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Abstract

We apply computational dialog methods to

police body-worn camera footage to model

conversations between police officers and

community members in traffic stops. Rely-

ing on the theory of institutional talk, we de-

velop a labeling scheme for police speech dur-

ing traffic stops, and a tagger to detect insti-

tutional dialog acts (Reasons, Searches, Of-

fering Help) from transcribed text at the turn

(78% F-score) and stop (89% F-score) level.

We then develop speech recognition and seg-

mentation algorithms to detect these acts at

the stop level from raw camera audio (81% F-

score, with even higher accuracy for crucial

acts like conveying the reason for the stop).

We demonstrate that the dialog structures pro-

duced by our tagger could reveal whether offi-

cers follow law enforcement norms like intro-

ducing themselves, explaining the reason for

the stop, and asking permission for searches.

This work may therefore inform and aid ef-

forts to ensure the procedural justice of police-

community interactions.

1 Introduction

Improving the relationship between police officers

and the communities they serve is a critical societal

goal. We propose to study this relationship by ap-

plying NLP techniques to conversations between of-

ficers and community members in traffic stops. Traf-

fic stops are one of the most common forms of po-

lice contact with community members, with 10%

of U.S. adults pulled over every year (Langton and

Durose, 2013). Yet past research on what people ex-

perience during these traffic stops has mainly been

limited to self-reported behavior and post-hoc nar-

ratives (Lundman and Kaufman, 2003; Engel, 2005;

Brunson, 2007; Epp et al., 2014).

The rapid adoption of body-worn cameras by po-

lice departments in the U.S. (laws in 60% of states

in the U.S. encourage the use of body cameras) and

across the world has provided unprecedented insight

into traffic stops.1 While footage from these cam-

eras is used as evidence in contentious cases, the un-

structured nature and immense volume of video data

means that most of this footage is untapped.

Recent work by Voigt et al. (2017) demonstrated

that body-worn camera footage could be used not

just as evidence in court, but as data. They devel-

oped algorithms to automatically detect the degree

of respect that officers communicated to drivers in

close to 1,000 routine traffic stops captured on cam-

era. It was the first study to use machine learning

techniques to extract insights from this footage.

This footage can be further used to unearth the

structure of police-community interactions and gain

a more comprehensive picture of the traffic stop as

an every day institutional practice. For instance,

knowing which requests the officer makes, whether

and when they introduce themselves or explain the

reason for the stop is a novel way to measure pro-

cedural justice; a set of fairness principles recom-

mended by the President’s Task Force on 21st Cen-

tury Policing,2 and endorsed by police departments

across the U.S.

1https://en.wikipedia.org/wiki/Body_

worn_video_(police_equipment)
2http://www.theiacp.org/TaskForceReport

467

Transactions of the Association for Computational Linguistics, vol. 6, pp. 467–481, 2018. Action Editor: Jordan Boyd-Graber .
Submission batch: 11/2017; Revision batch: 2/2018; Published 7/2018.

c©2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.



We propose automatically extracting dialog struc-

ture from body camera footage to contribute to

our understanding of police-community interac-

tions. We rely on the notion of institutional talk

(Heritage, 2005), which posits that dialog acts, top-

ics, and narrative are heavily defined by the insti-

tutional context. Traffic stops are a kind of institu-

tional talk; as are, for example, doctor-patient inter-

actions, counseling conversations, and citizen calls

for help from police. We introduce a model of insti-

tutional acts for traffic stop conversations. Since the

officer holds a position of power within this insti-

tutional context, their dialog behavior has a greater

influence in shaping the conversation (Coupland et

al., 1991; Gnisci, 2005); hence, we focus on the in-

stitutional acts performed by the officer in this paper.

Contributions of our paper: 1) A typology of

institutional dialog acts to model the structure of

police-driver interactions during traffic stops. 2) An

institutional act tagger that works from transcribed

words (78% F-score) or from raw audio (60% F-

score). 3) A classifier that uses this dialog struc-

ture to detect acts at the stop level (e.g., “Does this

stop contain a Reason?”) (81% F-score from raw au-

dio). 4) An analysis of salient dialog structure pat-

terns in traffic stops; demonstrating its potential as

a tool for police departments to assess and improve

police community interactions.

2 Background

Computational work on human-human conversation

has long focused on dialog structure, beginning

with the influential work of Grosz showing the ho-

mology between dialog and task structure (Grosz,

1977). Recent work has integrated speech act theory

(Austin, 1975) and conversational analysis (Sche-

gloff and Sacks, 1973; Sacks et al., 1974; Schegloff,

1979) into models of dialog acts for domains like

meetings (Ang et al., 2005), telephone calls (Stolcke

et al., 2006), emails (Cohen et al., 2004), chats (Kim

et al., 2010), and Twitter (Ritter et al., 2010).

Our models extend this work by drawing on the

notion of institutional talk (Atkinson and Drew,

1979), an application of conversational analysis to

environments in which the goals of participants are

institution-specific. Actions, their sequences, and

interpretations during institutional talk depend not

only on the speaker (as speech act theory suggests)

or the dialog (as conversational analysts argue), but

they are inherently tied to the institutional context.

Institutional talk has been used as a tool to un-

derstand the work of social institutions. For exam-

ple, Whalen and Zimmerman (1987) studied dialog

structure in transcripts of citizen calls for help. They

observed that the “regular, repetitive and repro-

ducible features of calls for police, fire or paramedic

services [...] arise from situated practices responsive

to the sequential and institutional contexts of this

type of call”. Such recurring patterns in language

and conversation exist across different institutional

contexts such as doctor-patient interactions, psycho-

logical counseling, sales calls, court room conversa-

tions, as well as traffic stops (Heritage, 2005).

