds dt. (1)

The weight w is given by w(s, t) := cα,m|s|−m−αcα,n|t |−n−α for α ∈ (0, 2).
We are going to embed this into a more general framework. In order to illustrate

the new features of our approach we need to recall some results on distance covari-
ance. Among several other interesting properties, [37] shows that distance covariance
characterizes independence, in the sense that V 2(X, Y ; w) = 0 if, and only if, X

and Y are independent. Moreover, they show that in the case α = 1 the distance co-
variance NV 2(X, Y ; w) of the empirical distributions of two samples (x1, x2, . . . , xN)

and (y1, y2, . . . , yN) takes a surprisingly simple form. It can be represented as

NV 2(X, Y ; w) = 1

N2

N∑
k,l=1

AklBkl, (2)

where A and B are double centrings (cf. Lemma 4.2) of the Euclidean distance matri-
ces of the samples, i.e. of (|xk − xl |)k,l=1,...,N and (|yk − yl |)k,l=1,...,N . If α �= 1 then
Euclidean distance has to be replaced by its power with exponent α. The connection
between the weight function w in (1) and the (centred) Euclidean distance matrices
in (2) is given by the Lévy–Khintchine representation of negative definite functions,
i.e.

|x|α = cp

∫
Rm\{0}

(1 − cos s · x)
ds

|s|m+α
, x ∈ R

m,

where cp is a suitable constant, cf. Section 2.1, Table 1. Finally, the representation
(2) of NV 2(X, Y ; w) and its asymptotic properties as N → ∞ are used by Székely,
Rizzo and Bakirov to develop a statistical test for independence in [37].

Yet another interesting representation of distance covariance is given in the follow-
up paper [34]: Let (Xcop, Ycop) be an independent copy of (X, Y ) and let W and W ′
be Brownian random fields on R

m and R
n, independent from each other and from

X, Y,Xcop, Ycop. The paper [34] defines the Brownian covariance

W2(X, Y ) = E
[
XWXW

copY
W ′

YW ′
cop

]
, (3)

where XW := W(X) − E[W(X) | W ] for any random variable X and random field
W with matching dimensions. Surprisingly, as shown in [34], Brownian covariance
coincides with distance covariance, i.e. W2(X, Y ) = V2(X, Y ; w) when α = 1 is
chosen for the kernel w.

The paper [34] was accompanied by a series of discussion papers [25, 6, 22, 11,
15, 18, 26, 17, 35] where various extensions, applications and open questions were
suggested. Let us highlight the three problems which we are going to address:
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a) Can the weight function w in (1) be replaced by other weight functions?
(Cf. [15, 18])

b) Can the Euclidean distance (or its α-power) in (2) be replaced by other dis-
tances? (Cf. [22, 18, 23])

c) Can the Brownian random fields W,W ′ in (3) be replaced by other random
fields? (Cf. [22, 26])

While insights and partial results on these questions can be found in all of the men-
tioned discussion papers, a definitive and unifying answer was missing for a long
time. In the present paper we propose a generalization of distance covariance which
resolves these closely related questions. In a follow-up paper [9] we extend our results
to the detection of independence of d random variables (X1, X2, . . . , Xd), answering
a question of [15, 1].

More precisely, we introduce in Definition 3.1 the generalized distance covariance

V 2(X, Y ) =
∫
Rn

∫
Rm

|f(X,Y )(s, t) − fX(s)fY (t)|2 μ(ds) ν(dt),

where μ and ν are symmetric Lévy measures, as a natural extension of distance co-
variance of Székely et al. [37]. The Lévy measures μ and ν are linked to negative
definite functions Φ and Ψ by the well-known Lévy–Khintchine representation, cf.
Section 2 where examples and important properties of negative definite functions are
discussed. In Section 3 we show that several different representations (related to [23])
of V 2(X, Y ) in terms of the functions Φ and Ψ can be given. In Section 4 we turn
to the finite-sample properties of generalized distance covariance and show that the
representation (2) of NV 2(X, Y ) remains valid, with the Euclidean distance matrices
replaced by the matrices(

Φ(xk − xl)
)
k,l=1,...,N

and
(
Ψ (yk − yl)

)
k,l=1,...,N

.

We also show asymptotic properties of NV 2(X, Y ) as N tends to infinity, paralleling
those of [34, 36] for Euclidean distance covariance. After some remarks on unique-
ness and normalization, we show in Section 7 that the representation (3) remains also
valid, when the Brownian random fields W and W ′ are replaced by centered Gaussian
random fields GΦ and GΨ with covariance kernel

E
[
GΦ(x)GΦ

(
x′)] = Φ(x) + Φ

(
x′)− Φ

(
x − x′)

and analogously for GΨ .
To use generalized distance covariance (and distance multivariance) in applica-

tions all necessary functions and tests are provided in the R package multivari-
ance [8]. Extensive examples and simulations can be found in [7], therefore we
concentrate in the current paper on the theoretical foundations.

Notation. Most of our notation is standard or self-explanatory. Throughout we use
positive (and negative) in the non-strict sense, i.e. x ≥ 0 (resp. x ≤ 0) and we write
a ∨ b = max{a, b} and a ∧ b = min{a, b} for the maximum and minimum. For a
vector x ∈ R

d the Euclidean norm is denoted by |x|.
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2 Fundamental results

In this section we collect some tools and concepts which will be needed in the sequel.

2.1 Negative definite functions

A function Θ : Rd → C is called negative definite (in the sense of Schoenberg) if the
matrix (Θ(xi) + Θ(xj ) − Θ(xi − xj ))i,j ∈ C

m×m is positive semidefinite hermitian
for every m ∈ N and x1, . . . , xm ∈ R

d . It is not hard to see, cf. Berg & Forst [3] or
Jacob [19], that this is equivalent to saying that Θ(0) ≥ 0, Θ(−x) = Θ(x) and the
matrix (−Θ(xi − xj ))i,j ∈ C

m×m is conditionally positive definite, i.e.

m∑
i,j=1

[−Θ(xi − xj )
]
λiλ̄j ≥ 0 ∀λ1, . . . , λm ∈ C such that

m∑
k=1

λk = 0.

Because of this equivalence, the function −Θ is also called conditionally positive
definite (and some authors call Θ conditionally negative definite).

Negative definite functions appear naturally in several contexts, for instance in
probability theory as characteristic exponents (i.e. logarithms of characteristic func-
tions) of infinitely divisible laws or Lévy processes, cf. Sato [28] or [10], in harmonic
analysis in connection with non-local operators, cf. Berg & Forst [3] or Jacob [19]
and in geometry when it comes to characterize certain metrics in Euclidean spaces,
cf. Benyamini & Lindenstrauss [2].

The following theorem, compiled from Berg & Forst [3, Sec. 7, pp. 39–48,
Thm. 10.8, p. 75] and Jacob [19, Sec. 3.6–7, pp. 120–155], summarizes some ba-
sic equivalences and connections.

Theorem 2.1. For a function Θ : Rd → C with Θ(0) = 0 the following assertions
are equivalent

a) Θ is negative definite.

b) −Θ is conditionally positive definite.

c) e−tΘ is positive definite for every t > 0.

d) t−1(1 − e−tΘ) is negative definite for every t > 0.

If Θ is continuous, the assertions a)–d) are also equivalent to

e) Θ has the following integral representation

Θ(x) = il · x + 1

2
x · Qx

+
∫
Rd\{0}

(
1 − eix·r + ix · r1(0,1)(|r|)

)
ρ(dr), (4)

where l ∈ R
d , Q ∈ R

d×d is symmetric and positive semidefinite and ρ is a
measure on R

d \ {0} such that
∫
Rd\{0}(1 ∧ |s|2) ρ(ds) < ∞.
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Table 1. Some real-valued continuous negative definite functions (cndfs) on Rd and the corre-
sponding Lévy measures and infinitely divisible distributions (IDD)

cndf 	(x) Lévy measure ρ(dr) IDD∫
(1 − cos x · r) ρ(dr) ρ finite measure compound Poisson (CP)

|x|2
λ2+|x|2 , λ > 0, x ∈ R 2λ−1e−λ|r| dr CP with exponential (1-d)

|x|2
λ2+|x|2 , λ > 0, x ∈ R

d
∫∞

0 eλ2u− |r|2
4u λ2 du

(4πu)d/2 dr CP, cf. [29, Lem. 6.1]

1 − e− 1
2 |x|2

(2π)−d/2e− 1
2 |r|2 dr CP with normal

|x| �
(

1+d
2

)
π

1+d
2

dr

|r|d+1
Cauchy

1
2 |x|2 no Lévy measure normal

|x|α, α ∈ (0, 2)
α2α−1�

(
α+d

2

)
πd/2�

(
1− α

2

) dr

|r|d+α
α-stable

p
√∑d

k=1 |xk |p, p ∈ [1, 2] see Lemma 2.2 see Lemma 2.2

ln(1 + x2

2 ), x ∈ R
1

|r| e
−
√

1
2 |r|

dr variance Gamma (1-d)

ln cosh(x), x ∈ R
dr

2r sinh(πr/2)
Meixner (1-d)

|x|α + |x|β, α, β ∈ (0, 2) mixture of stable

(1 + |x|α)
1
β − 1,

α ∈ (0, 2), β ≥ α
2

relativistic stable

We will frequently use the abbreviation cndf instead of continuous negative defi-
nite function. The representation (4) is the Lévy–Khintchine formula and any measure
ρ satisfying

ρ is a measure on R
d \ {0} such that

∫
Rd\{0}

(
1 ∧ |r|2) ρ(dr) < ∞ (5)

is commonly called Lévy measure. To keep notation simple, we will write
∫ · · · ρ(dr)

or
∫
Rd · · · ρ(dr) instead of the more precise

∫
Rd\{0} · · · ρ(dr).

