
Detecting Intrusions through System Call
Sequence and Argument Analysis

Federico Maggi, Student Member, IEEE, Matteo Matteucci, Member, IEEE, and

Stefano Zanero, Member, IEEE

Abstract—We describe an unsupervised host-based intrusion detection system based on system call arguments and sequences. We

define a set of anomaly detection models for the individual parameters of the call. We then describe a clustering process that helps to

better fit models to system call arguments and creates interrelations among different arguments of a system call. Finally, we add a

behavioral Markov model in order to capture time correlations and abnormal behaviors. The whole system needs no prior knowledge

input; it has a good signal-to-noise ratio, and it is also able to correctly contextualize alarms, giving the user more information to

understand whether a true or false positive happened, and to detect global variations over the entire execution flow, as opposed to

punctual ones over individual instances.

Index Terms—Intrusion detection, anomaly detection, behavior detection, Markov models.

Ç

1 INTRODUCTION

THE “misuse-based” approach to intrusion detection,
which tries to directly define and enumerate each

possible type of attack, is nowadays showing its limits. The
growing number of new vulnerabilities discovered everyday
and the unknown number of discovered but undisclosed
vulnerabilities (the so-called “zero-days”) makes the concept
of a “knowledge base of the attacks” increasingly inefficient
and hopelessly incomplete. The polymorphism of modern
attacks and the increasing number of targeted attacks,
designed to hit one particular system, further underline the
insufficiency of this traditional paradigm.

The obvious solution to this problem would be a shift
toward the paradigm of anomaly detection, modeling what
is normal instead of what is anomalous; this is surprisingly
similar to the earliest conceptions of what an IDS should do
[1]. Since then, a number of host-based anomaly detection
systems have been proposed in academic projects but have
been less useful than they were supposed to be in real-
world systems (with a few notable exceptions). This is
mainly due to two undesirable properties of such systems
in real-world applications: first, their signal-to-noise ratio
turns out to be lower than it is when they are benchmarked
on well-known data sets; second, they do not usually help
the user in understanding what is wrong, giving just a
measure of “abnormality” as output.

In this paper, we propose a novel host-based IDS, which
uses the sequence as well as the parameters of the system
calls executed by a process to identify anomalous behaviors.
The use of system calls as anomaly indicators is well
established in literature (e.g., in [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], and [14]), usually without handling

their parameters (with the notable exceptions of [15], [16],
and [17]). We can identify at least four key novel
contributions of this paper:

. we build and carefully test anomaly detection
models for system call parameters, in a similar
way to [15];

. we introduce the concept of clustering arguments in
order to automatically infer different ways to use the
same system call; this leads to more precise models
of normality on the arguments;

. the same concept of clustering also creates correla-
tions among the different parameters of the same
system call, which is not present in any form in [15],
[16], and [17];

. a traditional detection approach, based on deviations
from previously learned Markov models of se-
quences, is complemented with the concept of
clustering; the sequence of system calls is trans-
formed into a sequence of labels (i.e., classes of calls):
this is conceptually different than what has been
done in other works (such as [16]), where sequences
of events and single events by themselves are both
taken into account but in an orthogonal way.

The resulting model is also able to correctly contextualize
alarms, providing the user with more information to
understand what caused any false positive, and to detect
variations over the execution flow, as opposed to variations
over single system call. We also discuss in depth how we
performed the implementation and the evaluation of the
prototype, trying to identify and overcome the pitfalls
associated with the usage of the IDEVAL data set.

The remainder of this paper is organized as follows: In
Section 2, we describe previous related works; in Section 3,
we analyze SyscallAnomaly, an earlier prototype, and
describe the issue we identified in it. Section 4 presents
our system. In Section 5, we analyze the performance of our
prototype. Finally, in Section 6, we draw our conclusions
and outline some future extensions of this work.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010 381

. The authors are with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, via Ponzio 34/5, 20133 Milano, Italy.
E-mail: {fmaggi, matteucc, zanero}@elet.polimi.it.

Manuscript received 18 Apr. 2007; revised 16 Jan. 2008; accepted 30 Oct.
2008; published online 5 Nov. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2007-04-0055.
Digital Object Identifier no. 10.1109/TDSC.2008.69.

1545-5971/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

2 HOST-BASED INTRUSION DETECTION: STATE OF

THE ART

Due to space limitations, we do not even attempt to review
all of the previous literature on intrusion detection, focusing
only on works dealing with host-based intrusion detection
and, in particular, with anomaly detection over system
calls. We refer the reader to [18] for a more comprehensive
and taxonomic review.

Anomaly detection has been part of intrusion detection
since its very inception: it already appears in the seminal
work by Anderson [1]. However, Denning was the first to
actually define a set of statistical characterization techniques
for events, variables, and counters such as the CPU load and
the usage of certain commands [19]. At that time, obviously,
host-based techniques were the focus, and a wide literature
ensued. Some works used more complex, purely statistical
techniques [20], [21], sometimes with very interesting
results. Most of these works, however, do not take into
account a sequence of events but either just atomic events or
systemwide variables.

Other early studies focused on terminal-based access to
shared servers, using the sequence of commands ran by
users as a data source and trying to find out masqueraders.
For instance, neural networks have been used to analyze
interactive user sessions [22]. Another interesting approach
[23] uses a command/user incidence matrix, which is
searched for structural zeroes representing rare commands.
In [24], a multilayer perceptron is trained to recognize buffer
overflows in arguments passed to a vulnerable program on
the command line. A common critique that can be drawn
against many published works in this particular area is the
fact that nowadays users do not interactively login on
remote systems as much as in the past.

Artificial immune system have been proposed as a
computational approach for solving a wide range of
problems [25], among which intrusion detection [18], [26].
While these approaches never became mainstream, they
often dealt with system call sequences and usage as one of
the key indicators of the interactions between programs and
operating systems.

The first mention of intrusion detection through the
analysis of the sequence of syscalls from system processes
is in [2], where “normal sequences” of system calls (similar
to n-grams) are considered (ignoring the parameters of
each invocation). A similar idea was presented earlier in
[27], but with the assumption that it would be possible to
manually describe the canonical sequence of calls of each
and every program, something evidently impossible in
practice. However, an interesting element of this paper is
that it takes into account the values of the arguments of
syscalls. Variants of [2] have been proposed in [3] and [4].
This type of techniques has also been proposed for reactive
components [5].

An inductive rule generator called RIPPER [6] has been
proposed for analyzing sequences of syscalls and extract-
ing rules describing normal sequences of system calls [7],
[28]. Alternative, supervised approaches based on data
mining are presented in [29]. These approaches have the
advantage of giving insights on how the features can be
selected, how they interact with each other, and on the
appropriate models to fit them. On the other hand, they
cannot be used online to protect running systems but just
in a batch, forensics mode.

The use of hidden Markov models (HMMs) has also been
proposed to model sequences of system calls [8]. In [30],
HMMs are compared with the models used in [5], [28], and
[31] and shown to perform considerably better, even if with
an added computational overhead; unfortunately, the data
sets used for the comparative evaluation are no longer
available for comparison. Using Markov chains instead of
hidden models decreases this overhead, as observed in [9].
In [32], we proposed a general Bayesian framework for
behavior detection based on hints drawn from the quantita-
tive methods of ethology and behavioral sciences.

Alternatively, other authors proposed to use static
analysis, as opposed to dynamic learning, to profile a
program’s normal behavior. Finite state automata have been
used to express the language of the system calls of a program,
using deterministic [10] or nondeterministic [11] automata,
or other representations, such as a call graph [12]. Giffin et al.
[13] developed a different version of this approach, based on
the analysis of the binaries and integrating the execution
environment as amodel constraint. However, in [14], HMMs
are observed to perform considerably better than static
analysis models.

It is remarkable that none of these methods analyzes
either the arguments or the return values of the system
calls. This is due to the inherent complexity of the task,
but undoubtedly the arguments contain a wide range of
information that can be useful for intrusion detection. For
instance, mimicry attacks [33] can evade the detection of
syscall sequence anomalies, but it is much harder to devise
ways to cheat both the analysis of sequence and arguments.
Three recent research works began to focus on this problem.
In [15], a number of models are introduced to deal with the
most common arguments, without caring for the sequence
of system calls. This is the work we discuss in depth and
extend in our paper.

In [16], the Learning Rules for Anomaly Detection
(LERAD) algorithm is used to mine rules expressing
“normal” values of arguments, normal sequences of system
calls, or both. No relationship is learned among the values
of different arguments; sequences and argument values are
handled separately; the evaluation is quite poor, however,
and uses nonstandard metrics. A much more interesting
approach is presented in [17], where a data-flow anomaly
detection framework is developed, which learns rules
describing the flow of information between the arguments
of system calls. This approach has really interesting proper-
ties, among which the fact that not being stochastic useful
properties can be demonstrated in terms of detection
assurance. On the other hand, though, the set of relation-
ships that can be learned is limited (whereas the use of
unsupervised learning models such as the ones we propose
in this paper can lead to the discovery of previously
unknown relationships). The relations are all deterministic,
which leads to a brittle detection model potentially prone to
false positives. Finally, it does not discover any type of
relationship between different arguments of the same call.