Deviations from these sequential configurations

are consequential. A police officer failing to explain

the reason for the traffic stop can lead to aggrava-

tion in the driver (Giles et al., 2007), and an officer’s

perceived communication skills (e.g. do they listen,

take civilian views into account) predict civilian’s at-

titudes towards the police (Giles et al., 2006).

These findings demonstrate the importance of un-

derstanding the role of institutional context in shap-

ing conversation structure. In doing so, our paper

also draws on recent research on automatically ex-

tracting structure from human-human dialog. Draw-

ing on Grosz’s original insights, Bangalore et al.

(2006) show how to extract a hierarchical task struc-

ture for catalog ordering dialogs with subtasks like

opening, contact-information, order-item, related-

offers, and summary. Prabhakaran et al. (2012) and

Prabhakaran et al. (2014) employ dialog act analy-

sis to study correlates of gender and power in work

emails, while Althoff et al. (2016) studied structural

aspects of successful counseling conversations, and

Yang et al. (2013) and Chandrasekaran et al. (2017)

investigated structures in online classroom conver-

sations that predict success or need for intervention.

Our work also draws on an important line of unsu-

pervised work that models topical structure of con-

versations (Blei and Moreno, 2001; Eisenstein and

Barzilay, 2008; Paul, 2012; Nguyen et al., 2012).

Our work is closely related to the active line of re-

search in NLP on dialog act classification. Recently,

recurrent neural network-based dialog act taggers,

e.g., Khanpour et al. (2016), Li and Wu (2016) and
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Liu et al. (2017), have posted state-of-the-art perfor-

mance on benchmark datasets such as the Switch-

board corpus (Jurafsky et al., 1997) and MRDA

(Ang et al., 2005). Since these corpora come from

significantly different domains (telephone conver-

sations and meeting transcripts, respectively) than

ours, and since we are interested specifically in the

institutional acts (e.g., did the officer request doc-

umentation from the driver?) rather than the gen-

eral dialog acts (did the officer issue a request?),

these taggers do not directly serve our purpose. Fur-

thermore, our data is an order of magnitude smaller

(around 7K sentences) than these corpora; making it

infeasible to train in-domain recurrent networks.

Prior to neural network approaches, support vec-

tor machines and conditional random fields (Cohen

et al., 2004; Kim et al., 2010; Kim et al., 2012;

Omuya et al., 2013) were the state-of-the-art algo-

rithms on this task. These approaches also incorpo-

rated contextual and structural information into the

classifier. For instance, Kim et al. (2012) used lexi-

cal information from previous utterances in predict-

ing the dialog act of a current utterance; and Omuya

et al. (2013) uses features such as the relative posi-

tion of an utterance w.r.t the whole dialog. We draw

from this line of work; we also experiment with po-

sitional and contextual features in addition to lexical

features. Furthermore, we use features that capture

the institutional context of the conversation.

3 Institutional Dialog Acts of Traffic Stops

We begin with a framework for analyzing the struc-

ture of interactions in this important but understud-

ied domain of traffic stop conversations, developed

by applying a data-oriented approach to body cam-

era footage. Our goal is to create a framework that

can be a tool for police departments, policy makers,

and the general public to understand, assess and im-

prove policing practices.

3.1 Data

We use the Voigt et al. (2017) dataset of body camera

audio from 981 vehicle stops conducted by the Oak-

land Police Department during the month of April

2014. This amounts to 35 hours of speech, hand-

transcribed to 94K speaker turns and 757K words.

Officer.: Sir, hello, my name’s Officer [NAME] of the Oak-

land Police Department. [GREETING]

Driver: Hi.

Officer.: The reason why I pulled you over is when you

passed me back there you were texting or talking

on your cell phone. [REASON]

Driver: I was looking at a text, yes.

Officer.: Okay. Do you have um, what year is the car you’re

driving? [DETAILS]

Driver: It’s a 2010.

Officer.: 2010. Do you still live in [ADDRESS]? [DETAILS]

Driver: Yes.

[...]

Officer.: All right, sir. This is a citation for having your cell

phone in your hand while you’re driving. [ ]You

actually have two months on or before June 7th to

take care of the citation, okay? Please drive care-

fully. [SANCTION; POSITIVECLOSING]

Driver: Okay.

Officer.: Thank you.

Table 1: Excerpt from a traffic stop conversation with in-

stitutional acts in [blue] (names/addresses redacted).

3.2 Traffic Stops as Institutional Talk

Traffic stops possess all three characteristics of insti-

tutional talk (Heritage, 2005): i) participants’ goals

are tied to their institution-relevant identity (e.g. of-

ficer & driver); ii) there are special constraints on

what is allowable within the interaction; iii) there

are special inferences that are particular to the con-

text. Table 1 presents an excerpt from a traffic stop

conversation from our corpus: The officer greets

the community member, gives the reason for the

stop, asks about personal details, issues the sanc-

tion, and closes by encouraging safe driving. We are

interested in such recurring sequences of institution-

specific dialog acts, or institutional acts, which com-

bine aspects of dialog acts and those of topical seg-

ments, all conditioned by the institutional context.