The triplet (l,Q, ρ) uniquely determines Θ; moreover Θ is real (hence, positive)
if, and only if, l = 0 and ρ is symmetric, i.e. ρ(B) = ρ(−B) for any Borel set
B ⊂ R

d \ {0}. In this case (4) becomes

Θ(x) = 1

2
x · Qx +

∫
Rd

(1 − cos x · r) ρ(dr). (6)

Using the representation (4) it is straightforward to see that we have supx |Θ(x)| <

∞ if ρ is a finite measure, i.e., ρ(Rd \ {0}) < ∞, and Q = 0. The converse is also
true, see [29, pp. 1390–1391, Lem. 6.2].

Table 1 contains some examples of continuous negative definite functions along
with the corresponding Lévy measures and infinitely divisible laws.
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A measure ρ on a topological space X is said to have full (topological) support,
if μ(G) > 0 for any open set G ⊂ X; for Lévy measures we have X = R

d \ {0}.
Lemma 2.2. Let p ∈ [1, 2]. The Minkowski distance function

p(x) := (|x1|p + · · · + |xd |p)1/p
, x = (x1, . . . , xd) ∈ R

d

is a continuous negative definite function on R
d . If p ∈ (1, 2], the Lévy measure has

full support.

It is interesting to note that the Minkowski distances for p > 2 and d ≥ 2 are
never negative definite functions. This is the consequence of Schoenberg’s problem,
cf. Zastavnyi [40, p. 56, Eq. (3)].

Proof of Lemma 2.2. Since each xi �→ |xi |p, with p ∈ [1, 2], is a one-dimensional
continuous negative definite function, we can use the formula (6) to see that


p
p(x) =

⎧⎪⎪⎨⎪⎪⎩
∫
Rd

(1 − cos x · r)

d∑
i=1

cp dxi

|xi |1+p
⊗ δ0(dx(i)), if p ∈ [1, 2),

x · x, if p = 2,

where x(i) = (x1, . . . , xi−1, xi+1, . . . xd) ∈ R
d−1 and cp = p2p−1Γ (

p+1
2 )

π1/2Γ (1− p
2 )

is the con-

stant of the one-dimensional p-stable Lévy measure, cf. Table 1.
This means that 

p
p is itself a continuous negative definite function, but its Lévy

measure is concentrated on the coordinate axes. Writing p(x) = fp(
p
p(x)) with

fp(τ) = τ 1/p = γ1/p

∫ ∞

0

(
1 − e−τ t

) dt

t1+1/p
, 1

p
∈ [ 1

2 , 1
]
, γ1/p = 1

pΓ (1 − 1
p
)
,

shows that p can be represented as a combination of the Bernstein function fp and
the negative definite function 

p
p. In other words, p is subordinate to 

p
p in the sense

of Bochner (cf. Sato [28, Chap. 30] or [30, Chap. 5, Chap. 13.1]) and it is possible to
find the corresponding Lévy–Khintchine representation, cf. [28, Thm. 30.1]. We have

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Rd

(1 − cos x · r)

d∑
i=1

cp dxi

|xi |2 ⊗ δ0(dx(i)), if p = 1,

∫
Rd

(1 − cos x · r)

∫ ∞

0

d∏
i=1

gt (xi)
dt

t1+1/p
, if p ∈ (1, 2),

√
x · x, if p = 2,

where xi �→ gt (xi) is the probability density of the random variable tpX where X is
a one-dimensional, symmetric 1/p-stable random variable.

Although the 1/p-stable density is known explicitly only for 1/p ∈ {1, 2}, one
can show – this follows, e.g. from [28, Thm. 15.10] – that it is strictly positive, i.e.
the Lévy measure of p, p ∈ (1, 2) has full support. For p = 1 the measure does
not have full support, since it is concentrated on the coordinate axes. For p = 2, note
that 2(x) = |x| corresponds to the Cauchy distribution with Lévy measure given in
Table 1, which has full support.
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Using the Lévy–Khintchine representation (6) it is not hard to see,
cf. [19, Lem. 3.6.21], that square roots of real-valued cndfs are subadditive, i.e.√

Θ(x + y) ≤ √Θ(x) +√Θ(y), x, y ∈ R
d (7)

and, consequently,

Θ(x + y) ≤ 2
(
Θ(x) + Θ(y)

)
, x, y ∈ R

d . (8)

Using a standard argument, e.g. [10, p. 44], we can derive from (7), (8) that cndfs
grow at most quadratically as x → ∞,

Θ(x) ≤ 2 sup
|y|≤1

Θ(y)
(
1 + |x|2). (9)

We will assume that Θ(0) = 0 is the only zero of the function Θ – incidentally,
this means that x �→ e−Θ(x) is the characteristic function of a(n infinitely divisi-
ble) random variable the distribution of which is non-lattice. This and (7) show that
(x, y) �→ √

Θ(x − y) is a metric on R
d and (x, y) �→ Θ(x − y) is a quasi-metric,

i.e. a function which enjoys all properties of a metric, but the triangle inequality holds
with a multiplicative constant c > 1. Metric measure spaces of this type have been
investigated by Jacob et al. [20]. Historically, the notion of negative definiteness has
been introduced by I.J. Schoenberg [31] in a geometric context: he observed that for
a real-valued cndf Θ the function dΘ(x, y) := √

Θ(x − y) is a metric on R
d and

that these are the only metrics such that (Rd, dΘ) can be isometrically embedded into
a Hilbert space. In other words: dΘ behaves like a standard Euclidean metric in a
possibly infinite-dimensional space.

2.2 Measuring independence of random variables with metrics

Let X, Y be random variables with values in R
m and R

n, respectively, and write L(X)

and L(Y ) for the corresponding probability laws. For any metric d(·, ·) defined on the
family of (m + n)-dimensional probability distributions we have

d
(
L(X, Y ),L(X) ⊗ L(Y )

) = 0 if, and only if, X, Y are independent. (10)

This equivalence can obviously be extended to finitely many random variables
Xi , i = 1, . . . , n, taking values in R

di , respectively: Set d := d1 + · · · + dn,
take any metric d(·, ·) on the d-dimensional probability distributions and consider
d(L(X1, . . . , Xn),

⊗n
i=1 L(Xi)). Moreover, the random variables Xi, i = 1, . . . , n,

are independent if, and only if, (X1, . . . , Xk−1) and Xk are independent for all 2 ≤
k ≤ n.2 In other words: X1, . . . , Xn are independent if, and only if, for metrics on
the d1 +· · ·+dk-dimensional probability distributions the distance of L(X1, . . . , Xk)

and L(X1, . . . , Xk−1) ⊗ L(Xk) is zero for k = 2, . . . , n. Thus, as in (10), only the
concept of independence of pairs of random variables is needed. In [9, Sec. 3.1] we
use a variant of this idea to characterize multivariate independence.

2This is an immediate consequence of the characterization of independence using characteristic func-
tions: X, Y are independent if, and only if, Eeiξ ·X+iη·Y = Eeiξ ·XEeiη·Y for all ξ, η.
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Thus (10) is a good starting point for the construction of (new) estimators for
independence. For this it is crucial that the (empirical) distance be computationally
feasible. For discrete distributions with finitely many values this yields the classical
chi-squared test of independence (using the χ2-distance). For more general distribu-
tions other commonly used distances (e.g. relative entropy, Hellinger distance, total
variation, Prokhorov distance, Wasserstein distance) might be employed (e.g. [4]),
provided that they are computationally feasible. It turns out that the latter is, in par-
ticular, satisfied by the following distance.

Definition 2.3. Let U,V be d-dimensional random variables and denote by fU , fV

their characteristic functions. For any symmetric measure ρ on Rd \ {0} with full
support we define the distance

dρ

(
L(U),L(V )

) := ‖fU − fV ‖L2(ρ) =
(∫

|fU(r) − fV (r)|2 ρ(dr)

)1/2

. (11)

The assumption that ρ has full support, i.e. ρ(G) > 0 for every nonempty open
set G ⊂ R

d \ {0}, ensures that dρ(L(U),L(V )) = 0 if, and only if, L(U) = L(V ),
hence dρ(L(U),L(V )) is a metric. The symmetry assumption on ρ is not essential
since the integrand appearing in (11) is even; therefore, we can always replace ρ(dr)

by its symmetrization 1
2 (ρ(dr) + ρ(−dr)).

Currently it is unknown how the fact that the Lévy measure ρ has full support can
be expressed in terms of the cndf Θ(u) = ∫ (1 − cos u · r) ρ(dr) given by ρ, see (6).

Note that dρ(L(U),L(V )) is always well-defined in [0,∞]. Any of the following
conditions ensure that dρ(L(U),L(V )) is finite:

a) ρ is a finite measure;

b) ρ is a symmetric Lévy measure (cf. (5)) and E|U | + E|V | < ∞.

Indeed, dρ(L(U),L(V )) < ∞ follows from the integrability properties (5) of
the Lévy measure ρ and the elementary estimates

|fU(r) − fV (r)| ≤ E|eir·U − eir·V | ≤ E|r · (U − V )| ≤ |r| · E|U − V |
and |fU(r) − fV (r)| ≤ 2.

We obtain further sufficient conditions for V (X, Y ) < ∞ in terms of moments of
the real-valued cndf Θ , see (6), whose Lévy measure is ρ and with Q = 0.

