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Abstract. Generating meaningful digests of videos by extracting inter-
esting frames remains a difficult task. In this paper, we define interesting
events as unusual events which occur rarely in the entire video and we
propose a novel interesting event summarization framework based on
the technique of density ratio estimation recently introduced in machine
learning. Our proposed framework is unsupervised and it can be ap-
plied to general video sources, including videos from moving cameras.
We evaluated the proposed approach on a publicly available dataset in
the context of anomalous crowd behavior and with a challenging per-
sonal video dataset. We demonstrated competitive performance both in
accuracy relative to human annotation and computation time.
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1 Introduction

While the amount of video data from personal cameras has been increasing
exponentially, the raw content of any long video is often uninformative and only
a small portion of the video contains interesting information. A framework that
could automatically detect and highlight interesting events within a video would
significantly improve the efficiency of video analysis by focusing attention on the
most salient content. While it would be impossible to anticipate the interests of
the viewer without extensive training data, at least being able to filter out frames
of common or uninteresting events would be very valuable. In fact, commercial
products, such as Magisto [1] were introduced to address this problem.

We explore an event summarization framework based on an unsupervised
classification technique to select frames (Figure 1). We assume that the input
video can be described by a nominal distribution of frames, described by vi-
sual features, plus a fraction of outlier frames which do not fit the nominal
distribution. In that model, the “interesting” frames selected by the algorithm
correspond to unusual events which occur rarely in the entire video. This task is
particularly well suited to unedited consumer videos which often include large
segments of repeating or uninformative material. Importantly, the approach is
unsupervised so that the level of interest of a frame is defined relative to the

⋆ This work was done while the author was at Carnegie Mellon University.
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Fig. 1. Overview of our proposed framework.

input video rather than relative to some fixed training set which may have little
relation with the input video.

We encode each frame of an input video by a set of quantized spatio-temporal
feature descriptors while eliminating the noise due to background motion. This
approach is well suited to detecting spatio-temporal salient events. e.g. salient
actions, scene changes, etc. We divide the entire set of features from the input
video into two sections, and we train a logistic classifier on the corresponding
two-class problem, following discriminative density ratio techniques introduced
in machine learning [2]. In reality, we use different splits of the video and combine
the outputs of the corresponding classifiers to get a combined detection score.

1.1 Related Work

Our task is to detect interesting events from general video sources, which is
related to two broad areas of research: video summarization and anomaly detec-
tion. There are various event detection approaches in complex visual scenes [3,
4]. Most of the approaches for video summarization are based on video skim-
ming, which is a technique to select short video clips. Previous work on video
skimming [5] can be classified into two categories: summary oriented and high-
light oriented. Summary oriented methods keep the essential part of each shot
and generates brief summaries [6, 7]. In contrast, the highlight oriented methods
only select a few interesting and salient parts of the original video. Movie trailers
and highlights of sports events are examples of this type [8]. The latter meth-
ods are most closely related to our task. However, defining which video shots to
be highlighted is a subjective and difficult process. Detecting unusual events, or
“anomalies”, is also a key component of video surveillance systems. Although the
details vary depending on the specific application, anomaly detection generally
involves detecting events which occur rarely using model or saliency based [9–11],
sparse coding [12], trajectory analysis [13], or HMM models [14].

2 Proposed Method

2.1 Density ratio estimation

For the sake of explanation, let us first consider a slightly different problem
in which we have two separate videos. One video, called the “reference” or R,
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does not contain any interesting events. The second video called the “input”
video or I, is the one in which we wish to find the interesting events, i.e., the
ones that are sufficiently different from R. We also assume that each frame of
both videos is represented by a feature vector f . In this setting, the task is to
decide whether each frame of I, fI is unusual, i.e., sufficiently different from the
other frames in the video. One natural approach [15] is to model the probability
density of the frame features from the reference video P (f |R). One can then
classify those frames fI from I for which P (f |R) is low as interesting or unusual
events. This density estimation approach has several major issues. First, density
estimation in a high dimensional space is generally a difficult problem and may
be, in fact, unnecessary to detect anomalies. In addition, because it is based on
the likelihood of feature occurrence in the video, the approach cannot account
for the prior frequency of occurrence of any feature value in any video.