3.3 Developing the Typology

To develop the taxonomy of institutional dialog acts,

we begin with a data-oriented exploration: identify-

ing recurring sequences of topic segments using the

(unsupervised) mixed membership Markov model

(Paul, 2012).3 Figure 1 shows the topic segments

assigned by a 10-topic model on the traffic stop of

Table 1. The model identified different spans of con-

3We trained the model on a subset of 541 stop transcripts

from our data, exploring different numbers of topics.
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Figure 1: Topic assignments from Mixed Membership

Markov Modeling (Paul, 2012) on a sample stop (turns go

from top to bottom; x-axis shows probabilities assigned

to each topic; right are the top topic words). The model

identifies the reason for the stop (orange), driver’s docu-

ments (blue), driver’s address and demographics (purple),

the sanction (beige) and closing (yellow).

versation; the officer gives the reason for the stop

(orange), asks for documents (blue), collects driver

information (purple), then in the end, there are spans

of issuing a sanction (beige) and closing (yellow).

While these topical assignments helpfully suggest

a high-level notion of the structure of these conver-

sations, they do not capture the specific acts officers

do. We next turned to the procedural justice liter-

ature, which highlights specific acts. For instance,

questioning the driver’s legitimacy for being some-

where (why are you here?) or driving a car (whose

car is it?) are acts that trigger negative reactions in

drivers (Epp et al., 2014). On the other hand, officers

introducing themselves and explaining the reasons

for the stop are important procedural justice facets

that communicate fairness and respect (Ramsey and

Robinson, 2015). Informed by the procedural justice

literature, the President’s Task Force recommenda-

tions, and a review of the unsupervised topic seg-

ments, two of the authors manually analyzed twenty

stop transcripts to identify institutional dialog acts.

We focused on acts that tend to recur (e.g. ci-

tations), and those with procedural justice interest

(e.g. reasons, introductions), teasing apart acts with

similar goals but different illocutionary force (ex-

plicitly stating vs. implying the reason for the stop;

or requesting to search the vehicle vs. stating that a

search was being conducted). This process resulted

in an initial coding scheme of twenty two institu-

tional acts in nine categories. We also observe that

the recurring acts by community members were of-

ten in response to officers’ acts (e.g., responding to

demographic questions), as their position of power

gives them higher influence in shaping the conversa-

tion (Giles et al., 2007). Hence, we focus on officer

speech to capture our institutional act annotations.

3.4 Annotating Institutional Acts

From each stop transcript, we selected all officer

turns (excluding those directed to the radio dis-

patcher), and annotated each sentence of each turn.

In the first round, three annotators annotated the

same 10 stops using the taxonomy and manual

developed above with an average pair-wise inter-

annotator agreement of κ=0.79. We discussed the

sources of disagreement, ratified the annotations,

and updated the annotation manual to clarify act de-

scriptions. During this process, we also updated the

annotation manual to include four additional institu-

tional acts, resulting in a set of twenty five acts in

eleven categories. Table 2 presents this final typol-

ogy, along with actual examples from our data.

We then performed two subsequent rounds of

three-way parallel annotations obtaining average

pair-wise κ values of 0.84 and 0.88, respectively.

Once we obtained high agreement, we conducted a

fourth round where each annotator annotated a sep-

arate set of 30 stops. Stops were chosen at ran-

dom from the entire corpus for each round; however,

seven of the previously annotated stops were incor-

rectly included in the final round of annotations, re-

sulting in a total of 113 annotated stops (7081 sen-

tences, 4245 turns). Table 1 shows resulting labels.

4 Learning to Detect Institutional Acts

We now investigate whether we can train a model

that can automatically detect the institutional acts

during the course of a traffic stop. In Sections 5-7,

we present an institutional act tagger, and describe

three increasingly difficult evaluation settings:

1. Using manual transcripts: We train and test an

institutional act tagger on the manual transcripts.

This task is similar to dialog act tagging (e.g.,

(Stolcke et al., 2006)), but it has the important

distinction that it needs to captures dialog struc-

ture at the intersection of the general dialog acts
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Event (Coarse-grained) Event (Fine-grained) Count Example Utterances

GREETING Greeting 98 “Whats up, yall?”, “How you doing, man?”, “Hello.”

Introduction 16 “Hi. Im officer , Oakland PD”

REASON Question Awareness 12 “You know why Im pulling you over?”

Explicit 127 “Reason I pulled you over is for a cell phone violation.”

Implicit 19 “Didnt see the stop sign?”

DOCUMENTS Requesting Documents 252 “You have your drivers license, registration and insurance?”

DETAILS Demographics 71 “How old are you?”, “Whats your last name?”

Address 65 “What’s your address?”,“Where do you live at?”

SANCTION Issuing Citation 37 “Okay, as I say, the reason I’m citing you is for failure to yield to oncoming traffic.”

Issuing Fix-it Ticket 31 “I’ll give you a fix-it ticket for the headlight, left front headlight, all right?”

Issuing Warning 19 “I’ll give you a warning today.”

Mention Lenience 50 “Im cutting you guys a break”

POSITIVECLOSING Farewell 86 “All right. Drive safe”, “All right, guys. Take care”, “Have a good day.”

ORDERS Hands On Wheel 9 “Hey just keep your hands on the steering wheel man”

Turn Car Off 37 “Hey, turn the car off”

LEGITIMACY Vehicle Ownership 41 “This your car?”

Questioning Intent 15 “What are you doing out here?”

HISTORY Warrants 3 “Do you know you got a little warrant too?”

Probation/Parole 16 “You know you’re on probation, right?”

Arrests 4 “Do you, um, have you ever been arrested?”