Proposition 2.4. Let ρ be a symmetric Lévy measure on R
d \ {0} with full support

and denote by Θ(u) = ∫
(1 − cos u · r) ρ(dr), u ∈ R

d , the real-valued cndf with
Lévy triplet (l = 0,Q = 0, ρ). For all d-dimensional random variables U,V the
following assertions hold:

a) Assume that (U ′, V ′) is an i.i.d. copy of (U, V ). Then

EΘ
(
U − U ′)+ EΘ

(
V − V ′) ≤ 2EΘ

(
U − V ′). (12)

b) Let U ′ be an i.i.d. copy of U . Then

EΘ(U − V ) ≤ 2
(
EΘ(U) + EΘ(V )

)
(13)

and for V = U ′ one has EΘ(U − U ′) ≤ 4EΘ(U).
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c) In [0,∞] we always have

d2
ρ

(
L(U),L(V )

) ≤ 4
(
EΘ(U) + EΘ(V )

)
. (14)

d) Let (U ′, V ′) be an i.i.d. copy of (U, V ) and assume EΘ(U) + EΘ(V ) < ∞.
Then the following equality holds and all terms are finite

d2
ρ

(
L(U),L(V )

) = 2EΘ
(
U − V ′)− EΘ

(
U − U ′)− EΘ

(
V − V ′). (15)

Proof. Let us assume first that ρ is a finite Lévy measure, thus, Θ a bounded cndf.
We denote by U ′ an i.i.d. copy of U . Since L(U − U ′) is symmetric, we can use
Tonelli’s theorem to get∫ (

1 − fU(r)fU (r)
)
ρ(dr) =

∫ (
1 − E

(
eiU ·re−iU ′·r))ρ(dr)

=
∫

E
(
1 − cos

[(
U − U ′) · r]) ρ(dr)

= EΘ
(
U − U ′)

=
∫

Θ
(
u − u′)

PU ⊗ PU

(
du, du′). (16)

Now we consider an i.i.d. copy (U ′, V ′) of (U, V ) and use the above equality in
(11). This yields

d2
ρ

(
L(U),L(V )

)
=
∫ (

fU(r)fU (r) − fU(r)fV (r) − fV (r)fU (r) + fV (r)fV (r)
)
ρ(dr)

=
∫ (

fU(r)fU (r) − 1 + 2 − 2 Re
(
fU(r)fV (r)

)+ fV (r)fV (r) − 1
)
ρ(dr)

= 2EΘ
(
U − V ′)− EΘ

(
U − U ′)− EΘ

(
V − V ′). (17)

This proves (15) and, since dρ(L(U),L(V )) ≥ 0, also (12). Combining Part b) and
(15) yields (14), while (13) immediately follows from the subadditivity of a cndf (8).

If ρ is an arbitrary Lévy measure, its truncation ρε(dr) := 1(ε,∞)(|r|) ρ(dr) is a
finite Lévy measure and the corresponding cndf Θε is bounded. In particular, we have
a)–d) for ρε and Θε . Using monotone convergence we get

Θ(u) = sup
ε>0

Θε(u) = sup
ε>0

∫
|r|>ε

(1 − cos u · r) ρ(dr).

Again by monotone convergence we see that the assertions a)–c) remain valid
for general Lévy measures – if we allow the expressions to attain values in [0,∞].
Because of (13), the moment condition assumed in Part d) ensures that the limits

lim
ε→0

EΘ
(
U − V ′) = sup

ε>0
EΘ
(
U − V ′) etc.

are finite, and (15) carries over to the general situation.
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Remark 2.5. a) Since U and V play symmetric roles in (17) it is clear that

d2
ρ

(
L(U),L(V )

)
= EΘ

(
U − V ′)+ EΘ

(
V − U ′)− EΘ

(
U − U ′)− EΘ

(
V − V ′)

=
∫

Θ
(
u − u′) (2PU ⊗ PV − PU ⊗ PU − PV ⊗ PV )

(
du, du′). (18)

b) While dρ(L(U),L(V )) ∈ [0,∞] is always defined, the right-hand side of (15)
needs attention. If we do not assume the moment condition EΘ(U) + EΘ(V ) < ∞,
we still have

d2
ρ

(
L(U),L(V )

) = lim
ε→0

(
2EΘε

(
U − V ′)− Θε

(
U − U ′)− Θε

(
V − V ′)), (19)

but it is not clear whether the limits exist for each term.
The moment condition EΘ(U)+EΘ(V ) < ∞ is sharp in the sense that it follows

from EΘ(U − V ′) < ∞: Since U and V ′ are independent, Tonelli’s theorem entails
that EΘ(u − V ′) < ∞ for some u ∈ R

d . Using the symmetry and sub-additivity of√
Θ , see (8), we get Θ(V ′) ≤ 2(Θ(u−V ′)+Θ(u)), i.e. EΘ(V ′) < ∞; EΘ(U) < ∞

follows in a similar fashion.
c) Since a cndf Θ grows at most quadratically at infinity, see (9), it is clear that

E
(|U |2)+ E

(|V |2) < ∞ implies EΘ(U) + EΘ(V ) < ∞. (20)

One should compare this to the condition E|U |+E|V | < ∞ which ensures the finite-
ness of d2

ρ(L(U),L(V )), but not necessarily the finiteness of the terms appearing in
the representation (15).

d) As described at the beginning of this section, a measure of independence of
X1, . . . , Xn is given by dρ(L(X1, . . . , Xn),

⊗n
i=1 L(Xi)). This can be estimated by

empirical estimators for (15). For the 1-stable (i.e. Cauchy) cndf, see Table 1, this
direct approach to (multivariate) independence has recently been proposed by [21] –
but the exact estimators become computationally challenging even for small samples.
A further approximation recovers a computationally feasible estimation, resulting in
a loss of power compared with our approach, cf. [7].

It is worth mentioning that the metric dρ can be used to describe convergence in
distribution.

Lemma 2.6. Let ρ be a finite symmetric measure with full support, then dρ given
in (11) is a metric which characterizes convergence in distribution, i.e. for random
variables Xn, n ∈ N, and X one has

Xn
d−−−→

n→∞ X ⇐⇒ dρ

(
L(Xn),L(X)

) −−−→
n→∞ 0. (21)

The proof below shows that the implication “⇐” does not need the finiteness of
the Lévy measure ρ.

Proof. Convergence in distribution implies pointwise convergence of the character-
istic functions. Therefore, we see by dominated convergence and because of the ob-
vious estimates |fXn | ≤ 1 and |fX| ≤ 1 that

lim
n→∞

∫
Rd

|fXn(r) − fX(r)|2 ρ(dr) =
∫
Rd

lim
n→∞ |fXn(r) − fX(r)|2 ρ(dr) = 0.
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Conversely, assume that limn→∞ dρ(L(Xn),L(X)) = 0. If we interpret this as
convergence in L2(ρ), we see that there is a Lebesgue a.e. convergent subsequence
fXn(k)

→ fX; since fXn(k)
and fX are characteristic functions, this convergence is

already pointwise, hence locally uniform, see Sasvári [27, Thm. 1.5.2]. By Lévy’s
continuity theorem, this entails the convergence in distribution of the corresponding
random variables. Since the limit does not depend on the subsequence, the whole
sequence must converge in distribution.

2.3 An elementary estimate for log-moments

Later on we need certain log-moments of the norm of a random vector. The following
lemma allows us to formulate these moment conditions in terms of the coordinate
processes.

Lemma 2.7. Let X, Y be one-dimensional random variables and ε > 0. Then
E log1+ε(1 ∨ √

X2 + Y 2) is finite if, and only if, the moments E log1+ε(1 + X2) and
E log1+ε(1 + Y 2) are finite.

Proof. Assume that E log1+ε(1 + X2) + E log1+ε(1 + Y 2) < ∞. Since

1 ∨
√

X2 + Y 2 =
√(

X2 + Y 2
) ∨ 1 ≤

√(
1 + X2

)(
1 + Y 2

)
,

we can use the elementary estimate (a + b)1+ε ≤ 2ε(a1+ε + b1+ε), a, b ≥ 0, to get

E log1+ε
(
1 ∨
√

X2 + Y 2
) ≤ E

[(
1

2
log
(
1 + X2)+ 1

2
log
(
1 + Y 2))1+ε]

≤ 1

2
E log1+ε

(
1 + X2)+ 1

2
E log1+ε

(
1 + Y 2).

Conversely, assume that E log1+ε(1 ∨ √
X2 + Y 2) < ∞. Then we have

E log1+ε
(
1 + X2)

= E
[
1{|X|<1} log1+ε

(
1 + X2)]+ E

[
1{|X|≥1} log1+ε

(
1 + X2)]

≤ log1+ε 2 + E log1+ε
[(

2X2) ∨ 2
]

≤ log1+ε 2 + E
[(

log 2 + log
(
1 ∨ X2))1+ε]

≤ (1 + 2ε
)

log1+ε 2 + E log1+ε
(
1 ∨ (X2 + Y 2))

≤ (1 + 2ε
)

log1+ε 2 + 21+ε
E log1+ε

(
1 ∨
√

X2 + Y 2
)
,

and E log1+ε(1 + Y 2) < ∞ follows similarly.

3 Generalized distance covariance

Székely et al. [37, 34] introduced distance covariance for two random variables X

and Y with values in R
m and R

n as

V2(X, Y ; w) :=
∫
Rn

∫
Rm

∣∣f(X,Y )(x, y) − fX(x)fY (y)
∣∣2 w(x, y) dx dy,
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with the weight w(x, y) = wα,m(x)wα,n(y) where wα,m(x) = c(p, α)|x|−m−α ,
m, n ∈ N, α ∈ (0, 2). It is well known from the study of infinitely divisible distribu-
tions (see also Székely & Rizzo [33]) that wα,m(x) is the density of an m-dimensional
α-stable Lévy measure, and the corresponding cndf is just |x|α .