3 SYSTEM CALL ARGUMENT ANALYSIS:
THE LIBANOMALY FRAMEWORK

LibAnomaly [15], [34] is a library created to implement
anomaly detection models. Using this library, a system
called SyscallAnomaly has been implemented, which can

382 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

detect anomalies by analyzing system call arguments. Both
have been developed by the Reliable Software Group,
University of California at Santa Barbara. In the remainder
of this section, we briefly describe these projects, to let the
reader better understand the improvements we suggest.

3.1 The LibAnomaly Framework

In LibAnomaly, a generic anomaly detection model is
characterized by the following properties:

. a number of elements from a training set can be
added to the model during a training phase;

. there is an algorithm to create the model out of a
given training set; and

. for any given (new) input, we can calculate a
likelihood rating (i.e., the probability of it being
generated by the model).

A confidence rating can also be computed at training time
for any model, by determining how well it fits its training
set; this value can be used at runtime to provide additional
information on the reliability of the model. By using cross
validation, an overfitting rating can also be optionally
computed. The four basic types of models implemented
by LibAnomaly are the String Length model, the Character
Distribution model, the Structural Inference model, and the
Token Search model.

The String Length model computes, from the strings
seen in the training phase, the sample mean � and
variance �2 of their lengths. In the detection phase, given l,
the length of the observed string, the likelihood p of the
input string length with respect to the values observed
in training is equal to one if l < �þ � and �2

ðl��Þ2
otherwise.

The Character Distribution model analyzes the discrete
probability distribution of characters in a string. At training
time, the so-called ideal character distribution is estimated
[34]: each string is considered as a set of characters, which
are inserted into a histogram, in decreasing order of
occurrence, with a classical rank order/frequency repre-
sentation. During the training phase, a compact representa-
tion of mean and variance of the frequency for each rank is
computed. For detection, a �2 Pearson test returns the
likelihood that the observed string histogram comes from
the learned model.

The Structural Inference model tries to learn the
structure of strings. These are simplified before the analysis,
using the following translation rules: ½A� Z� ! A,
½a� z� ! a, ½0� 9� ! 0. In other words, uppercase char-
acters, lowercase characters, and numbers are lumped
together, while other characters are kept. Finally, multiple
occurrences of the same character are simplified. For
instance, /usr/lib/libc.so is translated into /aaa/

aaa/aaaa.aa and further compressed into /a/a/a.a.
Strings that after this compression are still longer than
40 characters are ignored by the model, perhaps for
simplification. Accepted strings are used to generate a
probabilistic grammar by means of a Markov model
induced by exploiting a Bayesian merging procedure, as
described in [35] and [36]. However, suchmerging is heavily
dependent on the choice of a good prior for the Bayesian
model, and this choice is not well documented in the
literature of LibAnomaly. Curiously, the probability values
associated with such Markov models (which create a sort of
probabilistic grammar) are ignored in the detection phase.

More precisely, the compressed string is compared with the
Markov model; if the string can be generated by the model
(i.e., the product of the probabilities of the traversed
transitions has a value greater than 0), a probability of 1 is
returned, otherwise 0 is returned. This choice is probably
motivated by the fact that the different length of the
observed strings would otherwise bias the probabilities
returned by the model. The approach avoids the penaliza-
tion of longer observations against shorter ones. We found a
similar problem in our algorithm for threshold probability
calculation over sequences of system calls: as detailed in
Section 4.4, we addressed such issues by means of an
appropriately chosen scaling function.

The Token Search model is applied to arguments that
contain flags or modes. During training, this model uses a
statistical test to determine whether or not an argument
contains a finite set of values. The core idea (drawn from
[37]) is that if the set is finite, then the number of different
arguments in the training set will grow in a much slower
way than the total number of samples. This is tested using a
Kolgomorov-Smirnov nonparametric test. If the field con-
tains a set of tokens, the set of values observed during
training is stored. During detection, if the field has been
flagged as a token, the input is compared against the stored
value list. If it matches a former input, the model returns 1,
else it returns 0, without regard to the relative frequency of
the tokens in the training data.

3.2 SyscallAnomaly

SyscallAnomaly uses LibAnomaly’s models to create a
profile of system calls for each different application. For each
execution of an application, the input of SyscallAnomaly is a
sequence of system calls, S ¼ ½s1; s2; s3; . . .�, logged by the
operating system. Each system call si is characterized by a
type, a list of arguments, a return value, and a timestamp.

During the training phase, SyscallAnomaly generates a
profile for each possible system call type (e.g., read; write;
exec; . . .), for each application (e.g., sendmail;telnetd; . . .).
It does not take into account the sequence with which the
system calls happen. This profile strives to capture the
normal behavior of a program, by “learning” the normal
arguments of each system call type inside that program, by
the means of a set of models, as described above. During the
detection phase, the stored models return the likelihood of a
particular value of an argument for a system call, based on
previous observations of that system call in the context of
the same application during training.

Each model operates independently on each argument of
the system call. As detailed in the following, the probabil-
ities are then aggregated to compute the total probability
value of a system call; if this value is lower than a threshold,
the call is flagged as anomalous. The threshold is computed
by incrementing the maximum anomaly value over the
whole training set of a user-defined percentage, which is a
sensitivity parameter used to tune the system.

Basically, SyscallAnomaly bases its structure on two
major assumptions:

. Attacks actually appear in, and have some effect on,
system call arguments, rather than on their se-
quence. Attacks that do not alter the content of
system calls, but just their sequence, are undetect-
able by such a system.

MAGGI ET AL.: DETECTING INTRUSIONS THROUGH SYSTEM CALL SEQUENCE AND ARGUMENT ANALYSIS 383

. Anomalous system call arguments differ from
training values more than training values differ
among themselves. Thus, the ability of detecting
anomalies, even if the first assumption is satisfied,
depends on the efficacy of at least a few of the
various individual models built upon arguments to
detect outliers (separately, since no correlation
among models is taken into account).

As we will show in the following, the first assumption
proves to be too strong. Some attacks are detectable by
means of parameter content only, some by means of
sequence only, and some can be detected only by combin-
ing the two methods. The second assumption is more
sound, but we demonstrate that correlation among different
parameters of the same system call improves the ability to
model normality and detect outliers.

In SyscallAnomaly, arguments are modeled according
to their expected content. If the expected content is a file
system path, the String Length, Character Distribution, and
Structural Inference models are used (collectively named
“PathFactory”). If the expected content is a token (i.e., a
flag, an opening mode, a UID or GID, and so on), the
Token Search model is used instead (“FlagFactory”). A list
of all the modeled system calls, along with the type of
modeled values, is reported in Table 1.

In [15], during the detection phase, the probability value
for each call is obtained by computing the probability
values for each of the models of each argument and then
aggregating these models using

P ðcÞ ¼

P

8m2M cm � logðpmÞ

jMj
;

whereM is the set of storedmodels, cm is the confidence, and
pm is the model probability. On the other hand, in the
extended version proposed in [34], the authors aggregate the
values using a Bayesian network, showing an improvement
in the detection rates. However, since in this work we focus
on the improvement of the base models and on the addition
of time correlation, our work is pretty much independent
of the anomaly score aggregation method. Additionally, the

improved version of the software is not generally available
for testing. Since a large number of nonobvious configura-
tion parameters (namely the Conditional Probability Table
values) need to be properly chosen in order to replicate the
results, and in [34], these values are not given, we chose to
work on the original version of LibAnomaly/SyscallAno-
maly, which is both simpler and readily available for
download. The focus of our work, as already stated, is the
improvement of models, the clustering of system calls, and
the introduction of a Markovian model for time correlation.
All of our improvements could be integrated with the
proposed Bayesian framework in a very straightforward
manner.

Not all system calls are modeled in these systems, nor
in ours. Out of more than 280 syscalls implemented in
Linux, only 22 are considered, because they are the only
ones that are invoked enough times to generate signifi-
cant profiles yet are sufficiently characterized to generate
meaningful models.

4 BEYOND SYSCALLANOMALY: OUR PROPOSAL

Analyzing both the theoretical foundations described in [15]
and [34] and the results of our tests, in this paper, we propose
an alternative system, which implements some of the ideas
of SyscallAnomaly along with clustering, Markovian-based
modeling, and behavior identification.

4.1 A Constructive Critique of SyscallAnomaly

In order to replicate the original tests of SyscallAnomaly, we
used thehost-based auditingdata inBSMformat contained in
the (IDEVAL) data set (which we describe more in depth in
Section 5.1). For now, it is sufficient to note that we used the
BSM audit logs from the system named pascal.eyr-

ie.af.mil, which runs a Solaris 2.5.1 operating system. The
data set contains 25 buffer overflow attacks against
four different applications: eject, fdformat, ps, and
ffbconfig (not tested). We used data from weeks one and
three for training and data from weeks four and five for
testing the detection phase. However, it must be noted that
some attacks are not directly detectable through system call
analysis. The most interesting attacks for testing SyscallAno-
maly are the ones inwhich an attacker exploits a vulnerability
in a local or remote service to allow an intruder to obtain or
escalate privileges.

In addition to the programs named above, we ran
SyscallAnomaly also on three other programs, namely ftpd,
sendmail, and telnetd, which are known not to be subject
to any attack in the data set, in order to better evaluate the
false positive rate of the system. In Table 2, we compare our
results with the released version of SyscallAnomaly [38] to
reproduce the results reported in [15].