The alternate approach that we explored is known as density ratio estima-
tion [2]. This approach exploits the insight from machine learning that it is much
easier to learn a ratio of two probability densities in a high dimensional space
than to learn each separately. This is why density ratio estimation is used in
many fields, such as outlier detection [2] and change points detection [16], etc.
In this model, we view R and I as training data for a two-class classification
problem in which we assign a label y = +1 if the frame is classified as origi-
nating from R and y = −1 if it is classified as originating from I. Under this

classification task definition, we can estimate the density ratio ρ(f) = P (y=+1|f)
P (y=−1|f)

from all the frames in R and I. For a given frame fI from I, ρ(fI) should be
close to 0.5 or greater if the frame is not part of an anomalous segment because,
by definition, non-anomalous features are similarly distributed between refer-
ence and input videos, whereas the probability is close to 0 if the feature comes
from an anomalous part of the video. Anomalous segments can then be detected
by thresholding ρ(f), or equivalently by thresholding P (y = +1|f) (Figure 2).
This approach has the advantage of not relying on restrictive assumptions on a
prior distribution of features because it works directly with the posterior distri-
butions. For the same reason, it provides a natural reference decision threshold
of 0.5, irrespective of the distribution of features across the videos. It also has
the advantage of being a fast classifier and requiring constant time irrespective
of the complexity of video. An effective and simple way of estimating ρ(f) is to
estimate a logistic classifier from the data in R and I. Under the logistic model:

P (y|f ;w) = 1

1 + eywT f
, (1)

where w is a vector of parameters estimated from the data. Specifically, w is
obtained by maximizing the log-likelihood over the training data. Also, we add
an L2 regularizer to help control over-fitting, resulting in the overall optimization
problem:

argmaxw

∑

i

P (yi|fi;w)− λ||w||2, (2)

where the sum is taken over all the frames in the videos, and λ controls the
regularization. We optimize it with stochastic gradient ascent with a decay-
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Fig. 2. Using density ratio estimation, e.g., logistic model, for detecting unusual events.

ing learning-rate of αt = c/
√
t, where c is the step-size and t is the iteration

number. In practice we use 100 iteration of the stochastic gradient outer loop.
Importantly, this approach is entirely unsupervised.

2.2 Unsupervised detection from a single input video

The approach presented so far assumed two separate videos, one reference video
showing nominal feature distribution and one input video in which we wish to
detect the frames that are unusual with respect to the reference video. In our
target task, however, we have a single input video from which we need to draw
subsets of frames that can be used as reference/input pairs. More precisely,
given an input video V with N frames, we separate it into two subsets V + and
V − of equal sizes N/2. V + and V − are the analogs of R and I in the above
introduction, except that they are drawn from a single video. We can then train
a two-class classifier using a logistic model as described above, i.e., estimating w
such that P (y|f ;w) agrees with y = +1 on V+ and −1 on V−. Those frames with
feature vector f that occur frequently in both V+ and V− will have a probability
P (y|f ;w) close to 0.5, while the unusual frames will have probability far from 0.5.
This is of course the ideal case. In practice, however, the classifier is not perfect
and an approach that is more robust to noise in the classifier is to use the median
value M computed over the entire input V instead of 0.5 as reference value. We
can then assign a score an to each frame n of V as: an = |P (yn = +1|fn;w)−M |.

Ideally, we should train a classifier and evaluate the scores on all the possible
splits of V . Since this would require an impractically large number of rounds of lo-
gistic training, we limit ourselves to three splits corresponding to the following in-
tervals of frames : V+ = [1, N/2], V+ = [N/4, 3N/4], V+ = [1, N/4]

∪
[N/2, 3N/4].

As shown in Figure 3, these three splits provide a good first order coverage of
the possible splits of the data. From each split k we can estimate the parameter
w(k) of the logistic classifier of the corresponding binary classification problem,
as described above, and for each frame n with feature fn we can estimate the

score a
(k)
n = |P (y

(k)
n = +1|fn;w(k))−M (k)|, where M (k) is the median value of

the probabilities over all the frames. The final score for each frame is obtained

by averaging the scores: an =
∑

k a
(k)
n for frame n. The overall procedure for

computing the scores is shown in Table 1. We implemented two ways of using
the aggregate scores for detecting the interesting frames. The first approach,
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Fig. 3. Top left: Visualization of the feature vector f computed at each frame. Middle
left: Three different splits of the input video into +1/-1 classes. Bottom right: Final
score obtained by averaging the outputs of the classifiers learned on the three splits
(higher value = more interesting frames). Top right: The manually drawn white circles
point to feature components that triggered detection of interesting events.

Proposed Algorithm

Input : video sequence V with N frames with features {fn}
Output : {an, n = 1 . . . N}
for k=1,· · · ,K do

1. Generate a split (V
(k)
+ , V

(k)
−

)

2. Give label value to all {y
(k)
n } based on

y
(k)
n =

{

+1 (n ∈ V
(k)
+ )

−1 (n ∈ V
(k)
−

)

3. Estimate parameter w(k) of logistic classifier from {fn}, and {y
(k)
n }

4. Estimate the conditional probability P (y
(k)
n = +1|fn;w

(k)) and median value M (k)

5. Calculate and accumulate the distance from median value

an = an + |P (y
(k)
n = +1|fn;w

(k))−M (k)|
end

Table 1. Overall algorithm.

labeled “Proposed1” in the result section, simply thresholds the scores so that
frame n is retained if an > ϵ. The second approach (“Proposed2”) is threshold
free and is inspired from the classical SVM calibration procedure from Platt [17].
If M is the median value of an over all the frames in V , we define two subsets
of frames, V o

+ and V o
− corresponding to frames with scores below or above the

threshold M , respectively. We can then estimate the parameter wo of a logistic
regressor for the split (V o

+, V
o
−) and we obtain the final classification score by

applying this logistic function to the original classification scores.