We are going to extend distance covariance to products of Lévy measures.

Definition 3.1. Let X and Y be random variables with values in Rm and Rn and
ρ := μ ⊗ ν where μ and ν are symmetric Lévy measures on R

m \ {0} and R
n \ {0},

both having full support. The generalized distance covariance V (X, Y ) is defined as

V 2(X, Y ) =
∫∫

Rm+n

|f(X,Y )(s, t) − fX(s)fY (t)|2 μ(ds) ν(dt). (22)

By definition, V (X, Y ) = ‖f(X,Y ) −fX ⊗fY ‖L2(ρ) and, in view of the discussion
in Section 2.2, we have

V (X, Y ) = dρ

(
L(U),L(V )

)
, (23)

where U := (X1, Y1), V := (X2, Y3) and (X1, Y1), (X2, Y2), (X3, Y3) are i.i.d.
copies of (X, Y ).3 It is clear that the product measure ρ inherits the properties “sym-
metry” and “full support” from its marginals μ and ν.

From the discussion following Definition 2.3 we immediately get the next lemma.

Lemma 3.2. Let V 2(X, Y ) be generalized distance covariance of the m- resp. n-
dimensional random variables X and Y , cf. (22). The random variables X and Y are
independent if, and only if, V 2(X, Y ) = 0.

3.1 Generalized distance covariance with finite Lévy measures
Fix the dimensions m, n ∈ N, set d := m + n, and assume that the measure ρ is of
the form ρ = μ ⊗ ν where μ and ν are finite symmetric Lévy measures on R

m \ {0}
and R

n \ {0}, respectively. If we integrate the elementary estimates

1 ∧ |s|2 ≤ 1 ∧ (|s|2 + |t |2) ≤ (1 ∧ |s|2)+ (1 ∧ |t2|),
1 ∧ |t |2 ≤ 1 ∧ (|s|2 + |t |2) ≤ (1 ∧ |s|2)+ (1 ∧ |t2|),

with respect to ρ(ds, dt) = μ(ds) ν(dt), it follows that ρ is a Lévy measure if μ and
ν are finite Lévy measures.4 We also assume that μ and ν, hence ρ, have full support.

Since V (X, Y ) is a metric in the sense of Section 2.2 we can use all results from
the previous section to derive various representations of generalized distance covari-
ance.

We write Φ, Ψ and Θ for the bounded cndfs induced by μ(ds), ν(dt), and
ρ(dr) = μ(ds) ν(dt),

Φ(x) =
∫
Rm

(1 − cos x · s) μ(ds), Ψ (y) =
∫
Rn

(1 − cos y · t) ν(dt)

and Θ(x, y) = Θ(u) =
∫
Rm+n

(1 − cos u · r) ρ(dr), (24)

3This is a convenient way to say that L(U) = L((X, Y )) while L(V ) = L(X) ⊗ L(Y ).
4This argument also shows that the product measure ρ can only be a Lévy measure, if the marginals

are finite measures. In this case, ρ is itself a finite measure.
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with u = (x, y) ∈ R
m+n and r = (s, t) ∈ R

m+n. The symmetry in each variable and
the elementary identity

1

2

[
1− cos(x · s − y · t) + 1 − cos(x · s + y · t)

]
= (1 − cos y · t) + (1 − cos x · s) − (1 − cos x · s)(1 − cos y · t)

yield the representation

Θ(x, y) = Ψ (y)μ
(
R

m
)+ Φ(x)ν

(
R

n
)− Φ(x)Ψ (y). (25)

We can now easily apply the results from Section 2.2. In order to do so, we con-
sider six i.i.d. copies (Xi, Yi), i = 1, . . . , 6, of the random vector (X, Y ), and set
U := (X1, Y1), V := (X2, Y3), U

′ := (X4, Y4), V
′ := (X5, Y6). This is a convenient

way to say that

L(U) = L
(
U ′) = L

(
(X, Y )

)
and L(V ) = L

(
V ′) = L(X) ⊗ L(Y )

and U,U ′, V and V ′ are independent.5

The following formulae follow directly from Proposition 2.4.d) and Remark 2.5.a).

Proposition 3.3. Let X and Y be random variables with values in R
m and R

n and
assume that μ, ν are finite symmetric Lévy measures on R

m \ {0} and R
n \ {0} with

full support. Generalized distance covariance has the following representations

V 2(X, Y ) = d2
ρ

(
L(U),L(V )

)
(26)

= 2EΘ
(
U − V ′)− EΘ

(
U − U ′)− EΘ

(
V − V ′) (27)

= 2EΘ(X1 − X5, Y1 − Y6) − EΘ(X1 − X4, Y1 − Y4)

− EΘ(X2 − X5, Y3 − Y6) (28)

= EΦ(X1 − X4)Ψ (Y1 − Y4) + EΦ(X2 − X5)EΨ (Y3 − Y6)

− 2EΦ(X1 − X5)Ψ (Y1 − Y6). (29)

The latter equality follows from (25) since the terms depending only on one of the
variables cancel as the random variables (Xi, Yi) are i.i.d. This gives rise to various
further representations of V (X, Y ).

Corollary 3.4. Let (X, Y ), (Xi, Yi), Φ,Ψ and μ, ν be as in Proposition 3.3. Gener-
alized distance covariance has the following representations

V 2(X, Y )

= EΦ(X1 − X4)Ψ (Y1 − Y4) − 2EΦ(X1 − X2)Ψ (Y1 − Y3)

+ EΦ(X1 − X2)EΨ (Y3 − Y4) (30)

= E
[
Φ(X1 − X4) · {Ψ (Y1 − Y4) − 2Ψ (Y1 − Y3) + Ψ (Y2 − Y3)

}]
(31)

5In other words: in an expression of the form f (Xi, Xj , Yk, Yl) all random variables are independent if,
and only if, all indices are different. As soon as two indices coincide, we have (some kind of) dependence.
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= E
[{

Φ(X1 − X4) − Φ(X4 − X2)
} · {Ψ (Y4 − Y1) − Ψ (Y1 − Y3)

}]
(32)

= E
[{

Φ(X1 − X4) − E
(
Φ(X4 − X1) | X4

)}
· {Ψ (Y4 − Y1) − E

(
Ψ (Y1 − Y4) | Y1

)}]
. (33)

Corollary 3.4 shows, in particular, that V (X, Y ) can be written as a function of
(Xi, Yi), i = 1, . . . , 4,

V 2(X, Y ) = E
[
g
(
(X1, Y1), . . . , (X4, Y4)

)]
(34)

for an appropriate function g; for instance, the formula (30) follows for

g
(
(x1, y1), . . . , (x4, y4)

)
= Φ(x1 − x4)Ψ (y1 − y4) − 2Φ(x1 − x2)Ψ (y1 − y3) + Φ(x1 − x2)Ψ (y3 − y4).

Corollary 3.5. Let (X, Y ), (Xi, Yi), Φ,Ψ and μ, ν be as in Proposition 3.3 and write

Φ = Φ(X1 − X4) − E
(
Φ(X4 − X1) | X4

)
− E

(
Φ(X4 − X1) | X1

)+ EΦ(X1 − X4),

Ψ = Ψ (Y1 − Y4) − E
(
Ψ (Y4 − Y1) | Y4

)
− E

(
Ψ (Y4 − Y1) | Y1

)+ EΨ (Y1 − Y4),

for the “doubly centered” versions of Φ(X1 − X4) and Ψ (Y1 − Y4). Generalized
distance covariance has the following representation

V 2(X, Y ) = E[Φ · Ψ ]. (35)

Proof. Denote by Φ = Φ(X1 −X4)−E(Φ(X4 −X1) | X4) and Ψ = Ψ (Y1 −Y4)−
E(Ψ (Y4 − Y1) | Y1) the centered random variables appearing in (33). Clearly,

Φ = Φ − E(Φ | X1) and Ψ = Ψ − E(Ψ | Y4).

Thus,

E[Φ · Ψ ] = E
[(

Φ − E(Φ | X1)
) · (Ψ − E(Ψ | Y4)

)]
= E[Φ · Ψ ] + E

[
E(Φ | X1) · E(Ψ | Y4)

]
− E

[
E(Φ | X1) · Ψ

]− E
[
Φ · E(Ψ | Y4)

]
.

Since X1 and Y4 are independent, we have

E
[
E(Φ | X1) · E(Ψ | Y4)

] = E
[
E(Φ | X1)

] · E[E(Ψ | Y4)
] = E[Φ] · E[Ψ ] = 0.

Using the tower property and the independence of (X1, Y1) and Y4 we get

E
[
E(Φ | X1) · Ψ ] = E

[
E
[
E(Φ | X1) | Y1, Y4

] · Ψ
]

= E
[
E
[
E(Φ | X1) | Y1

] · Ψ ] = 0,

where we use, for the last equality, that Ψ is orthogonal to the L2-space of Y1-
measurable functions. In a similar fashion we see E[Φ · E(Ψ | Y4)] = 0, and the
assertion follows because of (33).
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In Section 4 we will encounter further representations of the generalized distance
covariance if X and Y have discrete distributions with finitely many values, as it is
the case for empirical distributions.

3.2 Generalized distance covariance with arbitrary Lévy measures
So far, we have been considering finite Lévy measures μ, ν and bounded cndfs Φ

and Ψ (24). We will now extend our considerations to products of unbounded Lévy
measures. The measure ρ := μ ⊗ ν satisfies the integrability condition∫∫
Rm+n

(
1 ∧ |x|2)(1 ∧ |y|2) ρ(dx, dy) =

∫
Rm

(
1 ∧ |x|2)μ(dx)

∫
Rn

(
1 ∧ |y|2) ν(dy) < ∞. (36)

Other than in the case of finite marginals, ρ is no longer a Lévy measure, see the
footnote on page 364. Thus, the function Θ defined in (24) need not be a cndf and we
cannot directly apply Proposition 2.4; instead we need the following result ensuring
the finiteness of V (X, Y ).