384 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

TABLE 1
Recorded Syscalls and Applied Models in SyscallAnomaly

TABLE 2
Evaluation of SyscallAnomaly on the IDEVAL Data Set

As can be seen, our results are different from those
reported in [15], but the discrepancy can be explained by a
number of factors:

. the version of SyscallAnomaly and LibAnomaly
available online could be different from or older
than the one used for the published tests;

. several parameters can be tuned in SyscallAnomaly,
and adifferent tuning couldproduce different results;

. part of the data in the IDEVAL data set under
consideration are corrupted or malformed;

. in [15], it is unclear if the number of false positives is
based on the number of executions erroneously
flagged as anomalous or on the number of anom-
alous syscalls detected.

These discrepancies make a direct comparison difficult, but
our numbers confirm that Syscall Anomaly performs well
overall as a detector.

Studying in detail each false and true positive we were
able to understand how and where SyscallAnomaly fails
and to devise several improvements over it. To give a brief
example of the process we went through, let us consider
eject: it is a very plain, short program, used to eject
removable media on UNIX-like systems; it has a very
simple and predictable execution flow, and thus, it is
straightforward to characterize; dynamic libraries are
loaded, the device vol@0:volctl is accessed, and finally,
the device unnamed_floppy is accessed.

The data set contains only one kind of attack against
eject, a buffer overflow with command execution (see
Table 3). The exploit is evident in the execve system call,
since the buffer overflow is exploited from the command
line. Many of the models in SyscallAnomaly are able to
detect this problem: the character distribution model, for
instance, performs quite well. The anomaly value turns
out to be 1.316, much higher than the threshold (0.0012).
The String Length and Structural Inference models flag
this anomaly as well, but interestingly, they are mostly
ignored since their confidence value is too low. The
confidence value for the TokenSearch model is 0, which in

SyscallAnomaly convention means that the field is not
recognized as a token. This is actually a shortcoming of
the association of models with parameters in SyscallAno-
maly, because the “filename” argument is not really a
token.

A false positive happens when a removable unit, unseen
during training, is opened (see Table 3). The Structural
Inferencemodel is the culprit of the false alert, since the name
structure is different from the previous one for the presence
of an underscore. As we will see later on, the extreme
brittleness of the transformation and simplification model is
the main weakness of the Structural Inference model.

Another alert happens in the opening of a localization
file (Table 4), which triggers the string length model and
creates an anomalous distribution of characters; moreover,
the presence of numbers, underscores, and capitals creates a
structure that is flagged as anomalous by the Structural
Inference model. The anomaly in the Token Search model is
due to the fact that the open mode (-r-xr-xr-x) is not
present in any of the training files. This is not an attack but
is the consequence of the buffer overflow attack and as such
is counted as a true positive. However, it is more likely to be
a lucky, random side effect.

Without getting into similar details for all the other
programs we analyzed (details of which can be found in
[39]), let us summarize our findings. ps is a jack-of-all-
trades program to monitor process execution and as such is
much more articulated in its options and execution flow
than any of the previously analyzed executables. However,
the sequence of system calls does not vary dramatically
depending on the user-specified options: besides library
loading, the program opens /tmp/ps_data and the files
containing process information in /proc. Also, in this case,
attacks are buffer overflows on a command-line parameter.
In this case, as was the case for fdformat, a correlated
event is also detected, the opening of file /tmp/foo instead
of file /tmp/ps_data. Both the Token Search model and
the Structural Inference model flag an anomaly, because the
opening mode is unseen before and because the presence of
an underscore in /tmp/ps_data makes it structurally
different from /tmp/foo. However, if we modify the
exploit to use /tmp/foo_data, the Structural Inference
model goes quiet. A false positive happens when ps is
executed with options lux, because the Structural Inference
model finds this usage of parameters very different from
-lux (with a dash) and, therefore, strongly believes this to
be an attack. Another false positive happens when a zone
file is opened, because during training no files in zoneinfo

were opened. In this case, it is very evident that the
detection of the opening of the /tmp/foo file is more of
another random side effect than a detection, and in fact, the

MAGGI ET AL.: DETECTING INTRUSIONS THROUGH SYSTEM CALL SEQUENCE AND ARGUMENT ANALYSIS 385

TABLE 3
A True Positive and a False Positive on eject

TABLE 4
True Positive on fdformat: Opening Localization File

model that correctly identifies it also creates false positives
for many other instances.

In the case of in.ftpd, a common FTP server, a variety
of commands could be expected. However, because of the
shortcomings of the IDEVAL data set (see Section 5.1
below), the system call flow is fairly regular. After access to
libraries and configuration files, the logon events are
recorded into system log files, and a vfork call is then
executed to create a child process to actually serve the client
requests. In this case, the false positives mostly happen
because of the opening of files never accessed during
training, or with “unusual modes.”

sendmail is a really complex program, with complex
execution flows that include opening libraries and config-
uration files, accessing the mail queue (/var/spool/

mqueue), transmitting data through the network and/or
saving mails on disk. Temporary files are used, and the
setuid call is also used, with an argument set to the
recipient of the message (for delivery to local users). A false
positive happens for instance when sendmail uses UID

2133 to deliver amessage. In training, that particularUIDwas
not used, so the model flags it as anomalous. Since this can
happen in the normal behavior of the system, it is evidently a
generic problem with the modeling of UIDs as it is done in
LibAnomaly. Operations in /var/mail are flagged as
anomalous because the filenames are similar to /var/

mail/emonca000Sh, and thus, the alternation of lower and
upper case characters and numbers easily triggers the
Structural Inference model.

We outlined different cases of failure of SyscallAnomaly.
But, what are the underlying reasons for these failures? The
Structural Inference model turns out to be the weakest one.
It is too sensitive against nonalphanumeric characters, since
they are not altered nor compressed: therefore, it reacts
strongly against slight modifications that involve these
characters. This becomes visible when libraries with
variable names are opened, as it is evident in the false
positives generated on the ps program. On the other hand,
the compressions and simplifications introduced are ex-
cessive and cancel out any interesting feature: for instance,
the strings /tmp/tempfilename and /etc/shadow are
indistinguishable by the model. Another very surprising
thing, as we already noticed, is the choice of ignoring the
probability values in the Markov model, turning it into a
binary value (0 if the string cannot be generated, 1 other-
wise). This assumes an excessive weight in the total
probability value, easily causing a false alarm. To verify
our intuition, we reran the tests excluding the Structural
Inference model: the detection rate is unchanged, while the
false positive rate strongly diminishes, as shown in Table 5
(once again, both in terms of global number of alerts and of

flagged system calls). Therefore, the Structural Inference
model is not contributing to detection; instead, it is just
causing a growth in the anomaly scores, which could lead
to an increased number of false positives. The case of
telnetd is particularly striking: excluding the Structural
Inference model makes all the false positives disappear.

The Character Distribution model is much more reliable
and contributes positively to detection. However, it is not
accurate about the particular distribution of each character,
and this can lead to possible mimicry attacks. For instance,
executing ps -[x) has a very high probability, because it
is indistinguishable from the usual form of the command
ps -axu.

The Token Search model has various flaws. First of all, it
is not probabilistic, as it does not consider the relative
probability of the different values. Therefore, a token with
1,000 occurrences is considered just as likely as one with a
single occurrence in the whole training set. This makes the
training phase not robust against the presence of outliers or
attacks in the training data set. Additionally, since the
model is applied only to fields that have been determined
beforehand to contain a token, the statistical test is not
useful: in fact, in all our experiments, it never had a single
negative result. It is also noteworthy that the actual
implementation of this test in [38] differs from what is
documented in [15], [34], and [37].

Finally, the String Length model works very well, even
if this is in part due to the artifacts in the data set, as we
describe in Section 5.1.

4.2 Improving SyscallAnomaly

We can identify and propose three key improvements over
SyscallAnomaly. First, we redesign improved models for
anomaly detection on arguments, focusing on their
reliability. Over these improved models, we introduce a
clustering phase to create correlations among the various
models on different arguments of the same syscall:
basically, we divide the set of the invocations of a single
system call into subsets, which have arguments with a
higher similarity. This idea arises from the consideration
that some system calls do not exhibit a single normal
behavior but a plurality of behaviors (ways of use) in
different portions of a program. For instance, as we will see
in the next sections, an open syscall can have a very
different set of arguments when used to load a shared
library or a user-supplied file. Therefore, the clustering step
aims to capture relationships among the values of various
arguments (e.g., to create correlations among some file-
names and specific opening modes). In this way, we can
achieve better characterization.

Finally, we introduce a sequence-based correlation
model through a Markov chain. This enables the system
to detect deviations in the control flow of a program, as well
as abnormalities in each individual call, making evident the
whole anomalous context that arises as a consequence, not
just the single point of an attack. The combination of these
improvements solves the problems we outlined in the
previous sections, and the resulting prototype outperforms
SyscallAnomaly, achieving also a better generality.