OFFERHELP Giving Voice 19 “Do you have any questions?”, “You understand?”

Offering Help 5 “Need any help getting back on the traffic?”, “You need directions?”

SEARCH Request for Search 3 “Do you mind if I uh search the car?”

Statement of Search 7 “Youre on probation so you have a search clause.”

Weapons 15 “You got nothing on you I need to worry about?”, “No weapons, right?”

Table 2: Typology of institutional acts during traffic stops. Column 1 shows the 11-way coarse-grained groupings.

Column 2 shows the 25-way fine-grained institutional act labels used for annotations, and Column 3 shows the number

of sentences labeled with each acts.

(e.g., requests, responses) and the topical struc-

ture. Section 5 presents the experiments on build-

ing the institutional act tagger for this domain.

2. Using ASR: We develop an automatic speech

recognizer that works in our domain, and uses the

text it generates, instead of manual transcripts, to

train and test the model. The downstream insti-

tutional act tagging framework stays the same.

This setting is not fully automatic, as we still

rely on the manually identified segments of au-

dio where officers spoke. Section 6 first presents

experiments on building the ASR system for this

domain, and then presents results on using ASR-

generated text for institutional act tagging.

3. From raw audio: We build automatic means to

detect the segments of officers’ speech, apply the

ASR on those segments, and then use the text

thus produced to detect institutional acts, build-

ing a fully automatic tagger with no human inter-

vention. Section 7 first describes the experiments

on detecting the officers’ speech automatically,

and then presents results on institutional act tag-

ging in this fully automatic setting.

For all our experiments, we merge labels from

all sentences in each turn, making this a multi-label

(instead of multi-class) classification task.4 Only

around 7% of the institutional act bearing utterances

had multiple acts. Common co-occurrences were

GREETING and REASON, and GREETING and OR-

DERS, e.g., Hey, turn the car off. How you doing?

5 Institutional Act Tagging from Manual

Transcripts

We adopt a supervised machine learning approach to

the task of institutional act tagging. We draw from

prior work in the area of dialog act modeling, while

also adding features that specifically capture the in-

stitutional context of traffic stop conversations.

5.1 Algorithms

We compared three supervised text classification

methods: Support Vector Machine (SVM) (Cortes

and Vapnik, 1995) and Extremely Randomized

4We present turn-level (instead of sentence-level) predic-

tions to facilitate comparisons with experiments presented in

Section 6 & 7; sentence-level experiments were performed us-

ing manual transcripts and yielded slightly better numbers.
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Trees (ERT) (Geurts et al., 2006),5 which are effi-

cient and tend to work well with smaller datasets

like ours, and Convolutional Neural Network (CNN)

(Kim, 2014), which captures variable length patterns

without feature engineering. For SVM, we use the

one-vs-all multi-label algorithm (ERT and CNN in-

herently deal with multi-label classification) and use

the balanced mode to address the skewed label dis-

tribution (0.5% to 3.5% positive cases). In the bal-

anced mode, positive and negative examples are bal-

anced at training time. For CNN, we use two con-

volutional layers of filter sizes 3 and 4 and 20 filters

with relu activation and max-pooling with pool size

2. This is followed by two dense layers, and a fi-

nal layer with sigmoid activation and binary cross

entropy loss to handle multi-label classification.

While some prior work in dialog act tagging (e.g.,

(Kim et al., 2010; Kim et al., 2012) have shown

that sequence tagging algorithms such as conditional

random fields (CRF) have some advantage over text

classification approaches such as SVMs, prelimi-

nary experiments using CRFs revealed this to not be

the case in our corpus.

5.2 Features

Lexical Features: We used unigrams and bigrams

as indicator features for SVM and ERT. We initial-

ize the input layer of CNN with word embeddings

trained using our entire transcribed dataset.6

Pattern features: We use indicator features for

two types of patterns. 1) For each institutional act,

we hand-crafted a list of linguistic patterns; e.g., the

pattern feature for GREETING included how are

you, hello, and good morning, among oth-

ers. 2) We use a semi-automatically built dictionary

of offenses (e.g., tail light) by querying the word

embedding model trained on all transcripts with a

seed list of offenses, resulting in a large list of of-

fenses and variations of their usage (e.g., break

light, rear lite) with high incidence in some

acts (e.g., REASON, SANCTION).

5ERT is a variant of the random forest algorithm, with the

difference that the splits at each step are selected at random

rather than using a preset criteria.
6In preliminary experiments, we found that SVMs us-

ing these word embeddings (or GloVe embeddings) performed

worse than using ngram features directly.

Algorithm P R F

Extremely Randomized Trees 80.9 63.6 71.2

Conv. Neural Network 77.4 57.3 65.8

SVM 78.9 76.2 77.5

SVM (- ngrams) 15.4 83.3 26.0

SVM (- patterns) 78.4 74.4 76.4

SVM (- structure) 76.3 74.2 75.3

SVM (- patterns&structure) 76.3 71.9 74.0

Table 3: Micro-averaged precision (P), recall (R) and F-

score (F) for experiments using manual transcripts.

Structural features: 1) The number of words in

the utterance, since some acts (e.g., GREETING) re-

quire fewer words than others (e.g., SANCTION).

We binned this feature into four bins: <3, 4-10, 11-

20, and >20. 2) The position of the utterance within

the conversation (e.g., SANCTION is likely to hap-

pen late, and GREETING early), binned to one or

more of: first five, first quarter, first third, first half,

last half, last third, last quarter, and last five.