Lemma 3.6. Let X,X′ be i.i.d. random variables on R
m and Y, Y ′ be i.i.d. random

variables on R
n; μ and ν are symmetric Lévy measures on R

m and R
n with full

support and with corresponding cndfs Φ and Ψ as in (24). Then

V 2(X, Y ) ≤ EΦ
(
X − X′) · EΨ

(
Y − Y ′) ≤ 16EΦ(X) · EΨ (Y ). (37)

Proof. Following Székely et al. [37, p. 2772] we get

|fX,Y (s, t) − fX(s)fY (t)|2 = ∣∣E((eiX·s − fX(s)
)(

eiY ·t − fY (t)
))∣∣2

≤ [E(|eiX·s − fX(s)||eiY ·t − fY (t)|)]2
≤ E

[|eiX·s − fX(s)|2] · E[|eiY ·t − fY (t)|2] (38)

and

E
[|eiX·s − fX(s)|2] = E

[(
eisX − fX(s)

)(
e−isX − fX(s)

)]
= 1 − |fX(s)|2 = 1 − fX(s)fX(s). (39)

Using (16) for ρ = μ, Θ = Φ, U = X and (13) for Θ = Φ, U = X, V = X′ shows∫
Rm

E
[|eiX·s − fX(s)|2]μ(ds) = EΦ

(
X − X′) ≤ 4EΦ(X),

and an analogous argument for ν and Y yields the bound (37).

Looking at the various representations (29)–(33) of V (X, Y ) it is clear that these
make sense as soon as all expectations in these expressions are finite, i.e. some mo-
ment condition in terms of Φ and Ψ should be enough to ensure the finiteness of
V (X, Y ) and all terms appearing in the respective representations.

In order to use the results of the previous section we fix ε > 0 and consider the
finite symmetric Lévy measures

με(ds) := |s|2
ε2 + |s|2 μ(ds) and νε(dt) := |t |2

ε2 + |t |2 ν(dt), (40)
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and the corresponding cndfs Φε and Ψε given by (24); the product measure ρε :=
με ⊗ νε is a finite Lévy measure and the corresponding cndf Θε is also bounded (it
can be expressed by Φε and Ψε through the formula (25)).

This allows us to derive the representations (29)–(33) for each ε > 0 and with
Φε and Ψε . Since we have Φ = supε Φε and Ψ = supε Ψε , we can use monotone
convergence to get the representations for the cndfs Φ and Ψ with Lévy measures
μ and ν, respectively. Of course, this requires the existence of certain (mixed) Φ-Ψ
moments of the random variables (X, Y ).

Theorem 3.7. Let μ and ν be symmetric Lévy measures on R
m \ {0} and R

n \ {0}
with full support and corresponding cndfs Φ and Ψ given by (24). For any random
vector (X, Y ) with values in R

m+n satisfying the following moment condition

EΦ(X) + EΨ (Y ) < ∞, (41)

the generalized distance correlation V (X, Y ) is finite. If additionally

E
(
Φ(X)Ψ (Y )

)
< ∞, (42)

then also the representations (29)–(33) hold with all terms finite.6

Proof. We only have to check the finiteness. Using Lemma 3.6, we see that (41)
guarantees that V (X, Y ) < ∞. The finiteness of (all the terms appearing in) the
representations (29)–(33) follows from the monotone convergence argument, since
the moment condition (42) ensures the finiteness of the limiting expectations.

Remark 3.8. a) Using the Hölder inequality the following condition implies (41) and
(42):

EΦp(X) + EΨ q(Y ) < ∞ for some p, q > 1 with
1

p
+ 1

q
= 1. (43)

If one of Ψ or Φ is bounded then (41) implies (42), and if both are bounded then the
expectations are trivially finite.

Since continuous negative definite functions grow at most quadratically, we see
that (41) and (42) also follow if

E|X|2p + E|Y |2q < ∞ for some p, q > 1 with
1

p
+ 1

q
= 1. (44)

b) A slightly different set-up was employed by Lyons [23]: If the cndfs Φ and Ψ

are subadditive, then the expectation in (32) is finite. This is a serious restriction on
the class of cndfs since subadditivity means that Φ and Ψ can grow at most linearly
at infinity, whereas general cndfs grow at most quadratically, cf. (9). Note, however,
that square roots of real cndfs are always subadditive, cf. (7).

6As before, we denote in these formulae by (Xi , Yi ), i = 1, . . . , 6, i.i.d. copies of (X, Y ).
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4 Estimating generalized distance covariance

Let (xi, yi)i=1,...,N be a sample of (X, Y ) and denote by (X̂(N), Ŷ (N)) the random
variable which has the corresponding empirical distribution, i.e. the uniform distri-
bution on (xi, yi)i=1,...,N ; to be precise, repeated points will have the corresponding
multiple weight. By definition, (X̂(N), Ŷ (N)) is a bounded random variable and for
i.i.d. copies with L((X̂

(N)
i , Ŷ

(N)
i )) = L((X̂(N), Ŷ (N))) for i = 1, . . . , 4, we have

using (34)

E
[
g
((

X̂
(N)
1 , Ŷ

(N)
1

)
, . . . ,

(
X̂

(N)
4 , Ŷ

(N)
4

))]
=
∫
Rn\{0}

∫
Rm\{0}

∣∣f(X̂(N),Ŷ (N))(s, t) − fX̂(N)(s)fŶ (N) (t)
∣∣2 μ(ds) ν(dt). (45)

The formulae (27)–(33) hold, in particular, for the empirical random variables
(X̂(N), Ŷ (N)), and so we get

E
[
g
((

X̂
(N)
1 , Ŷ

(N)
1

)
, . . . ,

(
X̂

(N)
4 , Ŷ

(N)
4

))]
= 1

N4

N∑
i,j,k,l=1

g
(
(xi, yi), (xj , yj ), (xk, yk), (xl, yl)

)
(46)

= 1

N4

N∑
i,j,k,l=1

[
Φ(xi − xk)Ψ (yi − yk) − 2Φ(xi − xj )Ψ (yi − yl)

+ Φ(xi − xj )Ψ (yk − yl)
]

(47)

= 1

N2

N∑
i,k=1

Φ(xi − xk)Ψ (yi − yk) − 2

N3

N∑
i,j,l=1

Φ(xi − xj )Ψ (yi − yl)

+ 1

N2

N∑
i,j=1

Φ(xi − xj )
1

N2

N∑
k,l=1

Ψ (yk − yl) (48)

=
(

1

N2 − 2

N3 + 2

N4

) N∑
i,k=1

distinct

Φ(xi − xk)Ψ (yi − yk)

+
(

4

N4 − 2

N3

) N∑
i,j,l=1
distinct

Φ(xi − xj )Ψ (yi − yl)

+ 1

N4

N∑
i,j,k,l=1
distinct

Φ(xi − xj )Ψ (yk − yl). (49)

The sum in (46) is – for functions g which are symmetric under permutations of their
variables – a V-statistic.

Definition 4.1. The estimator NV 2 := NV 2((x1, y1), . . . , (xN , yN)) of V 2(X, Y ) is
defined by (47).
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In abuse of notation, we also write NV 2((x1, . . . , xN), (y1, . . . , yN)) and
NV 2(x, y) with x = (x1, . . . , xN), y = (y1, . . . , yN) instead of the precise
NV 2((x1, y1), . . . , (xN , yN)).

Since all random variables are bounded, we could use any of the representations
(46)–(49) to define an estimator. A computationally feasible representation is given
in the following lemma.

Lemma 4.2. The estimator NV 2 of V 2(X, Y ) has the following representation using
matrix notation:

NV 2((x1, y1), . . . , (xN , yN)
) = 1

N2 trace
(
B�A

) = 1

N2

N∑
k,l=1

AklBkl, (50)

where
A = C�aC, a = (Φ(xk − xl)

)
k,l=1,..,N

,

B = C�bC, b = (Ψ (yk − yl)
)
k,l=1,..,N

,
(51)

and C = I − 1
N
1 with 1 = (1)k,l=1,...,N and I = (δjk)j,k=1,...,N .

Remark 4.3. If Φ(x) = |x| and Ψ (y) = |y| the matrices a and b in (51) are Eu-
clidean distance matrices. For general cndfs Φ and Ψ , the matrices −a and −b are
conditionally positive definite (see Theorem 2.1), and A, B are positive definite. This
gives a simple explanation as to why the right-hand side of (50) is positive.

Proof of Lemma 4.2. By definition,

trace
(
b�a

) =
N∑

i,j=1

aij bij =
N∑

i,j=1

Φ(xi − xj )Ψ (yi − yj ), (52)

trace
(
b�1a

) =
N∑

i,j,k=1

aij bik =
N∑

i,j,k=1

Φ(xi − xj )Ψ (yi − yk), (53)

trace
(
1b�1a

) =
N∑

i,j,k,l=1

aij bkl =
N∑

i,j=1

Φ(xi − xj )

N∑
k,l=1

Ψ (yk − yl), (54)

and this allows us to rewrite (48) as

NV 2 = 1

N2 trace
(
b�a

)− 2

N3 trace
(
b�1a

)+ 1

N4 trace
(
1b�1a

)
. (55)

Observe that C = C� and CC� = C. Using this and the fact that the trace is invariant
under cyclic permutations, we get

trace
(
B�A

) = trace
(
C�b�CC�aC

)
= trace

(
CC�b�CC�a

) = trace
(
Cb�Ca

)
.

