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Abstract

We address the problem of detecting irregularities in vi-

sual data, e.g., detecting suspicious behaviors in video se-

quences, or identifying salient patterns in images. The term

“irregular” depends on the context in which the “regular”

or “valid” are defined. Yet, it is not realistic to expect

explicit definition of all possible valid configurations for

a given context. We pose the problem of determining the

validity of visual data as a process of constructing a puz-

zle: We try to compose a new observed image region or

a new video segment (“the query”) using chunks of data

(“pieces of puzzle”) extracted from previous visual exam-

ples (“the database”). Regions in the observed data which

can be composed using large contiguous chunks of data

from the database are considered very likely, whereas re-

gions in the observed data which cannot be composed from

the database (or can be composed, but only using small

fragmented pieces) are regarded as unlikely/suspicious. The

problem is posed as an inference process in a probabilistic

graphical model. We show applications of this approach to

identifying saliency in images and video, and for suspicious

behavior recognition.

1 Introduction

Detection of irregular visual patterns in images and in

video sequences is useful for a variety of tasks. Detect-

ing suspicious behaviors or unusual objects is important for

surveillance and monitoring. Identifying spatial saliency in

images is useful for quality control and automatic inspec-

tion. Behavioral saliency in video is useful for drawing the

viewer’s attention.

Previous approaches to recognition of suspicious behav-

iors or activities can broadly be classified into two classes

of approaches: rule-based methods (e.g., [7]) and statistical

methods without predefined rules (e.g., [10, 12]). The statis-

tical methods are more appealing, since they do not assume

a predefined set of rules for all valid configurations. In-

stead, they try to automatically learn the notion of regularity

from the data, and thus infer about the suspicious. Never-

theless, the representations employed in previous methods

have been either very restrictive (e.g., trajectories of moving

objects [10]), or else too global (e.g., a single small descrip-

tor vector for an entire frame [12]).

In this paper we formulate the problem of detecting reg-

ularities and irregularities as the problem of composing

(explaining) the new observed visual data (an image or a

video sequence, referred to below as ”query”) using spatio-

temporal patches extracted from previous visual examples

(the ”database”). Regions in the query which can be com-

posed using large contiguous chunks of data from the exam-

ple database are considered likely. The larger those regions

are, the greater the likelihood is. Regions in the query which

cannot be composed from the example database (or can be

composed, but only using small fragmented pieces) are re-

garded as unlikely/suspicious. Our approach can thus infer

and generalize from just a few examples, about the valid-

ity of a much larger context of image patterns and behav-

iors, even if those particular configurations have never been

seen before. Local descriptors are extracted from small im-

age or video patches (composed together to large ensembles

of patches), thus allowing to quickly and efficiently infer

about subtle but important local changes in behavior (e.g.,

a man walking vs. a man walking while pointing a gun).

Moreover, our approach is capable of simultaneously iden-

tifying a valid behavior in one portion of the field of view,

and a suspicious behavior in a different portion the field of

view, thus highlighting only the detected suspicious regions

within the frame, and not the entire frame. Such examples

are shown in Section 6.

Inference from image patches or fragments has been pre-

viously employed in the task of class-based object recogni-

tion (e.g. [4, 1, 3]). A small number of informative frag-

ments have been learned and preselected for a small num-

ber of pre-defined classes of objects. However, class-based

representations cannot capture the overwhelming number of

possibilities of composing unknown objects or behaviors in

a scene, and are therefore not suitable for our underlying

task of detecting irregularities.

Our approach can also be applied for detecting saliency

in images and in video sequences. For example, given a

single image with no prior information, we can measure

the “validity” of each image region (the “query”) relative to



(a) A query image: (b) Inferring the query from the database:

(c) The database with the corresponding regions of support: (d) An ensembles-of-patches

(more flexible and efficient):

Figure 1. The basic concept – Inference by Composition. A region in the query image is considered likely if it has a

large enough contiguous region of support in the database. New valid image configurations can thus be inferred from the database,

even though they have never been seen before.

the remaining portions of the same image (the “database”

used for this particular query). An image region will be de-

tected as salient if it cannot be explained by anything sim-

ilar in other portions of the image. Similarly, given a sin-

gle video sequence (with no prior knowledge of what is a

normal behavior), we can detect “salient behaviors” as be-

haviors which cannot be supported by any other dynamic

phenomena occurring at the same time in the video.