Other features: We tried other features such as 1)

ngrams from previous utterances, 2) ngrams from

driver’s responses, 3) dependency parse patterns,

4) word/sentence embeddings, and 5) topic assign-

ments obtained from the mixed membership Markov

model (Paul, 2012) discussed in Section 3.3. These

features turned out not to be helpful for this task, and

we do not include those results here.

5.3 Experiments and Results

Table 3 presents micro-averaged (i.e., weighted av-

erage of each class) precision, recall and F-measure

obtained on 10-fold cross validation.7 While ERT

posted the highest precision of 80.9% at a low re-

call of 63.6%, SVM reported the highest recall of

76.2% without a huge dent in precision. Overall,

we obtain the best micro-averaged F-score of 77.5%

using SVM. CNN performed worse than both ERT

and SVM.8 We also performed an ablation study to

see the relative importance of features in the SVM

7CNN: batch size of 10, dropout of 0.3, adam, 10 epochs.

SVM: C=1, linear kernel. ERT: 100 estimators, max tree depth

75, # of features capped at 20% of all features. Parameter values

obtained using grid-search within the training set for each fold.
8Since CNN performed much worse than SVM with lexi-

cal features alone (last row), presumably because of the small

amount of data, we did not perform more CNN experiments.
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Figure 2: Top 25 most (by absolute value) weighted fea-

tures in the GREETING model.

model. As expected, the ngram features contribute

the most; removing them drastically lowered perfor-

mance. Patterns and structural features had a smaller

impact on performance.

We inspected the weights assigned to the features

by a model trained on the entire dataset. The mod-

els created for each institutional act had at least

one pattern or structure feature in the top twenty

five features. Figure 2 shows the feature weights

assigned to the model detecting GREETING. The

model up-weighted utterances with greeting pat-

terns (GREETINGS), first utterances (FIRST), and

utterances in the first quarter (FIRSTQUART), while

down-weighting longer utterances (LENGTH 11-

20) and those that mention lenience (LENIENCE).

6 Institutional Act Tagging using ASR

The institutional act tagger of Section 5 relies on

manual transcriptions, making it not scalable to the

thousands of traffic stops conducted every month.

We now investigate using automatic speech recogni-

tion, while assuming manual segmentation, i.e., we

know the time segments where an officer spoke to

the driver; in the next section we explore the addi-

tional task of automatic officer turn detection.

6.1 Data Augmentation

Traffic stops have considerable noise (wind, traffic,

horns), overlap, and difficult vocabulary (names, ad-

dresses, jargon), making it a challenging domain for

off-the-shelf automatic speech recognizers (ASR).

However, our 35 hours of transcribed speech is in-

sufficient to train a domain-specific recognizer. We

Data Recordings Utterances Hours

Train 603 + 2435 407,408 494

Dev 66 3,241 3.6

Test 113 4,248 4.6

Table 4: Data used to build the ASR models.

therefore employ two data augmentation techniques.

First, we perturb our data by frame-shifting and

filterbank adjustment following the procedure de-

scribed in (Ko et al., 2015). In frame-shifting, we

change the starting point of each frame, making fea-

tures generated from these frames slightly differ-

ent from the original ones. For filterbank adjust-

ment, we move the locations of the center frequen-

cies of filterbank triangular frequency bins during

feature extraction. This method increases our train-

ing data 5-fold to 180 hours. Second, we make

use of the 300-hour Switchboard telephone speech

dataset (Godfrey and Holliman, 1997) to create ad-

ditional data. We first upsample Switchboard speech

to the 16 KHz of our data, and then mix them with

noise samples randomly picked from our data where

speech is not identified, using a random speech-to-

noise-ratio between 0 and 10. This method con-

tributes another 300 hours of speech for training.

6.2 Acoustic Modeling

We implemented two acoustic models, a Bi-

directional Long Short-Term Memory network

(BLSTM) (Graves et al., 2013) and a Deep Neural

Net Hidden Markov Model (DNN-HMM) tri-phone

baseline. While LSTM based approaches generally

work better, they are much slower to train, so we

wanted to know if their word error improvements in-

deed translated to act tagger improvements.

DNN-HMM system training follows the standard

pipeline in the Kaldi toolkit (Povey et al., 2011;

Veselý et al., 2013). Frame alignments generated

from a traditional Gaussian mixture model based

system are used as targets and 40-dimension fMLLR

features (Gales, 1998) are used as inputs to the DNN

to aid speaker adaptation. The network was trained

using Restricted Boltzmann Machine (RBM) based

pretraining (Salakhutdinov et al., 2007) and then dis-

criminatively trained using stochastic gradient de-

scent with cross-entropy as loss function. (Veselý
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Data Perplexity

Traffic stops 79.4

+Switchboard 75.9

+Fisher 74.3

Table 5: Language model perplexity on Dev set.

et al., 2013) describes more training details.

We trained the BLSTM using the recipe proposed

by Mohamed et al. (2015). The BLSTM is used to

model short segments of speech (with a sliding win-

dow of 40 frames), and predict frame-level HMM

states at each time frame9. We use 6 hidden layers

and 512 LSTM cells in each direction. Dropout (Sri-

vastava et al., 2014), peephole connections (Gers et

al., 2002) and gradient clipping are adopted to sta-

bilize training (Sak et al., 2014). As in DNN-HMM

training, fMLLR features and frame alignments are

used as inputs and targets respectively.