Plugging in the definition of C now gives
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trace
(
B�A

) = trace
((

b� − 1
N
1b�)(a − 1

N
1a
))

= trace
(
b�a

)− 1
N

trace
(
1b�a

)− 1
N

trace
(
b�1a

)+ 1
N2 trace

(
1b�1a

)
= trace

(
b�a

)− 2
N

trace
(
b�1a

)+ 1
N2 trace

(
1b�1a

)
.

For the last equality we use that a and b are symmetric matrices.

We will now show that NV 2 is a consistent estimator for V 2(X, Y ).

Theorem 4.4 (Consistency). Let (Xi, Yi)i=1,...,N be i.i.d. copies of (X, Y ) and write
X := (X1, . . . , XN), Y := (Y1, . . . , YN). If E[Φ(X) + Ψ (Y )] < ∞ holds, then

NV 2(X,Y ) −−−−→
N→∞ V 2(X, Y ) a.s. (56)

Proof. The moment condition E[Φ(X) + Ψ (Y )] < ∞ ensures that the general-
ized distance covariance V 2(X, Y ) is finite, cf. Lemma 3.6. Define με and νε as in
(40), and write V 2

ε (X, Y ) for the corresponding generalized distance covariance and
NV 2

ε (X,Y ) for its estimator. By the triangle inequality we obtain

|V 2(X, Y ) − NV 2(X,Y )|
≤ |V 2(X, Y ) − V 2

ε (X, Y )| + |V 2
ε (X, Y ) − NV 2

ε (X,Y )|
+ |NV 2

ε (X,Y ) − NV 2(X,Y )|.
We consider the three terms on the right-hand side separately. The first term vanishes
as ε → 0, since

lim
ε→0

V 2
ε (X, Y ) = V 2(X, Y )

by monotone convergence. For each ε > 0, the second term converges to zero as
N → ∞, since

lim
N→∞

NV 2
ε (X,Y ) = V 2

ε (X, Y ) a.s.

by the strong law of large numbers (SLLN) for V -statistics; note that this is applicable
since the functions Φε and Ψε are bounded (because of the finiteness of the Lévy
measures με and νε).

For the third term we set με = μ−με , νε = ν −νε and write Φε , Ψ ε for the cor-
responding continuous negative definite functions. Lemma 3.6 yields the inequality

|NV 2
ε

(
(x1, y1), . . . , (xN , yN)

)− NV 2((x1, y1), . . . , (xN , yN)
)|

=
∫∫ ∣∣fX̂(N),Ŷ (N) (s, t) − fX̂(N)(s)fŶ (N) (t)

∣∣2με(ds) νε(dt)

≤ 16EΦε
(
X̂(N)

) · EΨ ε
(
Ŷ (N)

) = 16
N∑

i=1

1

N
Φε(xi) ·

N∑
i=1

1

N
Ψ ε(yi).

From the representation (24) we know that Φε(x) ≤ Φ(x), hence also EΦε(X) ≤
EΦ(X) and this is finite by assumption. Therefore, we can use monotone convergence
to conclude that limε→0 EΦε(X) = 0. Thus, the classical SLLN applies and proves

lim
ε→0

lim sup
N→∞

|NV 2
ε (X,Y ) − NV 2(X,Y )| ≤ lim

ε→0
EΦε(X) · EΨ ε(Y ) = 0 a.s.
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Next we study the behaviour of the estimator under the hypothesis of indepen-
dence.

Theorem 4.5. If X and Y are independent and satisfy the moment conditions

E
[
Φ(X)+Ψ (Y )

]
< ∞ and E

[
log1+ε

(
1+|X|2)+ log1+ε

(
1+|Y |2)] < ∞ (57)

for some ε > 0, then

N · NV 2(X,Y )
d−−−−→

N→∞

∫∫
|G(s, t)|2 μ(ds) ν(dt) = ‖G‖2

μ⊗ν (58)

in distribution, where (G(s, t))(s,t)∈Rm+n is a complex-valued Gaussian random field
with E(G(s, t)) = 0 and

Cov
(
G(s, t),G

(
s′, t ′

))
= (fX

(
s − s′)− fX(s)fX

(
s′)) · (fY

(
t − t ′

)− fY (t)fY

(
t ′
))

. (59)

Proof. Let X, Y and G be as above and let X′, Xi and Y ′, Yi (i ∈ N) be independent
random variables with laws L(X) and L(Y ), respectively. Define for N ∈ N, s ∈ R

m,
t ∈ R

n

ZN(s, t) := 1

N

N∑
k=1

eis·Xk+it ·Yk − 1

N2

N∑
k,l=1

eis·Xk+it ·Yl . (60)

Then
N · NV 2(X,Y ) = ‖√NZN‖2

μ⊗ν. (61)

The essential idea is to show that (on an appropriate space)
√

NZN
d−→ G and then to

apply the continuous mapping theorem.
Since X and Y are independent, we have

E
(
ZN(s, t)

) = 0, (62)

E
(
ZN(s, t)ZN

(
s′, t ′

))
= N−1

N2

(
fX

(
s − s′)− fX(s)fX

(
s′))(fY

(
t − t ′

)− fY (t)fY

(
t ′
))

, (63)

E|√NZN(s, t)|2 = N−1
N

(
1 − |fX(s)|2)(1 − |fY (t)|2). (64)

The first identity (62) is obvious and (64) follows from (63) if we set s = s′ and
t = t ′. The proof of (63) is deferred to Lemma 4.6 following this proof.

The convergence
√

NZN
d−→ G in CT := (C(KT ), ‖.‖KT

) with KT = {x ∈
R

m+n : |x| ≤ T }, i.e. in the space of continuous functions on KT equipped with
the supremum norm, holds if E log1+ε(

√|X|2 + |Y |2 ∨ 1) < ∞, see Csörgő [14,
Thm. on p. 294] or Ushakov [38, Sec. 3.7]. This log-moment condition is equivalent
to the log-moment condition (57), see Lemma 2.7.

In fact, the result in [14] is cast in a more general setting, proving the convergence
for vectors (X1, . . . , XN), but only one-dimensional marginals are considered. The
proof for multidimensional marginals is very similar, so we will only give an outline:
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Let FZ denote the distribution function of the random variable Z and NFz the
empirical distribution of a sample z1, . . . , zN ; if the sample is replaced by N inde-
pendent copies of Z, we write NFZ . Using this notation and the independence of X

and Y yields the representation

√
NZN(s, t) = √

N

(
1

N

N∑
k=1

eis·Xk+it ·Yk − f(X,Y )(s, t)

)

− √
N

(
1

N

N∑
k=1

eis·Xk − fX(s)

)(
1

N

N∑
l=1

eit ·Yl

)

− √
N

(
1

N

N∑
l=1

eit ·Yl − fY (t)

)
fX(s)

=
∫

ei(s·x+t ·y) d
(√

N
(

NF(X,Y )(x, y) − F(X,Y )(x, y)
))

−
∫

eis·x d
(√

N
(

NFX(x) − FX(x)
)) ·
(

1

N

N∑
l=1

eit ·Yl

)
−
∫

eit ·y d
(√

N
(

NFY (y) − FY (y)
)) · fX(s). (65)

Note that for bivariate distributions the integrals with respect to a single variable re-
duce to integrals with respect to the corresponding marginal distribution, e.g.∫
Rm+n h(x)dF(X,Y )(x, y) = ∫

Rm h(x)dFX(x). Therefore, a straightforward calcula-
tion shows that

√
NZN(s, t) equals∫

g(x, y) d
(√

N
(

NF(X,Y )(x, y) − F(X,Y )(x, y)
))

(66)

with the integrand

g(x, y) := ei(s·x+t ·y) − eis·x
[

1
N

N∑
l=1

eit ·Yl

]
− fX(t)eit ·y.

Following Csörgő [13] we obtain for N → ∞ the limit∫
Rm+n

(
eis·x+it ·y − eis·xfY (t) − fX(s)eit ·y)dB(x, y), (67)

where B is a Brownian bridge; as in [13, Eq. (3.2)] one can show that it is a Gaussian
process indexed by R

m+n satisfying

E
(
B(x, y)

) = 0, (68)

E
(
B(x, y)B

(
x′, y′)) = P

(
X ≤ x ∧ x′, Y ≤ y ∧ y′)
− P(X ≤ x, Y ≤ y)P

(
X ≤ x′, Y ≤ y′), (69)

lim
x→−∞ B(x, y) = lim

y→−∞ B(x, y) = lim
(x,y)→(∞,∞)

B(x, y) = 0. (70)
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The limit (67) is continuous if, and only if, a rather complicated tail condition is
satisfied [13, Thm. 3.1]; Csörgő [14, p. 294] shows that this condition is implied by

the simpler moment condition (57), cf. Lemma 2.7. Thus,
√

NZN
d−→ G in CT :=

(C(KT ), ‖.‖KT
).