To compute the feature vector f of a frame, we first select p image points
x1, ..., xp in the frame and we compute a 576-dimensional descriptor f̂(xi) at

each point. The set of f̂(.) computed over the entire video is quantized into K

centers f̂j , j = 1, ...K The final feature vector f used in the classifier is the K-

dimensional histogram of quantized f̂(.) values computed over the video frame.
Additional details are as follows:
Point selection : A standard approach to selecting feature points would be to
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use an interest point detector. We found that this technique generates too sparse
a set of points for our approach. Instead, after coarse stabilization, we use all
the points with intensity difference between consecutive frames greater than a
threshold. Although simple, this approach yields a dense selection of points con-
centrated on the potentially interesting parts of the video.
f̂ : We use a combination of histograms of gradient and flow vectors (HoG and
HoF [18]), and motion boundary histograms (MBH [19]). We define a N×N×M
patch around each xi ,which we divide into nσ × nσ × nτ cells. In each cell, we
compute 1) a 8-bin histogram of gradient direction in that cell; 2) a 8-bin his-
togram of optical flow, using Farneback′s copencv implementation; 3) two 8-bin
histograms encoding MBH (MBH uses histograms in the x and y axis, as in [19]).
We use M=10, N = 15, nσ = 3, nτ = 2 for a 576-dim descriptor at each point.
Quantization : We quantize f̂ : using K-means over the set of feature vectors
from the entire video. We chose K = 32 and verified that performance remains
stable over a range of values 16–64 (K is kept constant across the experiments).
Background stabilization : Generally, personal videos tend to include shaky
background motion because they are taken by hand-held cameras. This back-
ground motion affects the motion descriptors and the performance of the clas-
sifier. To minimize this effect, we estimate background motion by calculating a
homography between consecutive frames and we align the frames prior to feature
computation. We estimate the homography using LMeds by establishing KLT
feature correspondences between frames. Since our event descriptors temporally
span M = 10 frames, we use stabilization over a 10 frame moving window.

3 Experiments

3.1 Baseline Algorithms

To test the effectiveness of our proposed algorithms, we use two baseline algo-
rithms: One Class Support Vector Machine(OC-SVM), and sparse coding. These
were chosen because of their good performance and because they are unsuper-
vised techniques. OC-SVM is representative of outlier detection algorithms based
on SVMs, which have produced excellent results in [20]. We used the publicly
available implementation of [21], configured with a Gaussian kernel and ν = 0.5.
The second baseline is based on sparse reconstructability of query events from
a learned dictionary, which is one of the state-of-the-art unusual event detec-
tion methods [12]. We used [22] for implementing sparse coding with Nesterov′s
optimization method with a regularization parameter λ= 10.

3.2 UMN dataset

We tested our proposed framework on the publicly available dataset of crowd
videos from the UMN dataset [23]. This dataset consists of 11 different scenarios
in 3 different scenes of crowd escape scenarios, over a total of 7740 frames. Each
video consists of an initial section of normal behavior and ends with sequences
of unusual behavior (Figure 4). While these videos address a more specific task



Detecting Interesting Events 7

1000 2000 3000 4000 5000 6000 7000

Frame 1 Frame 525 Frame 247 Frame 352 Frame 42 Frame 352
Usual Usual UsualUnusual Unusual Unusual

scene1 scene2

Ground Truth

Proposed1

Proposed2
scene3

1000 2000 3000 4000 5000 6000 7000

Frame 1 Frame 525 Frame 247 Frame 352 Frame 42 Frame 352
Usual Usual UsualUnusual Unusual Unusual

scene1 scene2

Ground Truth

Proposed1

Proposed2
scene3

Fig. 4. Example frames of usual(green) and unusual(red) events and the qualitative
scoring results of our proposed methods for UMN dataset.
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Fig. 5. ROC curve and performance comparison.