Previous approaches for detecting image saliency

(e.g., [6]) proposed measuring the degree of dissimilarity

between an image location and its immediate surrounding

region. Thus, for example, image regions which exhibit

large changes in contrast are detected as salient image re-

gions. Their definition of “visual attention” is derived from

the same reasoning. Nevertheless, we believe that the no-

tion of saliency is not necessarily determined by the im-

mediate surrounding image regions. For example, a single

yellow spot on a black paper may be salient. However, if

there are many yellow spots spread all over the black pa-

per, then a single spot will no longer draw our attention,

even though it still induces a large change in contrast rela-

tive to its surrounding vicinity. Our approach therefore sug-

gests a new and more intuitive interpretation of the term

“saliency”, which stems from the inner statistics of the en-

tire image. Examples of detected spatial saliency in images

and behavioral saliency in video sequences are also shown

in Section 6.

Our paper therefore offers four main contributions:

1. We propose an approach for inferring and generalizing

from just a few examples, about the validity of a much larger

context of image patterns and behaviors, even if those par-

ticular configurations have never been seen before.

2. We present a new graph-based Bayesian inference al-

gorithm which allows to efficiently detect large ensembles

of patches (e.g., hundreds of patches), at multiple spatio-

temporal scales. It simultaneously imposes constraints on

the relative geometric arrangement of these patches in the

ensemble as well as on their descriptors.

3. We propose a new interpretation to the term “saliency”

and “visual attention” in images and in video sequences.

4. We present a single unified framework for treating sev-

eral different problems in Computer Vision, which have

been treated separately in the past. These include: atten-

tion in images, attention in video, recognition of suspicious

behaviors, and recognition of unusual objects.

2 Inference by Composition

Given only a few examples, we (humans) have a notion

of what is regular/valid, and what is irregular/suspicious,

even when we see new configurations that we never saw

before. We do not require explicit definition of all possi-

ble valid configurations for a given context. The notion of

“regularity”/“validity” is learned and generalized from just

a few examples of valid patterns (of behavior in video, or

of appearance in images), and all other configurations are

automatically inferred from those.

Fig. 1 illustrates the basic concept underlying this idea

in the paper. Given a new image (a query – Fig. 1.a), we

check whether each image region can be explained by a



Figure 2. Detecting a matching ensemble of patches.

(a) A spatial ensemble: (b) A space-time ensemble:

(for queries on images) (for queries on video)

Figure 3. Ensembles of patches in images and video.

large enough contiguous region of support in the database

(see Figs. 1.b and 1.c). Although we have never seen a man

sitting with both arms raised, we can infer the validity of

this pose from the three database images of Fig. 1.c.

Thus, regions in the new observed data/query (an im-

age or a video sequence) which can be explained by large

contiguous chunks of data from the database are considered

very likely, whereas regions in the query which cannot be

explained by large enough database pieces are considered

unlikely or suspicious. When the visual query is an image,

then those chunks of data have only a spatial extent. When

the visual query is a video sequence, then those chunks of

data have both a spatial and a temporal extent.

3 Ensembles of Patches

Human behaviors and natural spatial structures never re-

peat identically. For example, no two people walk in the

same manner. One may raise his arms higher than the other,

or may just walk faster.

We therefore want to allow for small non-rigid defor-

mations (in space and in time) in our “pieces of puzzle”

(chunks of data). This is particularly true for large chunks

of data. To account for such local non-rigid deformations,

large chunks are broken down to an ensemble of lots of

small patches at multiple scales with their relative geomet-

ric positions. This is illustrated in Fig. 1.d. In the inference

process, we search for a similar geometric configuration of

patches with similar properties (of behavior, or of appear-

ance), while allowing for small local misalignments in the

relative geometric arrangement. This concept is illustrated

in Fig. 2. When the visual query is an image, then an ensem-

ble of patches is composed of spatial patches (see Fig. 3.a).