Pick ε > 0, set δ := 1/ε and define

με,δ(A) := μ
(
A ∩ {ε ≤ |s| < δ}) and με,δ := μ − με,δ; (71)

the measures νε,δ and νε,δ are defined analogously. Note that∣∣‖h‖με,δ⊗νε,δ − ‖h′‖με,δ⊗νε,δ

∣∣2 ≤ ‖h − h′‖2
με,δ⊗νε,δ

=
∫

|h − h′|2 dμε,δ ⊗ νε,δ

≤ ‖h − h′‖2
KT

· με,δ

(
R

n
) · νε,δ

(
R

m
)

(72)

shows that h �→ ‖h‖2
με,δ⊗νε,δ

is continuous on CT . Thus, the continuous mapping
theorem implies

‖√NZN‖2
με,δ⊗νε,δ

d−−−−→
N→∞ ‖G‖2

με,δ⊗νε,δ
. (73)

By the triangle inequality we have∣∣N · NV 2(X,Y ) − ‖G‖2
μ⊗ν

∣∣ ≤ ∣∣N · NV 2(X,Y ) − ‖√NZN‖2
με,δ⊗νε,δ

∣∣
+ ∣∣‖√NZN‖2

με,δ⊗νε,δ
− ‖G‖2

με,δ⊗νε,δ

∣∣
+ ∣∣‖G‖2

με,δ⊗νε,δ
− ‖G‖2

μ⊗ν

∣∣. (74)

Thus, it remains to show that the first and last terms on the right-hand side vanish
uniformly as ε → 0. Note that

‖G‖2
μ⊗ν − ‖G‖2

με,δ⊗νε,δ

= ‖G‖2
με,δ⊗νε,δ + ‖G‖2

με,δ⊗νε,δ + ‖G‖2
με,δ⊗νε,δ

−−→
ε→0

0 a.s. (75)

This follows from the dominated convergence theorem, since

E
(‖G‖2

μ⊗ν

) = ∥∥1 − |fX|2∥∥2
μ

· ∥∥1 − |fY |2∥∥2
ν

= EΦ
(
X − X′) · EΨ

(
Y − Y ′) < ∞. (76)

Moreover,

E
(∣∣N · NV 2(X,Y ) − ‖√NZN‖2

με,δ⊗νε,δ

∣∣)
= E‖√NZN‖2

με,δ⊗νε,δ + E‖√NZN‖2
με,δ⊗νε,δ + E‖√NZN‖2

με,δ⊗νε,δ
(77)

and for the first term we have∥∥E(|√NZN |2)∥∥2
με,δ⊗νε,δ = (N−1

N

)2 · ∥∥1 − |fX|2∥∥2
με,δ · ∥∥1 − |fY |2∥∥2

νε,δ −−→
ε→0

0 (78)

by dominated convergence, since we have ‖1 − |fX|2‖2
με,δ ≤ EΦ(X − X′) < ∞ and

‖1 − |fY |2‖2
νε,δ ≤ EΨ (Y − Y ′) < ∞. The other summands are dealt with similarly.

The result follows since the convergence in (75) and (78) is uniform in N .
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We still have to prove (63).

Lemma 4.6. In the setting of (the proof of ) Theorem 4.5 we have

E
(
ZN(s, t)ZN

(
s′, t ′

))
= N−1

N2

(
fX

(
s − s′)− fX(s)fX

(
s′))(fY

(
t − t ′

)− fY (t)fY

(
t ′
))

.

Proof. Observe that

ZN(s, t) = 1

N

N∑
k=1

eis·Xk+it ·Yk − 1

N2

N∑
k,l=1

eis·Xk+it ·Yl

= 1

N

N∑
k=1

(
eis·Xk − 1

N

N∑
l=1

eis·Xl

)(
eit ·Yk − 1

N

N∑
l=1

eit ·Yl

)
.

Using this formula and the independence of the random variables (X1, . . . , XN) and
(Y1, . . . , YN) yields

E
(
ZN(s, t)ZN

(
s′, t ′

))
= 1

N2

N∑
j,k=1

E

[(
eis·Xk − 1

N

N∑
l=1

eis·Xl

)(
eit ·Yk − 1

N

N∑
l=1

eit ·Yl

)

×
(

e−is′·Xj − 1
N

N∑
l=1

e−is′·Xl

)(
e−it ′·Yj − 1

N

N∑
l=1

e−it ′·Yl

)]

= 1

N2

N∑
j,k=1

E

[(
eis·Xk − 1

N

N∑
l=1

eis·Xl

)(
e−is′·Xj − 1

N

N∑
l=1

e−is′·Xl

)]

× E

[(
eit ·Yk − 1

N

N∑
l=1

eit ·Yl

)(
e−it ′·Yj − 1

N

N∑
l=1

e−it ′·Yl

)]
.

A lengthy but otherwise straightforward calculation shows that

E

[(
eis·Xk − 1

N

N∑
l=1

eis·Xl

)(
e−is′·Xj − 1

N

N∑
l=1

e−is′·Xl

)]
= E

(
eis·Xk−is′·Xj

)− N − 1

N
fX(s)fX

(
s′)− 1

N
fX

(
s − s′),

and an analogous formula holds for the Yi . Summing over k, j = 1, . . . , N and
distinguishing between the cases k = j and k �= j finally gives

E
(
ZN(s, t)ZN

(
s′, t ′

))
=
(

(N − 1)2

N3 + N − 1

N3

)(
fX

(
s − s′)− fX(s)fX

(
s′))(fY

(
t − t ′

)− fY (t)fY

(
t ′
))

,

and the lemma follows.
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Remark 4.7. a) If we symmetrize the expression for N ·NV 2 in a suitable way, we can
transform it into a degenerate U-statistic. For random variables with bounded second
moments we can then use classical results to show the convergence to

∑∞
k=1 λkX

2
k ,

where λk are some coefficients and Xk are i.i.d. standard normal random variables,
see e.g. Serfling [32, Sec. 5.5.2] or Witting & Müller-Funk [39, Satz 7.183]. In order
to relax the bounds on the moments one would have to show convergence of the
corresponding λk .

b) The log-moment condition can be slightly relaxed, but this leads to a much
more involved expression, cf. Csörgő [14], and for the case ε = 0 a counterexample is
known, see Csörgő [12, p. 133]. Unfortunately, the convergence of the characteristic
functions is stated without any moment condition in Murata [24, Thm. 4] which is
based on Feuerverger & Mureika [16, Thm. 3.1].

Corollary 4.8. Assume that X, Y are non-degenerate with EΦ(X) + EΨ (Y ) < ∞
and set

aN := 1

N2

N∑
i,k=1

Φ(Xi − Xk) and bN := 1

N2

N∑
j,l=1

Ψ (Yj − Yl).

a) If X, Y are independent random variables satisfying the log-moment conditions
E log1+ε(1 + |X|2) < ∞ and E log1+ε(1 + |Y |2) < ∞ for some ε > 0, then

N · NV 2

aNbN

d−−−−→
N→∞

∞∑
k=1

αkX
2
k , (79)

where Xi are independent standard normal random variables and the coeffi-
cients αk satisfy αk ≥ 0 with

∑∞
k=1 αk = 1.

b) If the random variables X and Y are not independent, then

N · NV 2

aNbN

d−−−−→
N→∞ ∞. (80)

Proof. We can almost literally follow the proof of Corollary 2 and Theorem 6 in
Székely et al. [37]. Just note that aNbN is an estimator for EΦ(X −X′) ·EΨ (Y −Y ′)
and this is, by (64) and (76), the limit of the expectation of the numerator.

5 Remarks on the uniqueness of the Cauchy distance covariance

It is a natural question whether it is possible to extend distance covariance further
by taking a measure ρ in the definition (22) which does not factorize. To ensure the
finiteness of V (X, Y ) one still has to assume∫ (

1 ∧ |s|2)(1 ∧ |t |2) ρ(ds, dt) < ∞, (81)

see also Székely & Rizzo [36, Eq. (2.4)] and (22) at the beginning of Section 3.2.
Furthermore, it is no restriction to assume that ρ is symmetric, since the integrand in
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(22) is symmetric, hence we can always symmetrize any non-symmetric measure ρ

without changing the value of the integral. Thus, the function

Θ(x, y) :=
∫
Rn

∫
Rm

(
1 − cos(x · s)

)(
1 − cos(x · t)

)
ρ(ds, dt) (82)

is well-defined and symmetric in each variable. The corresponding generalized dis-
tance covariance V 2(X, Y ) can be expressed by (28), if the expectations on the right-
hand side are finite. Note, however, that the nice and computationally feasible repre-
sentations of V 2(X, Y ) make essential use of the factorization of ρ which means that
they are no longer available in this setting.

Let X and Y be random variables with values in Rm and Rn, respectively, such
that for some x ∈ R

m and y ∈ R
n

P(X = 0) = P(X = x) = P(Y = 0) = P(Y = y) = 1

2
. (83)

A direct calculation of (28), using Θ(0, y) = Θ(x, 0) = 0, gives

V 2(X, Y ) = γ · Θ(x, y), (84)

with

γ = 2P(X1 �= X5, Y1 �= Y6) − P(X1 �= X4, Y1 �= Y4)

− P(X2 �= X5)P(Y3 �= Y6), (85)

where (Xi, Yi), i = 1, . . . , 6, are i.i.d. copies of the random vector (X, Y ).
Now suppose that V 2(X, Y ) is homogeneous and/or rotationally invariant, i.e. for

some α, β ∈ (0, 2), all scalars a, b > 0 and orthogonal matrices A ∈ R
n×n, B ∈

R
m×m

V 2(aX, bY ) = aαbβV 2(X, Y ), (86)

V 2(AX,BY) = V 2(X, Y ) (87)

hold. The homogeneity, (86), yields

Θ(x, y) = |x|α|y|βΘ
(

x
|x| ,

y
|y|
)
, (88)

and the rotational invariance, (87), shows that Θ(x/|x|, y/|y|) is a constant. In par-
ticular, homogeneity of degree α = β = 1 and rotational invariance yield that
Θ(x, y) = const · |x| · |y|. Since the Lévy–Khintchine formula furnishes a one-to-one
correspondence between the cndf and its Lévy triplet, see (the comments following)
Theorem 2.1, this determines ρ uniquely: it factorizes into two Cauchy Lévy mea-
sures. This means that – even in a larger class of weights – the assumptions (86)
and (87) imply a unique (up to a constant) choice of weights, and we have recovered
Székely-and-Rizzo’s uniqueness result from [36].