4.3 Clustering of System Calls

We applied a hierarchical agglomerative clustering algo-
rithm to find, for each system call, subclusters of invocation

386 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

TABLE 5
Behavior of SyscallAnomaly with and without

the Structural Inference Model

with similar arguments; we are interested in creating
models on these clusters, and not on the general system
call, in order to better capture normality and deviations.
This is important because, as can be seen from Table 6, in
the IDEVAL data set the single system call open constitutes
up to 95 percent of the calls performed by a process. Indeed,
open is probably the most used system call on UNIX-like
systems, since it opens a file or device in the file system and
creates a handle (descriptor) for further use. open has three
parameters: the file path, a set of flags indicating the type of
operation (e.g., read-only, read-write, append, create if
nonexisting, and so forth), and an optional opening mode,
which specifies the permissions to set in case the file is
created. Only by careful aggregation over these parameters
we may divide each “polyfunctional” system call into
“subgroups” that are specific to a single functionality.

We used a single-linkage, bottom-up agglomerative
technique. Conceptually, such an algorithm initially as-
signs each of the N input elements to a different cluster
and computes an N �N distance matrix D. Distances
among clusters are computed as the minimum distance
between an element of the first cluster and an element of
the second cluster. The algorithm progressively joins the
elements i and j such that Dði; jÞ ¼ minðDÞ. D is updated
by substituting i and j rows and columns with the row and
column of the distances between the newly joined cluster
and the remaining ones. The minimum distance between
two different clusters dstop;min is used as a stop criterion, in
order to prevent the clustering process from lumping all of
the system calls together; moreover, a lower bound dstop;num
for the number of final clusters is used as a stop criterion
as well. If any of the stop criteria is satisfied, the process is
stopped. The time complexity of a naive implementation is
roughly OðN2Þ. This would be too heavy, in both time and
memory. Besides introducing various tricks to speed up
our code and reduce memory occupation (as suggested in
[40]), we introduced a heuristic to reduce the average
number of steps required by the algorithm. Basically, at
each step, instead of joining just the elements at minimum
distance dmin, also all the elements that are at a distance
d < �dmin from both the elements at minimum distance are
joined, where � is a parameter of the algorithm. In this
way, groups of elements that are very close together are
joined in a single step, making the algorithm (on average)
much faster, even if worst-case complexity is unaffected.
Table 7 indicates the results measured in the case of
dstop;min ¼ 1 and dstop;num ¼ 10; we want to recall that these
timings, seemingly very high, refer to the training phase
and not to the runtime phase.

The core step in creating a good clustering is of course the
definition of the distance among different sets of arguments.

We proceed by comparing corresponding arguments in the
calls, and for each couple of arguments a, we compute

da ¼
Kð�Þ þ �ð�Þ�ð�Þ; if the elements are different;

0; otherwise;

�

ð1Þ

where Kð�Þ is a fixed quantity that creates a “step” between
different elements, while the second term is the real
distance between the arguments �ð�Þ, normalized by a
parameter �ð�Þ. Note that the above formula is a template:
the use of “ð�Þ” denotes that such variables are parametric
with respect to the type of argument; how Kð�Þ, �ð�Þ, and �ð�Þ
are computed will be detailed below for each type of
argument. The distance between two different system calls,
i and j, is computed as the sum of distances among
corresponding arguments Dði; jÞ ¼

P

a2A da (where A is the
set of system call arguments).

Hierarchical clustering, however, creates a problem for
the detection phase, since there is no concept similar to the
“centroid” of partitioning algorithms that can be used for
classifying new inputs, and reclustering the whole data set
after each new input is computationally unfeasible. Thus,
we need to generate, from each cluster, a “representative
model” that can be used to cluster (or classify) further
inputs. This is a well-known problem that needs a creative
solution. For each type of argument, we decided to develop
a stochastic model that can be used to this end.

These models should be able to associate a probability to
inputs, i.e., to generate a probability density function that can
be used to state the probability with which the input
belongs to the model. As we will see, in most cases, this will
be in the form of a discrete probability, but more complex
models such as HMMs will also be used. Moreover, a
concept of distance must be defined between each model
and the input. The model should be able to “incorporate”
new candidates during training and to slowly adapt in
order to represent the whole cluster. It is important to note
that it is not strictly necessary for the candidate model and
its distance functions to be the same used for clustering
purposes. It is also important to note that the clustering
could be influenced by the presence of outliers (such as
attacks) in the training set. This could lead to the formation
of small clusters of anomalous call instances. As we will see
in Section 4.4, this does not challenge the ability of the
overall system to detect anomalies.

As previously stated, at least four different types of
arguments are passed to system calls: pathnames and
filenames, discrete numeric values, arguments passed to
programs for execution, users and group identifiers (UIDs
and GIDs). For each type of argument, we designed a
representative model and an appropriate distance function.
In Table 8, we summarize the association of the models
described above with the arguments of each of the system
calls we take into account.

MAGGI ET AL.: DETECTING INTRUSIONS THROUGH SYSTEM CALL SEQUENCE AND ARGUMENT ANALYSIS 387

TABLE 6
Percentage of open Syscalls and Number of

Executions (per Program) in the IDEVAL Data Set

TABLE 7
Execution Times with and without the Heuristic (and in
Parenthesis, Values Obtained by Performance Tweaks)

Pathnames and filenames are very frequently used in
system calls. They are complex structures, rich of useful
information and, therefore, difficult to model properly. A
first interesting information is commonality of the path,
since files residing in the same branch of the file system are
usually more similar than the ones in different branches.
Usually, inside a path, the first and last directories carry the
most significance. If the filename has a similar structure to
other filenames, this is indicative: for instance, common
prefixes in the filename, such as the prefix lib, or common
suffixes such as the extensions.

For the clustering phase, we chose to reuse a very simple
model already present in SyscallAnomaly, the directory tree
depth. This is easy to compute and experimentally leads to
fairly good results even if very simple. Thus, in (1), we set �a
to be the distance in depth. For example, let Kpath ¼ 5

and �path ¼ 1; comparing /usr/lib/libc.so and /etc/

passwd, we obtain da¼5þ1 � 1¼6, while comparing /usr/

lib/libc.so and /usr/lib/libelf.so.1, we
obtain da ¼ 0.

After clustering has been done, we represent the path
name of the files of a cluster with a probabilistic tree, which
contains all thedirectories involvedwith aprobabilityweight
for each. For instance, if a cluster contains: /usr/lib/

libc.so.1, /usr/lib/libelf.so.1, /usr/local/

lib/libintl.so.1, the generated tree will be as in Fig. 1.
Filenames are usually too variable, in the context of a

single cluster, to allow a meaningful model to be always
created. However, we chose to set up a systemwide
threshold below which the filenames are so regular that
they can be considered a model, and thus, any other
filename can be considered an anomaly. The probability
returned by the model is therefore PT ¼ Pt � Pf , where Pt is
the probability that the path has been generated by the
probabilistic tree and Pf is set to 1 if the filename model is
not significant (or if it is significant and the filename
belongs to the learned set) and to 0 if the model is
significant and the filename is outside the set.

Discrete numeric values such as flags, opening modes, and
so forth are usually chosen from a limited set. Therefore, we
can store all of them along with a discrete probability. Since
in this case two values can only be “equal” or “different,”

we set up a binary distance model for clustering, where the
distance between x and y is

da ¼
Kdisc; if x 6¼ y;

0; if x ¼ y

�

and Kdisc, as usual, is a configuration parameter. In this
case, model fusion and incorporation of new elements are
straightforward, as well as the generation of probability for
a new input to belong to the model.

We also noticed that execution argument (i.e., the argu-
ments passed to the execve syscall) are difficult to model,
but we found the length to be an extremely effective
indicator of similarity of use. Therefore, we set up a binary
distance model, where the distance between x and y is

da ¼
Karg; if jxj 6¼ jyj;
0; if jxj ¼ jyj

�

denoting with jxj the length of x and with Karg a
configuration parameter. In this way, arguments with the
same length are clustered together. For each cluster, we
compute the minimum and maximum values of the length
of arguments. Fusion of models and incorporation of new
elements are straightforward. The probability for a new
input to belong to the model is 1 if its length belongs to the
interval, and 0 otherwise.

Many arguments express UIDs or GIDs, so we developed
an ad hoc model for user and group identifiers. Our
reasoning is that all these discrete values have three
different meanings: UID 0 is reserved to the super-user,
low values usually are for system special users, while real
users have UIDs and GIDs above a threshold (usually
1,000). So, we divided the input space in these three groups
and computed the distance for clustering using the
following formula:

da ¼
Kuid; if belonging to different groups;

0; if belonging to the same group

�

and Kuid, as usual, is a user-defined parameter. Since UIDs
are limited in number, they are preserved for testing,
without associating a discrete probability to them. Fusion of
models and incorporation of new elements are straightfor-
ward. The probability for a new input to belong to the
model is 1 if the UID belongs to the learned set, and
0 otherwise.

This model-based clustering is somehow error prone
since we would expect obtained centroids to be more
general and thus somehow to interfere when clustering
either new or old instances. To double-check this possible
issue, we follow a simple process:

1. creation of clusters on the training data set;
2. generation of models from each cluster; and

388 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

TABLE 8
Association of Models to Syscall Arguments in Our Prototype

Fig. 1. Probabilistic tree example.

3. use of models to classify the original data set into
clusters and check that inputs are correctly assigned
to the same cluster they contributed to create.