When the visual query is a video sequence, then the en-

semble of patches is composed of spatio-temporal patches

(see Fig. 3.b), which allows to capture information about

dynamic behaviors. In our current implementation, a single

ensemble typically contains hundreds of patches, simulta-

neously from multiple scales (multiple spatial scales in the

case of image patches, and multiple space-time scales in the

case of spatio-temporal patches).

While the idea of composing new data from example

patches was previously proven useful for a variety of tasks

(e.g., [2, 5, 11]), these methods did not impose any geomet-

ric restriction on the example patches used for construction,

i.e., their relative positions and distances in the database.

This was not necessary for their purpose. It is however cru-

cial here, for the purpose of detecting irregularities. Often,

the only real cue of information for distinguishing between

a likely and an unlikely phenomenon is the degree of frag-

mentation of its support in the database. For example, the

stretched arm of a man holding a gun is similar to an instan-

taneous stretching of the arm while walking, but its region

of support is very limited in time.

Capturing the geometric relations of patches was identi-

fied as being important for the task of class-based object

recognition [1, 4, 3, 8]. Those approaches are not suit-

able for our objective for two reasons: (i) Their geometric

configurations are restricted to a relatively small number of

patches, thus cannot capture subtle differences which are

crucial for detection of irregularities. (ii) Those configu-

rations were pre-learned for a small number of pre-defined

classes of objects, whereas our framework is applicable to

any type of visual data. While the geometric constraints of

[8] are more flexible, thus allowing to recognize new ob-



Figure 4. The probabilistic graphical model. Ob-

served variables are marked in “orange”; hidden database

variables are marked in “blue”. The directions of arrows

signify Bayesian dependencies (See text for more details).

ject configurations from just a few examples, their method

is still limited to a set of predefined object classes with pre-

defined object centers. This is not suitable for detecting ir-

regularities, where there is no notion of object classes.

“Video Google” [9] imposes geometric constraints

on large collections of non class-based descriptors, and

searches for them very efficiently. However, those descrip-

tors are spatial in nature and the search is restricted to indi-

vidual image frames, thus not allowing to capture behaviors.

In order for the inference to be performed in reasonable

times, information about the small patches and their rela-

tive arrangement must be efficiently stored in and extracted

from the database. For each small patch extracted from the

examples, a descriptor vector is computed and stored (see

below), along with the absolute coordinates of the patch

(spatial or spatio-temporal coordinates). Thus, the relative

arrangement of all patches in the image/video database is

implicitly available. Later, our inference algorithm takes an

ensemble of patches from the visual query and searches the

database for a similar configuration of patches (both in the

descriptors and in their relative geometric arrangement). To

allow for fast search and retrieval, those patches are stored

in a multi-scale data structure. Using a probabilistic graph-

ical model (Section 4), we present an efficient inference al-

gorithm (Section 5) for the ensemble search problem.

Patch descriptors are generated for each query patch and

for each database patch. The descriptors capture local infor-

mation about appearance/behavior. Our current implemen-

tation uses very simple descriptors, which could easily be

replaced by more sophisticated descriptors (e.g., “SIFT”):

The Spatial Image Descriptor of a small (e.g., 7× 7) spa-

tial patch is constructed as follows: The spatial gradient

magnitude is computed for each pixel in the patch. These

values are then stacked in a vector, which is normalized to

a unit length. Such descriptors are densely extracted for

each point in the image. This descriptor extraction process

is repeated in several spatial scales of the spatial Gaussian

pyramid of the image. Thus, a 7 × 7 patch extracted from a

coarse scale has a larger spatial support in the input image

(i.e., in the fine scale).

The Spatio-Temporal Video Descriptor of a small (e.g.,

7 × 7 × 4) spatio-temporal video patch is constructed from

the absolute values of the temporal derivatives in all pixels

of the patch. These values are stacked in a vector and nor-

malized to a unit length. This descriptor extraction process

is repeated in several spatial and temporal scales of a space-

time video pyramid. Thus, a 7×7×4 patch extracted from a

coarse scale has a larger spatial and larger temporal support

in the input sequence.