Lemma 5.1. Let V 2(X, Y ) := ‖fX,Y − fX ⊗ fY ‖2
L2(ρ)

be a generalized distance
covariance as in Definition 2.3 and assume that the symmetric measure ρ satisfies
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the integrability condition (81). If V 2(X, Y ) is homogeneous of order α ∈ (0, 2) and
β ∈ (0, 2) and rotationally invariant in each argument, then the measure ρ defining
V 2(X, Y ) is – up to a multiplicative constant – of the form

ρ(ds, dt) = c(α,m)c(β, n)|s|−α−m|t |−β−n ds dt.

Moreover, V 2(X, Y ) can be represented by (28) with Θ(x, y) = C · |x|α · |y|β .

For completeness, let us mention that the constants c(α,m) and c(β, n) are of the
form

c(α,m) = α2α−1π−m/2Γ
(

α+m
2

)
/Γ
(
1 − α

2

)
,

see e.g. [10, p. 34, Example 2.4.d)] or [3, p. 184, Exercise 18.23].

6 Generalized distance correlation

We continue our discussion in the setting of Section 3.2. Let ρ = μ ⊗ ν and as-
sume that μ and ν are symmetric Lévy measures on R

m \ {0} and R
n \ {0}, each with

full support. For m- and n-dimensional random variables X and Y the generalized
distance covariance is, cf. Definition 3.1,

V (X, Y ) =
√∫∫

|f(X,Y )(s, t) − fX(s)fY (t)|2 μ(ds) ν(dt). (89)

We set

V (X) :=
√∫

|f(X,X)(s, t) − fX(s)fX(t)|2 μ(ds) μ(dt)

=‖f(X,X) − fX ⊗ fX‖L2(μ⊗μ), (90)

V (Y ) :=
√∫

|f(Y,Y )(s, t) − fY (s)fY (t)|2 ν(ds) ν(dt)

=‖f(Y,Y ) − fY ⊗ fY ‖L2(ν⊗ν), (91)

and define generalized distance correlation as

R(X, Y ) :=
⎧⎨⎩

V (X, Y )√
V (X)V (Y )

, if V (X) · V (Y ) > 0,

0, otherwise.
(92)

Using the Cauchy–Schwarz inequality it follows from (38) that, whenever R(X, Y )

is well defined, one has

0 ≤ R(X, Y ) ≤ 1 and R(X, Y ) = 0 iff X, Y are independent. (93)

The sample distance correlation is given by

NR
(
(x1, y1), . . . , (xN , yN)

) =
( 1

N2

∑N
k,l=1 AklBkl√

1
N2

∑N
k,l=1 AklAkl ·

√
1

N2

∑N
k,l=1 BklBkl

) 1
2

,

(94)
where we use the notation introduced in Lemma 4.2.
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Example 6.1. For standard normal random variables X, Y with ρ = Cor(X, Y ),
Φ(x) = |x| and Ψ (y) = |y| the distance correlation becomes

R(X, Y ) =
(√

1 − ρ2 −√4 − ρ2 + ρ(arcsin ρ − arcsin ρ
2 ) + 1

1 − √
3 + π/3

)1/2

≤ |ρ|, (95)

cf. Székely & Rizzo [34, Thm. 6].

7 Gaussian covariance

Let us finally show that the results on Brownian covariance of Székely & Rizzo [34,
Sec. 3] do have an analogue for the generalized distance covariance.

For a symmetric Lévy measure with corresponding continuous negative definite
function Φ : Rm → R let GΦ be the Gaussian field indexed by R

m with

EGΦ(x) = 0 and E
(
GΦ(x)GΦ

(
x′)) = Φ(x) + Φ

(
x′)− Φ

(
x − x′). (96)

Analogously we define the random field GΨ .
For a random variable Z with values in R

d and for a Gaussian random field G

indexed by R
d we set

ZG := G(Z) − E
(
G(Z) | G

)
. (97)

Definition 7.1. Let GΦ , GΨ be mean-zero Gaussian random fields indexed by R
m

and R
n and with covariance structure given by the cndfs Φ and Ψ , respectively. For

any two m- and n-dimensional random variables X and Y the Gaussian covariance
is defined as

G2(X, Y ) := Cov2
GΦ,GΨ

(X, Y ) := E
(
X

GΦ

1 X
GΦ

2 Y
GΨ

1 Y
GΨ

2

)
, (98)

where (X1, Y1), (X2, Y2) are i.i.d. copies of (X, Y ).

We can now identify Gaussian covariance and generalized distance covariance.

Theorem 7.2 (Gaussian covariance is generalized distance covariance). Assume that
X and Y satisfy EΦ(X) + EΨ (Y ) < ∞. If GΦ and GΨ are independent, then

G2(X, Y ) = V 2(X, Y ). (99)

Proof. The proof is similar to Székely & Rizzo [34, Thm. 8]. By conditioning and
the independence of GΦ and GΨ we see

E
(
X

GΦ

1 X
GΦ

2 Y
GΨ

1 Y
GΨ

2

)
= E

(
E
(
X

GΦ

1 X
GΦ

2 | X1, X2, Y1, Y2
) · E(YGΨ

1 Y
GΨ

2 | X1, X2, Y1, Y2
))

. (100)

Using E(GΦ(x)GΦ(x′)) = Φ(x) + Φ(x′) − Φ(x − x′) =: ϕ(x, x′) yields

E
(
X

GΦ

1 X
GΦ

2 | X1, X2, Y1, Y2
)

= ϕ(X1, X2) − E
(
ϕ(X1, X2) | X1

)− E
(
ϕ(X1, X2) | X2

)+ Eϕ(X1, X2)

= −Φ(X1 − X2) + E
(
Φ(X1 − X2) | X1

)+ E
(
Φ(X1 − X2) | X2

)
− EΦ(X1 − X2),
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where the second equality is due to cancellations. An analogous calculation for
E(Y

GΨ

1 Y
GΨ

2 | X1, X2, Y1, Y2) turns (100) into (35).

For (100) we have to make sure that E(|XGΦ

1 X
GΦ

2 Y
GΨ

1 Y
GΨ

2 |) < ∞. This follows
from

E

(
|XG�

1 X
G�

2 Y
G�

1 Y
G�

2 |
)

= E

(
E

[
|XG�

1 X
G�

2 |
∣∣∣ X1, X2, Y1, Y2

]
E

[
|YG�

1 Y
G�

2 |
∣∣∣ X1, X2, Y1, Y2

])
≤ E

(√
E

[
|XG�

1 |2
∣∣∣ X1, X2, Y1, Y2

]
E

[
|XG�

2 |2
∣∣∣ X1, X2, Y1, Y2

]
×
√
E

[
|YG�

1 |2
∣∣∣ X1, X2, Y1, Y2

]
E

[
|YG�

2 |2
∣∣∣ X1, X2, Y1, Y2

])
= E

(√
E

[
|XG�

1 |2
∣∣∣ X1, Y1

]
E

[
|XG�

2 |2
∣∣∣ X2, Y2

]
×
√
E

[
|YG�

1 |2
∣∣∣ X1, Y1

]
E

[
|YG�

2 |2
∣∣∣ X2, Y2

])
= E

(√
E

[
|XG�

1 |2
∣∣∣ X1, Y1

])2

E

(√
E

[
|YG�

1 |2
∣∣∣ X1, Y1

])2

≤ E

(
|XG�

1 |2
)
E

(
|YG�

1 |2
)

.

In this calculation we use first the independence of G� and G� , the conditional
Cauchy–Schwarz inequality and the fact that the random variables (X1, Y1) and
(X2, Y2) are i.i.d. In the final estimate we use again the Cauchy–Schwarz inequal-
ity. In order to see that the right-hand side is finite, we note that (96) and (97) yield

E

(
|XG� |2

)
= E

(
|G�(X) − E(G�(X) | G�)|2

)
≤ 2E

(
|G�(X)|2

)
= 4E�(X) < ∞.

A similar estimate for Y completes the proof.

8 Conclusion

We have shown that the concept of distance covariance introduced by Székely et al.
[37] can be embedded into a more general framework based on Lévy measures, cf.
Section 3. In this generalized setting the key results for statistical applications are:
the convergence of the estimators and the fact that also the limit distribution of the
(scaled) estimators is known, cf. Section 4. Moreover – for applications this is of
major importance – the estimators have the numerically efficient representation (50).

The results allow the use of generalized distance covariance in the tests for in-
dependence developed for distance covariance, e.g. tests based on a general Gaus-
sian quadratic form estimate or resampling tests. The test statistic is the function

T := N ·NV 2

aNbN
discussed in Corollary 4.8. Using the quadratic form estimate (see [37]
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for details) its p-value can be estimated by 1 − F(T ) where F is the distribution
function of the Chi-squared distribution with 1 degree of freedom. This test and re-
sampling tests are studied in detail in [9] and [7], respectively. In addition, these
papers contain illustrating examples which show that the new flexibility provided by
the choice of the Lévy measures (equivalently: by the choice of the continuous nega-
tive definite function) can be used to improve the power of these tests. Moreover, new
test procedures using distance covariance and its generalizations are developed in [5].

Finally, the presented results are also the foundation for a new approach to testing
and measuring multivariate dependence, i.e. the mutual (in)dependence of an arbi-
trary number of random vectors. This approach is developed in [9] accompanied by
extensive examples and further applications in [7]. All functions required for the use
of generalized distance covariance in applications are implemented in the R package
multivariance [8].
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