For decoding, frame posteriors from the acoustic

model are fed into a weighted finite state transducer

with HMMs, context-dependent tri-phone models,

a lexicon,10 and a 3-gram language model with

Kneser-Ney smoothing (Kneser and Ney, 1995).

6.3 Language Model Data Augmentation

To mitigate language model data scarcity, we use

transcriptions from the Switchboard and Fisher

(Cieri et al., 2004) corpora, adding about 3.12M and

21.1M words, respectively. Separate language mod-

els are trained on these datasets, and then interpo-

lated with the traffic stop language model; interpola-

tion weights were chosen by minimizing perplexity

on a separate Dev set. Table 5 shows the perplexities

of different language models on this Dev set.

6.4 Evaluating ASR Models

Table 4 shows statistics of the data used to build

the ASR system. We kept aside the 113 institu-

tional act annotated stops from Section 3 as test set.

The remaining 669 stops were divided 9:1 into Train

and Dev sets. The Train set also includes the 2435

recordings from the Switchboard corpora.

9Note that this recipe is different from the end-to-end ap-

proach where LSTM model takes in the whole utterance and

predict phone / word outputs directly (Graves and Jaitly, 2014)
10CMU dictionary (CMUdict v0.7a) is used.

Model Dev Test

DNN 57.0 48.5

BLSTM 49.7 45.0

BLSTM (- data augmentation) 56.9 51.4

BLSTM (- LM interpolation) 50.2 45.7

Table 6: Word error rate for different ASR models.

ASR Source 1Best 10Best

DNN 57.2 63.6

BLSTM 65.0 65.3

Table 7: Micro-averaged F-scores on institutional act pre-

diction using different ASR sources.

Table 6 shows word error rates under different set-

tings. Overall, we obtain relatively high error rates,

largely due to the noisy environment of the audio in

this domain. BLSTM performs better than DNN-

HMM, consistent with prior research (Mohamed et

al., 2015; Sak et al., 2014).11 Interpolating Switch-

board and Fisher language models provides a further

boost of 0.7 percentage points.

6.5 Institutional Act Tagging Experiments

We now use text generated by ASR to train and test

the institutional act tagger of Section 4. To increase

recall, we also made use of N-best list output from

the ASR systems, collecting ngram and pattern fea-

tures from the top 10 candidate transcriptions. The

L1 penalty in the SVM limits the impact of the re-

sulting noisier ngrams on precision.

Table 7 presents micro-averaged F-scores.

BLSTM with 10Best obtained the best F-score

of 65.3. While using 10Best lists only helped

marginally for BLSTM, it helped the DNN enough

to eliminate most of the gap in performance with

BLSTMs. Our results suggest that downstream

tasks with efficiency constraints could employ

DNNs without a huge dent in performance by

making use of NBest or lattice output.

11Note that our Test set, designed for measuring institutional

act detection, consists of only police officers talking close to

the camera; hence the word error rate can be lower than the

Dev, which is designed to measure overall ASR performance

and includes community member speech as well.
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ASR Source 1Best 10Best

DNN 43.7 56.0

BLSTM 53.8 59.8

Table 8: Micro-averaged F-scores on institutional act pre-

diction from raw audio using different ASR sources.

7 Institutional Act Tagging from Raw

Audio

We now turn to the task of detecting institutional acts

directly from raw body camera audio. This requires

detecting spans with speech activity and distinguish-

ing them from noise— voice activity detection—and

identifying segments spoken by the police officers.

7.1 Finding Officer Speech Segments

Our goal is to find regions of the audio with a

high probability of being officer speech. We could

not build a standard supervised officer-versus-other

classifier, because the stops contain large untran-

scribed regions of officer speech (we did not tran-

scribe segments where the officer was, for example,

talking to the dispatcher in the car). We therefore

instead built a two-output classifier to discriminate

between the officer and community member speech,

and used a tuned threshold (0.55) on the posterior

probability of officer as our voice activity detector,

drawing on the intuitions of (Williams and Ellis,

1999; Verma et al., 2015) who found that posterior

features on speech tasks also improved speech/non-

speech performance. Our model is a 3-layer fully

connected neural network with 1024 neurons trained

with cross entropy loss.12 Figure 3 sketches the ar-

chitecture. We run the classifier on each .5 second

span; (recall=.97 and precision = .90 on the Dev set

of Table 4), and then merge classifications to a single

turn if adjacent spans are classified as officer speech,

with a 500 ms lenience for pauses.

7.2 Institutional Act Tagging Experiments

We now present experiments using the automatically

identified officer speech segments. At training time,

we use the ASR generated text using gold segments;

12Patch of 210ms with a stride of 50ms. Audio was down-

sampled to 16kHz, and converted to 21-dimensional magni-

tude mel-filterbank representation covering frequencies from 0-

8 kHz. FFT size was 512 with 10ms hop and 30ms frame size.

Figure 3: Detecting Officer Speech segments.

at test time, we use the same ASR model to generate

text for the predicted segments. Since the predicted

segments do not exactly match gold segments, we

use a fuzzy-matching approach for evaluation. If

a gold segment contains an act and an overlapping

predicted segment has the same act, we consider it

a true positive. If a gold segment contains an act,

but none of the overlapping predicted segments have

that act, it is counted as a false negative. If an act is

identified in one of the predicted segments, without

any of the overlapping gold segments having it, then

we consider it a false positive.

Table 8 presents results using this evaluation

scheme. Again, BLSTM using the 10Best strategy

obtained the best F-score of 59.8%. Both BLSTM

and DNN benefited significantly from using the

10Best likely predictions. As in the ASR experi-

ments, the DNN substantially closes the gap in per-

formance by using the 10Best strategy.