4 Statistical Formulation

Given a new visual query (an image or a video se-

quence), we would like to estimate the likelihood of each

and every point in it. This is done by checking the va-

lidity of a large region (e.g., 50 × 50 region in an image,

and 50 × 50 × 50 region in a video sequence) surround-

ing every pixel. The large surrounding region is broken into

lots (hundreds) of small patches at multiple scales (spatial

or spatio-temporal), and is represented by a single ensem-

ble of patches corresponding to that particular image/video

point. Let q1, q2, .., qn denote the patches in the ensemble

(see Fig. 3.a). Each patch qi is associated with two types

of attributes: (i) its descriptor vector di, and (ii) its location

in absolute coordinates li. We choose an arbitrary refer-

ence point c (e.g., the center of the ensemble – see Fig. 3.a),

which serves as the “origin” of the local coordinate system

(thus defining the relative positions of the patches within the

ensemble).

Let an observed ensemble of patches within the query be

denoted by y. We would like to compute the joint likelihood

P (x, y) that the observed ensemble y in the query is simi-

lar to some hidden ensemble x in the database (similar both

in its descriptor values of the patches, as well as in their

relative positions). We can factor the joint likelihood as:

P (x, y) = P (y|x)P (x). Our modelling of P (y|x) resem-

bles the probabilistic modelling of the “star graph” of [3].

However, in the class-based setting of [3] what is computed

is P (y; θ), where θ is a pre-learned set of parameters of a

given patch-constellation of an object-class. In our case,

however, there is no notion of objects, i.e., there is no prior

parametric modelling of the database ensemble x. Thus, θ is

undefined, and P (x) must be estimated non-parametrically

directly from the database of examples.

Let di
y denote the descriptor vector of the i-th observed

patch in y, and liy denote its location (in absolute coordi-

nates). Similarly, di
x denotes the descriptor vector of the i-

th hidden (database) patch in x, and lix denotes its location.

Let cy and cx denote the “origin” points of the observed and

hidden ensembles. The similarity between any such pair of

ensembles y and x is captured by the following likelihood:

P (x, y) = P (cx, d1

x, .., l1x, .., cy, d1

y, .., l1y, ..) (1)



(a) The database images (3 poses):

(b) Query images:

(c) Red highlights the detected “unfamiliar” image configurations (unexpected poses):

(d) Color-association of the inferred query regions with the database images (determined by MAP assignment):
(Uniform patches are assumed valid by default – for added speedup).

Figure 5. Detection of irregular image configurations. New valid poses are automatically inferred from the database

(e.g., a man sitting on the chair with both arms up, a man sitting on a chair with one arm up), even though they have never been seen

before. New pose parts which cannot be inferred from the three database images are highlighted in red as being “unfamiliar”.

In order to make the computation of the likelihood in Eq. (1)

tractable, we make some simplifying statistical assump-

tions. Given a hidden database patch and its descriptor di
x,

the corresponding observed descriptor di
y is assumed to be

independent of the other patch descriptors. (This is a stan-

dard Markovian assumption, e.g., [5], which is obviously

not valid in case of overlapping patches.) We model the

similarity between descriptors using a Gaussian distribu-

tion:

P
(

di
y|d

i
x

)

= α1 exp
(

−(di
y − di

x)T S−1

D (di
y − di

x)
)

(2)

where α1 is a constant, and SD is a constant covariance

matrix, which determines the allowable deviation in the de-

scriptor values. Given the relative location of the hidden

database patch (lix − cx), the relative location of the corre-

sponding observed patch (liy−cy) is assumed to be indepen-

dent of all other patch locations. This assumption enables

to compare the geometric arrangement of two ensembles of

patches with enough flexibility to accommodate for small

changes in viewing angle, scale, pose and behavior. Thus:

P
(

liy|l
i
x, cx, cy

)

= α2·

exp
(

−((liy − cy) − (lix − cx))T S−1

L ((liy − cy) − (lix − cx))
)

(3)

where α2 is a constant, and SL is a constant covariance ma-

trix, which captures the allowed deviations in the relative

patch locations. (In this case the dependency in relative lo-

cations was modelled using a Gaussian, however the model

is not restricted to that).