This is done both for checking the representativeness of the
models and to double-check that the different distances
computed make sense and separate between different
clusters. Table 9 shows, for each program in the IDEVAL
data set (considering the representative open system call),
the percentage of inputs correctly classified and a con-
fidence value, computed as the average “probability to
belong” computed for each element with respect to the
cluster it helped to build. The results are almost perfect, as
expected, with a lower value for the ftpd program, which
has a wider variability in filenames.

4.4 Characterizing Process Behavior

In order to take into account the execution context of each
system call, we use a first-order Markov chain to represent
the program flow. The model states represent the system
calls, or better they represent the various clusters of each
system call, as detected during the clustering process. For
instance, if we detected three clusters in the open syscall
and two in the execve syscall, then the model will be
constituted by five states: open1, open2, open3, execve1,
execve2. Each transition will reflect the probability of
passing from one of these groups to another through the
program. As we already observed in Section 2, this
approach was investigated in former literature but never
in conjunction with the handling of parameters and with a
clustering of system calls based on such parameters.

During training, each execution of the program in the
training set is considered as a sequence of observations.
Using the output of the clustering process, each syscall is
classified into the correct cluster, by computing the
probability value for each model and choosing the cluster
whose models give out the maximum composite prob-
ability along all known models: maxð

Q

i2M PiÞ. The prob-
abilities of the Markov model are then straightforward to
compute. The final results can be similar to what is shown
in Fig. 2. On a first sight, this could resemble a simple
Markov chain; however, it should be noticed that each of
the state of this Markov model could be mapped into the set
of possible cluster elements associated to it. From this
perspective, it could be seen as a very specific HMM where
states are fully observable through a uniform emission
probability over the associated syscalls. By simply turning
the clustering algorithm into one with overlapping clusters,
we could obtain a proper HMM description of the user
behavior, as it would be if we decide to further merge states
together. This is actually our ongoing work toward full
HMM behavior modeling with the aim, through over-
lapping syscalls clustering, of improving the performance
of the classical Baum-Welch algorithm and solving the issue

of HMM hidden space cardinality selection [41]. From our
experiments, in the case of the simple traces like the ones
found in the IDEVAL data set, the simpler model we use is
sufficient, so we are working on obtaining more complex
and realistic scenarios before attempting to improve the
proposed algorithm.

This type of model is resistant to the presence of a limited
number of outliers (e.g., abruptly terminated executions or
attacks) in the training set, because the resulting transition
probabilities will drop near zero. For the same reason, it is
also resistant to the presence of any cluster of anomalous
invocations created by the clustering phase. Therefore, the
presence of a minority of attacks in the training set will not
adversely affect the learning phase, which in turn does not
require then an attack-free training set.

For detection, three distinct probabilities can be com-
puted for each executed syscall: the probability of the
execution sequence inside the Markov model up to now, Ps;
the probability of the syscall to belong to the best-matching
cluster, Pc; the last transition probability in the Markov
model, Pm.

The latter two probabilities can be combined into a
probability of the single syscall, Pp ¼ Pc � Pm, keeping a
separate value for the “sequence” probability Ps. In order
to set appropriate threshold values, we use the training
data, compute the lowest probability over all the data set
for that single program (both for the sequence probability
and for the punctual probability), and set this (eventually
modified by a tolerance value) as the anomaly threshold.
The tolerance can be tuned to trade off detection rate for
false positive rate.

During detection, each system call is considered in the
context of the process. The cluster models are once again
used to classify each syscall into the correct cluster as
explained above: therefore, Pc ¼ maxð

Q

i2M PiÞ, where Ps

and Pm are computed from the Markov model and require
our system to keep track of the current state for each
running process. If either Ps or Pp ¼ Pc � Pm are lower than
the anomaly threshold, the process is flagged as malicious.

It is important to note that, given an l-long sequence of
system calls, its sequence probability is PsðlÞ ¼

Ql
i¼0 PpðiÞ,

where PpðiÞ 2 ½0; 1� is the probability of the ith system call
in the sequence. Therefore, it is self-evident that
liml!þ1 PsðlÞ ¼ 0. Experimentally, we observed that the
sequence probability quickly decreases to zero, even for
short sequences (on the IDEVAL data set, we found that
PsðlÞ ’ 0 for l � 25). This leads to a high number of false
positives, since many sequences are assigned probabilities
close to zero (thus, always lower than any threshold value).

MAGGI ET AL.: DETECTING INTRUSIONS THROUGH SYSTEM CALL SEQUENCE AND ARGUMENT ANALYSIS 389

TABLE 9
Cluster Validation Process

Fig. 2. Example of a Markov model (transition probability is 1.00 unless

specified).

To overcome this shortcoming, we implemented two

“scalings” of the probability calculation, both based on

the geometric mean. As a first attempt, we computed

PsðlÞ¼
ffi

Ql
i¼1 PpðiÞ

l

q

, but in this case, P½liml!þ1 PsðlÞ¼

e�1�¼1.

Proof. Let GðPpð1Þ; . . . ; PpðlÞÞ ¼
ffi

Ql
i¼1 PpðiÞ

l

q

be the geo-

metric mean of the sample Ppð1Þ; . . . ; PpðlÞ. If we assume

that the sample is generated by a uniform distribution

(i.e., Ppð1Þ; . . . ; PpðlÞ � Uð0; 1Þ), then logPpðiÞ � Eð� ¼ 1Þ

8i ¼ 1; . . . ; l: this can be proven by observing that the

Cumulative Distribution Function (CDF) [42] of logX (with

X ¼ Pp � Uð0; 1Þ) is equal to the CDF of an exponentially

distributed variable with � ¼ 1.

The arithmetic mean Að�Þ of the sample � logðPpð1ÞÞ;

. . . ;� logðPpðlÞÞ converges (in probability) to � ¼ 1 for

l ! þ1, that is,

P lim
l!þ1

1

l

X

l

i¼1

� logPpðiÞ ¼ �� ¼ �1

" #

¼ 1

because of the strong law of large numbers.

Being the geometric mean GðPpð1Þ; . . . ; PpðlÞÞ ¼

ð
Ql

i¼1 PpðiÞÞ
1
l ¼ e

1
l

Pl

i¼1
� logPpðiÞ, we have

P lim
l!þ1

e
1
l

Pl

i¼1
� logPpðiÞ

� �

¼ e�� ¼ e�1

� �

¼ 1:

tu

This is not our desired result, so we modified this

formula to introduce a sort of “forgetting factor”:

PsðlÞ ¼
ffi

Ql
i¼1 PpðiÞ

i2l

q

. In this case, we can prove that

P½liml!þ1 PsðlÞ ¼ 0� ¼ 1.

Proof. The convergence of PsðlÞ to zero can be proven by
observing that

PsðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

l

i¼1

PpðiÞ
il

v

u

u

t

0

@

1

A

1
2

¼ e
1
l

Pl

i¼1
i�logPpðiÞ

� �1
2

¼ e
1
l

Pl

j¼0

Pl�j

i¼1
logPpðiÞ

� 	� �1
2

¼ e

Pl

j¼0

1
l

Pl

i¼1
logPpðiÞ�

1
l

Pl

i¼l�jþ1
logPpðiÞ

 �

 !

1
2

:

Because of the previous proof, we can write that

P lim
l!þ1

1

l

X

l

i¼1

logPpðiÞ ¼ �1

" #

¼ 1:

We can further observe that, being logPpðiÞ < 0,

8j; l > 0 :
X

l

i¼1

logPpðiÞ <
X

l

i¼l�jþ1

logPpðiÞ;

therefore, the exponent is an infinite sum of negative

numbers, leading us to the result that, in probability

lim
l!þ1

e

Pl

j¼0

1
l

Pl

i¼1
logPpðiÞ�

1
l

Pl

i¼l�jþ1
logPpðiÞ

 �

 !

1
2

¼ lim
x!�1

ex¼0:

tu

Even if this second variant once again makes PsðlÞ ! 0

(in probability), our experiments have shown that this effect
is much slower than in the original formula: PsðlÞ ’ 0 for
l � 300 (versus l � 25 of the previous version), as shown in
Fig. 3. In fact, this scaling function also leads to much better
results in terms of false positive rate (see Section 5).

A possible alternative, which we are currently exploring,
is the exploitation of distance metrics between Markov
models [35], [36] to define robust criteria for comparing new
and learned sequence models. Basically, the idea is to create
and continuously update a Markov model associated to the
program instance being monitored and to check how much
such a model differs from the ones the system has learned
for the same program. This approach is complementary to
the one proposed above, since it requires long sequences to
get a proper Markov model. So, the use of both criteria
(sequence likelihood in short activations and model
comparison in longer ones) could lead to a reduction of
false positives on the sequence model.

4.5 Prototype Implementation

We implemented the above described system into a two-
stage, highly configurable, modular architecture written in
ANSI C. The high-level structure is depicted in Fig. 4: the
Detection module implements the core IDS functionalities,
Compressor is in charge of the clustering phase while
BehaviorModeler implements Markov modeling features.
Both Compressor and BehaviorModeler are used in both
training phase and detection phase, as detailed below.

The Compressor module implements abstract clustering
procedures alongwith abstract representation and storage of
generated clusters. The BehaviorModeler is conceptually
similar to Compressor: it has a basic Markov chain imple-
mentation, along with ancillary modules for model handling
and storage.