8 Stop Level Act Detection

Our three previous sets of models focused on label-

ing each officer turn with one or more institutional

acts. For many purposes, it suffices to ask a far sim-

pler question: does an act occur somewhere in the

traffic stop? From a procedural justice standpoint,

for example, we want to know whether the officer

explained the reason for the stop; we may not care

about the turn in which the reason occurred.

We call this task stop-level act detection, in which

each stop is labeled as a positive instance of an act

if that particular act occurred in it in the gold labels.
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Using Manual Transcripts Using ASR Transcripts Using Raw Audio

Event Count Prec. Rec. F-meas. Prec. Rec. F-meas. Prec. Rec. F-meas.

GREETING 80 92.3 90.0 91.1 84.5 88.8 86.6 70.2 91.3 79.4

REASON 96 94.7 93.8 94.2 94.3 86.5 90.2 96.4 84.4 90.0

DOCUMENTS 100 97.0 97.0 97.0 95.9 93.0 94.4 96.8 92.0 94.4

DETAILS 56 86.2 89.3 87.7 68.8 78.6 73.3 66.1 66.1 66.1

SANCTION 79 94.1 81.0 87.1 84.2 81.0 82.6 90.3 82.3 86.1

POSITIVECLOSING 71 91.2 87.3 89.2 84.4 76.1 80.0 90.6 67.6 77.4

ORDERS 32 87.1 84.4 85.7 90.3 87.5 88.9 96.6 87.5 91.8

LEGITIMACY 41 78.4 70.7 74.4 89.7 63.4 74.3 85.7 29.3 43.6

HISTORY 11 77.8 63.6 70.0 75.0 54.6 63.2 71.4 45.5 55.6

OFFERHELP 18 71.4 83.3 76.9 82.4 77.8 80.0 82.4 77.8 80.0

SEARCH 10 70.0 70.0 70.0 66.7 20.0 30.8 60.0 30.0 40.0

Micro Average (Weighted) 90.4 87.5 89.0 86.5 81.7 84.0 85.5 77.1 81.1

MacroAverage (Unweighted) 85.5 82.8 83.9 83.3 73.4 76.8 82.4 68.5 73.1

Table 9: Stop level institutional act presence detection results (for each label).

Our algorithm is simple: run our best turn-based act

tagger, and if the tagger labels an institutional act

anywhere in the conversation, tag the conversation

as having that class.13 We explore all three settings:

manual segments and transcripts, manual segments

with ASR, and automatic segments with ASR.

We compare our results with a dialog-structure-

ignorant lexical baseline: simply merge all text fea-

tures (ngrams and patterns) from all the officer turns

in a stop and use them to classify whether the stop

did or didn’t contain an act. Our goal here is to see

whether dialog structure is useful for this task; if so,

the tagger based on dialog turns should outperform

the global text classifier.

Table 10 shows that using the output of the turn-

based classifier to do stop classification offers a huge

advantage over the structure-ignorant baseline, re-

ducing F-score error by 49% while using manual

transcripts, and by 22% while applied to raw audio.

Table 9 and Table 11 summarize the different ex-

periments presented in Sections 4-8. Table 9 breaks

down performance for each of the 11 acts, while Ta-

ble 11 compares turn-level to stop-level results.

Despite our relatively small training resources

(113 stops with dialog act labels, ASR and segmen-

tation training data from one month), performance

at the stop level directly from raw audio is surpris-

ingly high. For instance, detecting whether or not

the community member was explained the reason

they were stopped—an important question for pro-

13We use the best system from each set of experiments:

SVM model using ngrams, patterns, and structure features

trained on manual transcripts or from the BLSTM ASR model.

P R F

Manual (Lexical baseline) 79.6 77.6 78.6

Manual (Our Tagger) 90.4 87.5 89.0

ASR (Lexical baseline) 78.0 75.6 76.8

ASR (Our Tagger) 86.5 81.7 84.0

Raw Audio (Lexical baseline) 79.6 71.4 75.2

Raw Audio (Our Tagger) 85.5 77.1 81.1

Table 10: Stop level institutional act detection using our

tagger, compared to a lexical baseline model trained on

all the words spoken by the officer, without accounting

for the dialog structure.

Text source Manual ASR ASR

Segmentation source Manual Manual Auto

Turn level 77.5 65.3 59.8

Stop level 89.0 84.0 81.1

Table 11: Summary: Micro-averaged F-scores across dif-

ferent text/segmentation sources.

cedural justice—we obtained around 96% precision

with an 84% recall from raw camera audio.

9 Conversation Trajectories

The institutional acts that happen during a traffic

stop, when they occur, and in what order are all of

importance to police departments. For instance, the

President’s Task Force on 21st Century Policing rec-

ommends (and some departments require) that offi-

cers identify themselves and state the reason for the

stop as an important aspect of fairness. However,

476



Figure 4: Prototypical conversation structure of traffic stops; transition probabilities based on 900 stops from Apr ’14.

Figure 5: Presence of institutional acts in the 900 stops of

black or white drivers from the month of April 2014.

police departments currently have no way of easily

measuring how consistently such policies are car-

ried out during traffic stops. They also have no way

to test the effectiveness of any training programs or

policy updates that are meant to affect these conver-

sations.