than our unconstrained detection problem, i.e., they are restricted to crowd
motions and explicit “normal” section at the start of each video, they allow us
to compare directly with published numbers in a way that does not favor our
approach since many of the published techniques are tuned to crowd motions. In
Figure 5, the AUC values of our methods outperform most of the other methods
and are comparable to [10] and sparse coding [9]. However, our method is a more
general solution, because it does not make any assumption about the content
of the video, while [10] is specifically designed for anomalies in crowd videos,
and [9] assumes that the first part of the video is nominal, i.e., can be used
as reference to learn the dictionary, while we allow unusual events to occur
anywhere in the video. Descriptor extraction takes about 0.43 second/frame for
all the algorithms. Dictionary learning and classification takes 0.41, 0.022, and
0.020 second/frame for Sparse coding, OC-SVM, and our method, respectively,
as measured on a single core 2.97 GHz Intel Core i7 PC with 8.0GB memory

4 Personal Videos

We evaluated our framework using examples that are more representative of con-
sumer videos. We used a dataset acquired in different scenes and locations using
a hand-held consumer camera1. The videos include interesting events as well as

1 The dataset is available at https://sites.google.com/site/yitopaper/
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Parade Seashore Fireworks Animal Snow park

Scene Frame Number Object Camera motion
Parade 9405, 31123 human, car shaky, zoom-in/out, rotation
Seashore 15437, 19067, 23977 human, bird, sea-waving fixed
Fireworks 1748 human, fireworks shaky, zoom-in/out
Animal 9449, 14655 squirrel, human shaky, zoom-in/out, rotation
Snow park 1012 human shaky, zoom-in/out

Fig. 6. Personal Video Dataset. The dataset totally include 9 videos on 5 scene.

long stretches of routine activity. The dataset consists of five different categories:
parade, seashore, fireworks, animal , and snow park (Figure 6). In order to deal
with variability in human annotations, we generated annotations of each video
by fifteen different subjects. The annotators all received the same set of written
instructions to detect rare and salient events in the entire video. To combine the
multiple annotations, we compare the algorithms with each set of ground truth
annotations and we average the resulting performance numbers across annota-
tion sources. On average 17 % of the frames from the input videos are labeled
as interesting. The average of all the 15 annotations is shown in Figure 7(top).
Although the annotators disagree somewhat on the exact boundaries of the in-
tervals of interest in the video, they do agree strongly on the general locations of
the major events. A similar level of consensus is observed on all the annotations
from all the videos. Quantitatively, the standard deviation of the length of video
labeled as interesting relative to the length of the input video across all labelers is
5%. The score estimated by our Proposed2 algorithm is shown in Figure 7(mid-
dle) along with a few sampled framed detected as interesting or common by the
algorithm are shown in Figure 7(bottom). In addition to SVM and sparse coding,
we compared our proposed framework with two commercial products: Windows
Movie Maker(WMM) and Magisto. Magisto [1] is one of most sophisticated video
summarization services, which can automatically produce digested videos by us-
ing combinations of scene analysis and recognition algorithms. The scoring curve
and the annotation averaged over the fifteen annotators are shown in Figure 7.
The scores correlate well with human annotation data. It is interesting to note
that, around ground truth events, the score decreases as the agreement among
human annotators decreases. The overall performance is shown in the ROC and
PR curves in Figure 8(b-c). For this dataset, chance performance is at precision
0.17 (maximum F-measure at 0.29.) In addition, Figure 8(a) compares classi-
fication performance as the detection threshold varies. This confirms that the
performance of our proposed method gradually changes while maintaining higher
F-measure value than the other algorithm. This implies that our method can be
more easily tuned than the video summarization tools. Similar conclusions can
be drawn from Table 2. Our approach outperforms other algorithms based on
the area under the PR (average precision) or the ROC curves. For reference, we
also indicate the highest F-measure and precision reached by each algorithm,
along with the corresponding relative duration of the selected part of the video.
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Algorithm AU-FT AU-FD AU-ROC Highest Precision(Duration) Highest F-measure(Duration)
WMM – – – 0.26 (0.23) 0.22 (0.23)
Magisto – – – 0.44 (0.14) 0.21 (0.14)
OC-SVM 0.080 0.38 0.54 0.53 (0.09) 0.40 (0.19)
Sparse 0.098 0.36 0.60 0.43 (0.04) 0.41 (0.80)
Proposed1 0.175 0.42 0.69 0.53 (0.10) 0.51 (0.38)
Proposed2 0.152 0.43 0.71 0.57 (0.15) 0.54 (0.40)

Table 2. Quantitative performance comparison.

5 Conclusion

We proposed a feature-based event summarization method using an unsuper-
vised logistic classifier framework for detecting frames which depart from the
overall distribution of frames in the video. We showed promising performance
on different types of datasets. In designing this approach, we deliberately limited
ourselves to the distribution of low-level features in order to test the feasibility
of the method. However, these features may not be sufficient to discern subtle
differences that make events unusual. One interesting direction is to combine
high-level descriptors, e.g., including the responses of action detectors in the
feature descriptor, with the current approach.
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