390 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

Fig. 3. Measured sequence probability (log) versus sequence length,

comparing the original calculation and the second variant of scaling.

During training, Compressor is invoked to create the
clusters on a given system call trail while BehaviorModeler
infers the Markov model according to the clustering. At
running time, for each system call, Detection uses Cluster-
Manager to find the appropriate cluster; it also invokes
MarkovManager to follow the actual behavior of the
monitored process: if significant deviations are found, the
AlertManager is triggered and alarms are fired and logged
accordingly.

The AlertManager can output to both standard output,

syslog facilities and IDMEF files. Both the clustering phase

and the behavioral analysis are multithreaded and inter-

mediate results of both procedures can be dumped in XML.

5 RESULT ANALYSIS

In this section, we both compare the detection accuracy of

our proposal and analyze the performances of the running

prototype we developed. Because of the known issues of

IDEVAL (plus our findings reported in the following), we

also collected fresh training data and new attacks to further

prove that our proposal is promising in terms of accuracy.

5.1 Regularities in Host-Data of IDEVAL

A well-known problem in IDS research is the lack of reliable
sources of test data. The “DARPA IDS Evaluation data set”
or IDEVAL is basically the only data set of this kind, which
is freely available along with truth files; in particular, we
used the 1999 data set [43]. These data are artificially
generated and contain both network and host auditing data.
A common question is how realistic these data are. Many
authors already analyzed the network data of the 1999 data
set, finding many shortcomings [44], [45]. Our own analysis
[39] of the 1999 host-based auditing data revealed that this
part of the data set is all but immune from problems. The
first problem is that in the training data sets there are too
few execution instances for each software, in order to
properly model its behavior, as can be seen in Table 6. Out
of (just) six programs present, for two (fdformat and
eject), only a handful of executions is available, making
training unrealistically simple.

The number of system calls used is also extremely
limited, making execution flows very plain. Additionally,
most of these executions are similar, not covering the full
range of possible execution paths of the programs (thus
causing overfitting of any anomaly model). For instance, in
Fig. 5, we have plotted the frequency of the length (in
system calls) of the various executions of telnetd on the

training data. The natural clustering of the data in a few
groups clearly shows how the executions of the program
are sequentially generated with some script and suffer of a
lack of generality.

System call arguments show the same lack of variability:
in all the training data sets, all the arguments of the system
calls related to telnetd belong to the following set:

fork; :so:1; utmp; wtmp; initpipe; exec; netconfig;

service door; : zero; logindmux; pts:

The application layer also contains many flaws. For
instance, the FTP operations (30 sessions on the whole) use a
very limited subset of file (on average, two per session) and
are performed always by the same users on the same files,
for a limitation of the synthetic generator of these operations.
In addition, during training, no uploads or idle sessions
were performed. Command executions are also highly
predictable: for instance, one script always execute a cycle
composed of cat, mail, mail again, and at times lynx,
sometimes repeated twice. The same happens (but in a
random order) for rm, sh, ps, and ls. In addition, a number
of processes have evidently crafted names (e.g., logout is
sometimes renamed lockout or log0ut); the same thing
happens with pathnames, which are sometimes different
(e.g., /usr/bin/lynx or /opt/local/bin/lynx), but an
analysis shows that they are the same programs (perhaps
symbolic links generated to create noise over the data).
The combination of the two creates interesting results such
as /etc/loKout or /opt/local/bin/l0gout. In a
number of cases, processes lynx, mail, and q have
duplicate executions with identical PID and timestamps,
and with different paths and/or different arguments; this is
evidently an inexplicable flaw of the data set. We also found
many program executions to be curiously meaningless. In
fact, the BSM traces of some processes contain just execve
calls, and this happens for 28 percent of the programs in the
testing portion data set (especially for those with a crafted
name, like loKout). It is obvious that testing a host-based
IDS with one-syscall-long sequences does not make a lot of
sense, not to talk about the relevance of training against such
sequences.

An additional problem is that since 1999, when this data
set was created, everything changed: the usage of network
protocols, the protocols themselves, the operating systems,
and applications used. For instance, all the machines
involved are Solaris version 2.5.1 hosts, which are evidently

MAGGI ET AL.: DETECTING INTRUSIONS THROUGH SYSTEM CALL SEQUENCE AND ARGUMENT ANALYSIS 391

Fig. 4. The high-level structure of our prototype.
Fig. 5. telnetd: distribution of the number of other system calls among

two execve system calls (i.e., distance between two consecutive

execve).

ancient nowadays. The attacks are similarly outdated: the
only attack technique used are buffer overflows, and all the
instances are detectable in the execve system call argu-
ments. Nowadays, attackers and attack type are much more
complex than this, operating at various layers of the network
and application stack, with a wide range of techniques and
scenarios that were just not imaginable in 1999.

To give an idea of this, we were able to create a detector
that finds all the buffer overflow attacks without any false
positive: a simple script that flags as anomalous any
argument longer than 500 characters can do this (because
all the overflows occur in the parsing of the command line,
which is part of the parameters of the execve system call
that originates the process). This is obviously unrealistic.

Other data sets exist (e.g., the DEFCON CTF packet
captures [46]), but they are not labeled and do not contain
“background traffic.” Thus, most existing researches on
network-based IDSs use the DARPA data sets for evalua-
tion. This is a crucial factor: any bias or error in the
DARPA data set has influenced, and will influence in the
future, the very basic research on this topic.

5.2 Experimental Setup

In order to avoid such shortcomings, besides the use of
IDEVAL for comparison purposes with SyscallAnomaly
(which was tested on that data set), we generated an
additional experimental data set for two frequently used
console applications (i.e., bsdtar and eject). We chose
two different buffer overflow exploits that allow to
execute arbitrary code. The exploit for the vulnerability of
mcweject 0.9 is public (http://www.milw0rm.com/
exploits/3578), while the exploit against bsdtar was
created by us and is based on a publicly disclosed
vulnerability in the PAX handling function of libarc-

hive2.2.3, which basically does not check the length of the
header of the parsed file, which is stored in a header field,
resulting in a heap overflow that allows code injection
through the creation of a malformed archive. As we detailed
in Section 4.3, our system can be tuned to avoid overfitting; in
the current implementation, such parameters can be speci-
fied for each system call, thus in the following, we report the
bounds of variations instead of listing all the single values:
dstop;num 2 f1; 2; 3g, dstop;min ¼ f6; 10; 20; 60g.

Our testing platform runs a vanilla installation of
FreeBSD 6.2 on an x86 machine; the kernel has been
recompiled enabling the appropriate auditing modules.
Since our systems, and other host-based anomaly detectors
[15], [34], accept input in the BSM format, the OpenBSM [47]
auditing tools collection has been used for collecting audit
trails. We have audited vulnerable releases of eject and
bsdtar, namely: mcweject 0.9 (which is an alternative to
the BSD eject) and the version of bsdtar, which is
distributed with FreeBSD 6.2.

The eject executable has a small set of command line
option and a very plain execution flow. For the simulation
of a legitimate user, we simply chose different permutations
of flags and different devices. For this executable, we
manually generated 10 executions, which are remarkably
similar (as expected).

Creating a data set of normal activity for the bsdtar

program is more challenging. It has a large set of
command line options and, in general, is more complex
than eject. While the latter is generally called with an

argument of /dev/*, the former can be invoked with any
argument string, for instance bsdtar cf myarchive.tar

/first/path /second/random/path is a perfectly
legitimate command line. Using a process similar to the
one used for creating the IDEVAL data set, and in fact
used also in other works such as [11], we prepared a shell
script that embeds pseudorandom behaviors of an average
user who creates or extracts archives. To simulate user
activity, the script randomly creates random-sized, ran-
dom-content files inside a snapshot of a real-world
desktop file system. In the case of the simulation of
super-user executions, these files are scattered around the
system; in the case of a regular user, they are into that
user’s own home directory. Once the file system has been
populated, the tool randomly walks around the directory
tree and randomly creates TAR archives. Similarly, found
archives are randomly expanded. The randomization takes
also into account the different use of flags made by users:
for instance, some users prefer to uncompress an archive
using tar xf archive.tar, many others still use the
dash tar -xf archive.tar, and so on.

In [17], a real Web and ssh server logs were used for
testing. While this approach yields interesting results, we
did not follow it for three reasons. First, in our country,
various legal concerns limit what can be logged on real-
world servers. Second, http and ssh are complex programs
where understanding what is correctly identified and what
is not would be difficult (as opposed to simply counting
correct and false alerts). Finally, such a data set would not
be reliable because of the possibility of the presence of real
attacks inside the collected logs (in addition to the attacks
inserted manually for testing).

5.3 Detection Accuracy

For the reasons outlined above in Section 5.1, as well as for
the uncertainty outlined in Section 4.1, we did not rely on
purely numerical results on detection rate or false positive
rates. Instead, we compared the results obtained by our
software with the results of SyscallAnomaly in the terms of
a set of case studies, comparing them singularly. What
turned out is that our software has two main advantages
over LibAnomaly:

. a better contextualization of anomalies, which lets
the system detect whether a single syscall has been
altered, or if a sequence of calls became anomalous
consequently to a suspicious attack;

. a strong characterization of subgroups with closer
and more reliable submodels.