In this section, we demonstrate that our institu-

tional act tagger provides an efficient and reliable

tool for departments to detect and monitor conver-

sational patterns during traffic stops. Specifically,

we focus on conversational openings, a fundamen-

tal aspect of conversations (Schegloff and Sacks,

1973) that is also important for procedural jus-

tice (Whalen and Zimmerman, 1987; Ramsey and

Robinson, 2015). For instance, do officers start the

conversations with a greeting? Are the drivers told

the reason why they were stopped? Was the reason

given before or after asking for their documentation?

We first apply our high performance (78% F-score

at turn level; 89% at stop level) tagging model on

manual transcripts. Figure 5 shows the percentage of

stops made in which each of the eleven institutional

acts was present. Around 17% of stops did not pro-

vide a reason at all. Only 69% of the stops started

with a greeting, and an even smaller percentage of

stops ended with a positive closing. While these

high level statistics provide a window into these con-

versations, our institutional event tagger allows us to

gain deeper perspectives.

Using the turn-level tags assigned by our system,

we calculate the transition probabilities between di-

alog acts. Figure 4 shows a traffic stop ‘narrative

schema’ or script, extracted from the high proba-

bility transitions. Variations from this prototypical

script can be a useful tool for police departments

to study how police community interactions dif-

fer across different squads, city locations, or driver

characteristics like race.

Figure 6, for example, shows different conversa-

tional paths that officers take before explaining the

reason for the stop. In over a quarter of the stops,

either the reason is not given, or it is given after is-

suing orders or requesting documents. These viola-

tions of policing recommendations or requirements

can impact the drivers’ attitude and perception of the

legitimacy of the institution.

Figure 6: Conversational Paths to Giving Reason.

10 Discussion

In this section, we outline some of the limitations of

our work and discuss future directions of research.

First, our work is based on data from a single po-

lice department (the Oakland Police Department in

the State of California) in the U.S. The schema we

developed may need to be updated for it to be appli-

cable to other police departments; especially those

in other countries, where the laws, policies and cul-

ture around policing may be significantly different.
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Due to the sensitive nature of the data, we will not

be able to publicly release the raw annotations de-

scribed in Section 3.4. However, we will release the

labeling scheme for institutional acts in traffic stops,

along with the annotation manual. We believe that

it will serve as a starting point for future researchers

working in this domain.

Like any data-oriented approach, our machine

learning models may have captured the idiosyn-

crasies of the particular department represented in

our dataset. Since we are not aware of any other po-

lice departments’ body-worn camera footage that is

available for research, we have no way to guaran-

tee that our models are directly applicable to other

police departments’ data.

Our institutional act tagger enables us to perform

large scale social science analyses controlling for

various confounds, which is infeasible to perform

using hand-labeled data. However, although our

models obtain high performance in detecting indi-

vidual institutional acts, it may also capture biases

that exist in the data (Hopkins and King, 2010).

Hence, our models should be corrected for biases

before they may be used to estimate proportions in

any category of stops.

In this paper, we focus on officers’ speech alone,

since the conversational initiative with respect to the

institutional acts lies mostly with the officer. How-

ever, drivers’ speech may also need to be taken into

account sometimes; e.g., if an officer says yes to a

driver’s question did you stop me for running the red

light?, the officer has in fact given the reason for the

stop even though their words alone don’t convey that

fact. Moreover, drivers’ speech may also contribute

to how the conversations are shaped. However, since

the camera is further away from the driver than the

officer, and since the environment is noisy, the audio

quality of drivers’ speech is poor, and further work is

required to extract useful information from driver’s

speech. This is an important line of future work.

The video information from the body-camera

footage may potentially help in the diarization and

segmentation tasks, and in analyzing the effects the

institutional acts have on the driver. However, since

many of the stops occur at night when the video is

often dark, it is not straightforward to extract useful

information from them. This is another direction of

future work.

11 Conclusion

In this paper, we developed a typology of institu-

tional dialog acts to model the structure of police

officer interactions with drivers in traffic stops. It

enables a fine-grained and contextualized analysis

of dialog structure that generic dialog acts fail to

provide. We built supervised taggers for detect-

ing these institutional dialog acts from interactions

captured on police body-worn cameras, achieving

around 78% F-score at the turn level and 89% F-

score at the stop level. Our tagger detects institu-

tional acts at the stop level directly from raw body-

camera audio with 81% F-score, with even higher

accuracy on important acts like giving the reason for

a stop. Finally, we use our institutional act tagger on

one month’s worth of stops to extract insights about

the frequency and order in which these acts occur.

The strains on police-community relations in the

U.S. make it ever more important to develop insights

into how conversations between police and commu-

nity members are shaped. Until now, we have not

had a reliable way to understand the dynamics of

these stops. In this paper, we present a novel way

to look at these conversations and gain actionable

insights into their structure. Being able to auto-

matically extract this information directly from raw

body-worn camera footage holds immense potential

not only for police departments, but also for policy

makers and the general public alike to understand

and improve this ubiquitous institutional practice.

The core contribution of this paper is a technical

one of detecting institutional acts in the domain of

traffic stops, from text and from unstructured audio

files extracted from raw body-worn camera footage.

Current work aims to improve the performance of

the segmentation and diarization components, with

the hope of reducing some of the performance gap

with our system run on gold transcripts. We also

plan to extend the preliminary analyses we describe

in Section 9, for instance, studying how the different

conversational paths and the presence or absence of

certain acts (such as greetings or reason) shapes the

rest of the conversation, including how it changes

the community member’s language use. Finally, our

model allows us to study whether police training has

an effect on the kinds of conversations that police

officers have with the communities they serve.
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