As an example of the first advantage, let us analyze
again the program fdformat, which was already ana-
lyzed in Section 4.1. As can be seen from Table 10, our
system correctly flags execve as anomalous (due to an
excessive length of input). It can be seen that Pm is 1 (the
system call is the one we expected), but the models of the
syscall are not matching, generating a very low Pc. The
localization file opening is also flagged as anomalous for
two reasons: scarce affinity with the model (because of the
strange filename) and also erroneous transition between
the open subgroups open2 and open10. In the case of
such an anomalous transition, thresholds are shown as
“undefined” as this transition has never been observed in
training. The attack effect (chmod and the change of

392 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

permissions on /export/home/elmoc/.cshrc) and
various intervening syscalls are also flagged as anomalous
because the transition has never been observed ðPm ¼ 0Þ;
while reviewing logs, this also helps us in understanding
whether or not the buffer overflow attack has succeeded.
A similar observation can be done on the execution of
chmod on /etc/shadow ensuing an attack on eject.

In the case of ps, our system flags the execve system
call, as usual, for excessive length of input. File /tmp/foo

is also detected as anomalous argument for open. In
LibAnomaly, this happened just because of the presence of
an underscore and was easy to bypass. In our case, /tmp/
foo is compared against a subcluster of open, which
contains only the /tmp/ps_data, and therefore will flag as
anomalous, with a very high confidence, any other name,
even if structurally similar. A sequence of chmod syscalls,
which are executed inside directory /home/secret as a
result of the attacks, is also flagged as anomalous program
flows.

Limiting the scope to the detection accuracy of our
system, we performed several experiments with both eject

and bsdtar, and we summarize the results in Table 11. The
prototype has been trained with 10 different execution of
eject and more than a hundred executions of bsdtar. We

then audited eight instances of the activity of eject under
attack, while for bsdtar we logged seven malicious
executions. We report detection rates and false positive rates
with (Y) and without (N) the use of Markov models, and we
compute false positive rates using cross validation through
the data set (i.e., by training the algorithm on a subset of the
data set and subsequently testing the other part of the data
set). Note that, to better analyze the false positives, we
accounted for both false positive sequences (Seq.) and false
positive system calls (Call).

In both cases, using the complete algorithm yield a
100 percent detection rate with a very low false positive rate.
In the case of eject, the exploit is detected in the very
beginning: since a very long argument is passed to the
execve, this triggers the argument model. The detection of
the shellcode we injected exploiting the buffer overflow in
bsdtar is identified by the open of the unexpected
(special) file /dev/tty. Note that the use of thresholds
calculated on the overall Markov model allows us to achieve
a 100 percent detection rate in the case of eject; without
the Markov model, the attack would not be detected at all.

It is very difficult to compare our results directly with the
other similar systems we identified in Section 2. In [16], the
evaluation is performed on the DARPA data set, but
detection rates and false positive rates are not given (the
number of detections and false alarms is not normalized), so
a direct comparison is difficult. Moreover, detection is
computed using an arbitrary time window, and false alerts
are instead given in “alerts per day.” It is correspondingly
difficult to compare against the results in [17], as the
evaluation is ran over a data set that is not disclosed, using
two programs that are very different from the ones we use
and using a handful of exploits chosen by the authors.
Different scalings of the false positives and detection rates
also make a comparison impossible to draw.

As a side result, we tested the detection accuracy of the
two scaling functions we proposed for computing the
sequence probability Ps. As shown in Fig. 6, the first and
second variants both show lower false positive rate with
respect to the original, unscaled version.

5.4 Performance Measurements

An IDS should not introduce significant performance
overheads in terms of the time required to classify events
as malicious (or not). An IDS based on the analysis of
system calls has to intercept and process every single syscall
invoked on the operating system by user-space applica-
tions; for this reason, the fastest a system call is processed,
the best. We profiled the code of our system with gprof

and valgrind for CPU and memory requirements. We ran
the IDS on data drawn from the IDEVAL 1999 data set
(which is sufficient for performance measurements, as in
this case we are only interested in the throughput and not in
realistic detection rates).

In Table 12, we reported the measurement of perfor-
mance on the five working days of the first week of the data
set for training and of the fourth week for testing. The
throughput X varies during training between 6,120 and
10,228 syscalls/s. The clustering phase is the bottleneck in
most cases, while the Markov model construction is
generally faster. Due to the clustering step, the training
phase is memory consuming: in the worst case, we recorded
a memory usage of about 700 Mbytes. The performance

MAGGI ET AL.: DETECTING INTRUSIONS THROUGH SYSTEM CALL SEQUENCE AND ARGUMENT ANALYSIS 393

TABLE 10
fdformat: Attack and Consequences

TABLE 11
Detection Rates and False Positive Rates on Two Test
Programs, with (Y) and without (N) Markov Models

observed in the detection phase is of course even more

important: in this case, it varies between 12,395 and

22,266 syscalls/s. Considering that the kernel of a typical

machine running services such as HTTP/FTP on average

executes system calls in the order of thousands per second

(e.g., around 2,000 system calls per second for wu-ftpd

[34]), the overhead introduced by our IDS is noticeable but

does not severely impact system operations overall.

6 CONCLUSIONS

In this paper, we have described a novel host-based IDS

based on the analysis of system call arguments and

sequence. We analyzed previous literature on the subject

and found that there exists only a handful of works that

take into account the anomalies in syscall arguments. We

improved the models suggested in one of these works, we

added a stage of clustering in order to characterize normal

invocations of calls and to better fit models to arguments,

and finally, we complemented it with Markov models in

order to capture correlation between system calls.
We outlined a number of new shortcomings in the

IDEVAL data set, demonstrating that (similarly to the

known problems in the network data) the execution traces

for system call analysis are too simple and predictable, not

covering enough programs, nor exploring different types of

executions. In addition, the data set is hopelessly outdated,

both in terms of attacks and of background operations. We

outlined how we validated our results in order to obviate

such glaring deficiencies of the data set. We showed how

the prototype is able to correctly contextualize alarms,

giving the user more information to understand what

caused any false positive, and to detect variations over the

execution flow, as opposed to punctual variations over

single instances. We also demonstrated its improved

detection capabilities and a reduction of false positives.

The system is auto-tuning and fully unsupervised, even if a

range of parameters can be set by the user to improve the

quality of detection.
A possible future extension of this work is the analysis of

complementary approaches (such as Markov model mer-

ging or the computation of distance metrics) to better detect

anomalies in the case of long system call sequences, which

we identified as a possible source of false positives.

ACKNOWLEDGMENTS

The authors would like to thank, for a number of ideas,

Davide Balzarotti, Giuliano Casale, William Robertson, and

Prof. Ilenia Epifani. The authors would also like to thank

Prof. Giovanni Vigna for his comments on former drafts of

this work, Emanuele Oriano for proofreading, and the

reviewers for their constructive comments. Davide Vene-

ziano, Matteo Debiasi, and Matteo Falsitta supported this

work with software development and testing.

REFERENCES

[1] J.P. Anderson, “Computer Security Threat Monitoring and
Surveillance,” technical report, J.P. Anderson, Apr. 1980.

[2] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A
Sense of Self for Unix Processes,” Proc. IEEE Symp. Security and
Privacy (S&P), 1996.

[3] J.B.D. Cabrera, L. Lewis, and R. Mehara, “Detection and
Classification of Intrusion and Faults Using Sequences of System
Calls,” ACM SIGMOD Record, vol. 30, no. 4, 2001.

[4] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection
Using Sequences of System Calls,” J. Computer Security, vol. 6,
pp. 151-180, 1998.

[5] A. Somayaji and S. Forrest, “Automated Response Using System-
Call Delays,” Proc. Ninth USENIX Security Symp., Aug. 2000.

[6] W.W. Cohen, “Fast Effective Rule Induction,” Proc. 12th Int’l Conf.
Machine Learning (ICML ’95), A. Prieditis and S. Russell, eds.,
pp. 115-123, July 1995.

[7] W. Lee and S. Stolfo, “Data Mining Approaches for Intrusion
Detection,” Proc. Seventh USENIX Security Symp., 1998.

[8] D. Ourston, S. Matzner, W. Stump, and B. Hopkins, “Applica-
tions of Hidden Markov Models to Detecting Multi-Stage
Network Attacks,” Proc. 36th Ann. Hawaii Int’l Conf. System
Sciences (HICSS-36 ’03), p. 334, 2003.

[9] S. Jha, K. Tan, and R.A. Maxion, “Markov Chains, Classifiers, and
Intrusion Detection,” Proc. 14th IEEE Workshop Computer Security
Foundations (CSFW ’01), p. 206, 2001.

[10] C.C. Michael and A. Ghosh, “Simple, State-Based Approaches to
Program-Based Anomaly Detection,” ACM Trans. Information and
System Security, vol. 5, no. 3, pp. 203-237, 2002.

[11] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A Fast
Automaton-Based Method for Detecting Anomalous Program
Behaviors,” Proc. IEEE Symp. Security and Privacy (S&P ’01),
pp. 144-155, 2001.

[12] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,”
Proc. IEEE Symp. Security and Privacy (S&P ’01), p. 156, 2001.

[13] J.T. Giffin, D. Dagon, S. Jha, W. Lee, and B.P. Miller,
“Environment-Sensitive Intrusion Detection,” Proc. Eighth Int’l
Symp. Recent Advances in Intrusion Detection (RAID ’05),
pp. 185-206, 2005.

[14] D.-Y. Yeung and Y. Ding, “Host-Based Intrusion Detection Using
Dynamic and Static Behavioral Models,” Pattern Recognition,
vol. 36, pp. 229-243, Jan. 2003.

394 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

Fig. 6. Comparison of performance of different probability scaling

functions.

TABLE 12
Training and Detection Throughput X

[15] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection of
Anomalous System Call Arguments,” Proc. European Symp.
Research in Computer Security (ESORICS ’03), Oct. 2003.

[16] G. Tandon and P. Chan, “Learning Rules from System Call
Arguments and Sequences for Anomaly Detection,” Proc. ICDM
Workshop Data Mining for Computer Security (DMSEC ’03),
pp. 20-29, 2003.

[17] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow Anomaly
Detection,” Proc. IEEE Symp. Security and Privacy (S&P ’06),
May 2006.

[18] R.G. Bace, Intrusion Detection. Macmillan, 2000.
[19] D.E. Denning, “An Intrusion-Detection Model,” IEEE Trans.

Software Eng., vol. 13, no. 2, pp. 222-232, Feb. 1987.
[20] M. Burgess, H. Haugerud, S. Straumsnes, and T. Reitan,

“Measuring System Normality,” ACM Trans. Computer Systems,
vol. 20, no. 2, pp. 125-160, 2002.

[21] N. Ye and Q. Chen, “An Anomaly Detection Technique Based
on a Chi-Square Statistic for Detecting Intrusions into Informa-
tion Systems,” Quality and Reliability Eng. Int’l, vol. 17, no. 2,
pp. 105-112, 2001.

[22] H. Debar, M. Becker, and D. Siboni, “A Neural Network
Component for an Intrusion Detection System,” Proc. IEEE Symp.
Research in Computer Security and Privacy, 1992.

[23] M. Theus and M. Schonlau, “Intrusion Detection Based on
Structural Zeroes,” Statistical Computing and Graphics Newsletter,
vol. 9, pp. 12-17, 1998.

[24] A.K. Gosh, J. Wanken, and F. Charron, “Detecting Anomalous and
Unknown Intrusions against Programs,” Proc. 14th Ann. Computer
Security Applications Conf. (ACSAC ’98), p. 259, 1998.

[25] J.C. Galeano, A. Veloza-Suan, and F.A. Gonz?lez, “A Comparative
Analysis of Artificial Immune Network Models,” Proc. 2005 Conf.
Genetic and Evolutionary Computation (GECCO ’05), pp. 361-368,
2005.

[26] S. Forrest, S.A. Hofmeyr, and A. Somayaji, “Computer Immunol-
ogy,” Comm. ACM, vol. 40, no. 10, pp. 88-96, 1997.

[27] C. Ko, G. Fink, and K. Levitt, “Automated Detection of
Vulnerabilities in Privileged Programs by Execution Monitoring,”
Proc. 10th Ann. Computer Security Applications Conf. (ACSAC ’94),
pp. 134-144, 1994.

[28] W. Lee, S.J. Stolfo, and P.K. Chan, “Learning Patterns from Unix
Process Execution Traces for Intrusion Detection,” Proc. AAAI97
Workshop AI Approaches to Fraud Detection and Risk Management,
pp. 50-56, http://citeseer.ist.psu.edu/lee97learning.html, 1997.

[29] W. Lee and W. Fan, “Mining System Audit Data: Opportunities
and Challenges,” ACM SIGMOD Record, vol. 30, no. 4, pp. 35-44,
2001.

[30] C. Warrender, S. Forrest, and B.A. Pearlmutter, “Detecting
Intrusions Using System Calls: Alternative Data Models,” Proc.
IEEE Symp. Security and Privacy (S&P ’99), pp. 133-145, 1999.

[31] S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri, “Self-Nonself
Discrimination in a Computer,” Proc. IEEE Symp. Security and
Privacy (S&P ’94), p. 202, 1994.

[32] S. Zanero, “Behavioral Intrusion Detection,” Proc. 19th Int’l
Symp. Computer and Information Sciences (ISCIS ’04), pp. 657-666,
Oct. 2004.

[33] D. Wagner and P. Soto, “Mimicry Attacks on Host-Based
Intrusion Detection Systems,” Proc. Ninth ACM Conf. Computer
and Comm. Security (CCS ’02), pp. 255-264, 2002.

[34] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous System
Call Detection,” ACM Trans. Information and System Security, vol. 9,
no. 1, pp. 61-93, 2006.

[35] A. Stolcke and S. Omohundro, “Hidden Markov Model Induction
by Bayesian Model Merging,” Advances in Neural Information
Processing Systems. Morgan Kaufmann, vol. 5, pp. 11-18, 1993.

[36] A. Stolcke and S.M. Omohundro, “Inducing Probabilistic Gram-
mars by Bayesian Model Merging,” Proc. Second Int’l Colloquium on
Grammatical Inference and Applications (ICGI ’94), pp. 106-118, 1994.

[37] S.Y. Lee, W.L. Low, and P.Y. Wong, “Learning Fingerprints for a
Database Intrusion Detection System,” Proc. Seventh European
Symp. Research in Computer Security (ESORICS ’02), pp. 264-280,
2002.

[38] LibAnomaly, http://www.cs.ucsb.edu/~rsg/libAnomaly, 2008.
[39] S. Zanero, “Unsupervised Learning Algorithms for Intrusion

Detection,” PhD dissertation, Politecnico diMilano T.U., May 2006.
[40] G.H. Golub and C.F.V. Loan, Matrix Computations, third ed. Johns

Hopkins Univ. Press, 1996.

[41] L.R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” Proc. IEEE,
vol. 77, pp. 257-286, 1989.

[42] W.R. Pestman, Mathematical Statistics: An Introduction. Walter de
Gruyter, 1998.

[43] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba, and K. Das, “The
1999 DARPA Off-Line Intrusion Detection Evaluation,” Computer
Networks, vol. 34, no. 4, pp. 579-595, 2000.

[44] J. McHugh, “Testing Intrusion Detection Systems: A Critique of
the 1998 and 1999 DARPA Intrusion Detection System Evaluations
as Performed by Lincoln Laboratory,” ACM Trans. Information and
System Security, vol. 3, no. 4, pp. 262-294, 2000.

[45] M.V. Mahoney and P.K. Chan, “An analysis of the 1999 DARPA/
Lincoln Laboratory Evaluation Data for Network Anomaly
Detection,” Proc. Sixth Int’l Symp. Recent Advances in Intrusion
Detection (RAID ’03), pp. 220-237, Sept. 2003.

[46] Shmoo Group, Capture the CTF, http://cctf.shmoo.com 2008.
[47] R.N.M. Watson and W. Salamon, “The FreeBSD Audit System,”

Proc. UKUUG Ann. Large Installation Systems Administration Conf.
(LISA ’06), Mar. 2006.

Federico Maggi received the MSc (“Laurea
Specialistica”) degree in computer engineering
from the Politecnico di Milano in 2006. He is
currently a PhD candidate in the Dipartimento di
Elettronica e Informazione, Politecnico di Milano
and a visiting research scholar at theUniversity of
California at Santa Barbara. His current research
interests includes the security of computer
systems and statistical data analysis. He is a
member of the Information Systems Security

Association (ISSA) and a student member of the IEEE and the IEEE
Computer Society.

Matteo Matteucci received the MSc (Laurea)
degree from the Politecnico di Milano in 1999, the
MS degree in knowledge discovery and data
mining from Carnegie Mellon University in 2002,
and the PhD degree in computer engineering and
automation from the Politecnico di Milano in
2003. He is an assistant professor (“Ricercatore”)
in the Dipartimento di Elettronica e Informazione,
Politecnico di Milano. His current research
interests are focused on robotics and machine

learning, mainly applying, in a practical way, techniques for adaptation
and learning to autonomous systems. His research is in adaptive color
models, robust tracking for video surveillance, reactive robot control,
behavior modeling, intrusion detection, autonomous robots, and learning
machines (i.e., neural network, decision trees, mixture models, and so
forth). He is a member of the IEEE.

Stefano Zanero received the MSc (Laurea)
degree in computer engineering and the PhD
degree in computer engineering from the
Politecnico di Milano in 2002 and 2006, respec-
tively. He is currently an assistant professor
(“Ricercatore”) in the Dipartimento di Elettronica
e Informazione, Politecnico di Milano. His
research interests include intrusion detection,
Web application security, and computer virol-
ogy. He is a board member of the Journal in

Computer Virology and has served as a reviewer for many primary
international journals and conferences. He is a member of the IEEE, the
IEEE Computer Society (for which he has been elected in 2008 as the
vice chair of the Italy chapter), the ACM, and Information Systems
Security Association (ISSA; for which he has been serving since 2005
in the board of the Italy chapter and since 2008 in the International
Board of Directors).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MAGGI ET AL.: DETECTING INTRUSIONS THROUGH SYSTEM CALL SEQUENCE AND ARGUMENT ANALYSIS 395