So far we modelled the relations between attributes

across ensembles (descriptors: di
y, di

x, and relative loca-

tions: liy − cy, lix − cx). We still need to model the re-

lations within the hidden ensemble, namely, the relations

between a patch descriptor di
x to its location lix. In the

general case, this relation is highly non-parametric, and

hence cannot be modelled analytically (in contrast to class-

based approaches, e.g. [4, 3]). Therefore, we model it



(a) The input image: (b) The computed saliency map (- log likelihood): (c) The detected salient regions:

Figure 6. Identifying salient regions in a single image (no database; no prior information). The Jack card was

detected as salient. Note that even though the diamond cards are different from each other, none of them is identified as salient.

non-parametrically using examples from the database:

P (dx|lx) =

{

1 (dx, lx) ∈ DB

0 otherwise
(4)

where dx and lx are an arbitrary descriptor and location.

We assume a uniform prior distribution for cx and cy

(local origin points), i.e., no prior preference for the location

of the ensemble in the database or in the query. The relation

between all the above-mentioned variables is depicted in the

Bayesian network in Fig. 4.

Thus, for an observed ensemble y and a hidden database

ensemble x, we can factor the joint likelihood P (x, y) of

Eq. (1) using Eqs. (2,3,4) as follows:

P (cx, d1

x, ..., l1x, ..., cy, d1

y, ..., l1y) =
α

∏

i

P (liy|l
i
x, cx, cy)P (di

y |d
i
x)P (di

x|l
i
x) (5)

5 The Inference Algorithm

Given an observed ensemble, we seek a hidden database

ensemble which maximizes its MAP (maximum a-posterior

probability) assignment. This is done using the above statis-

tical model, which has a simple and exact Viterbi algorithm.

According to Eq. (5) the MAP assignment can be written as:

max
X

P
(

cx, d1

x, ..., l1x, ..., cy, d1

y, ..., l1y
)

=

α
∏

i

max
li
x

P
(

liy|l
i
x, cx, cy

)

max
di

x

P
(

di
y|d

i
x

)

P
(

di
x|l

i
x

)

This expression can be phrased as a message passing (Be-

lief Propagation) algorithm in the graph of Fig. 4. First

we compute for each patch the message mi
dl passed from

node di
x to node lix regarding its belief in the location lix:

mi
dl

(

lix
)

= max
di

x

P
(

di
y|d

i
x

)

P
(

di
x|l

i
x

)

. Namely, for each

observed patch, compute all the candidate database loca-

tions lix with high descriptor similarity. Next, for each of

these candidate database locations, we pass a message about

the induced possible origin locations cx in the database:

mi
lc (cx) = max

li
x

P
(

liy|l
i
x, cx, cy

)

mdl

(

lix
)

. At this point,

we have a candidate list of origins suggested by each indi-

vidual patch. To compute the likelihood of an entire ensem-

ble assignment, we multiply the beliefs from all the individ-

ual patches in the ensemble: mc (cx) =
∏

i

mi
lc (cx).

The progressive elimination process: A naive implemen-

tation of the above message passing algorithm is very inef-

ficient, since independent descriptor queries are performed

for each patch in the observation ensemble, regardless of

answers to previous queries performed by other patches.

These patches are related by a certain geometric arrange-

ment. We therefore use this knowledge for an efficient

search by progressive elimination of the search space in the

database: We compute the message mi
dl for a small number

of patches (e.g., 1). The resulting list of possible candi-

date origins induces a very restricted search space for the

next patch. The next patch, in turn, eliminates additional

origins from the already short list of candidates, etc. In or-

der to speed-up the progressive elimination, we use trun-

cated Gaussian distributions (truncated after 4σ). Thus, if

n is the number of patches in the ensemble (e.g., 256), and

N is the number of patches in the database (e.g., 100, 000
patches for a one-minute video database), then the search

of the first patch is O(N). We keep only the best M can-

didate origins from the list proposed by the first patch (in

our implementation, M = 50). The second patch is now

restricted to the neighborhoods of M locations. The third

will be restricted to a much smaller number of neighbor-

hoods. Thus, in the worst case scenario, our complexity

is O(N) + O(nM) ≈ O(N). In contrast, the complexity

of the inference process in [3, 8] is O(nN), while the com-

plexity of the “constellation model” [4] is exponential in the

number of patches. The above proposed reduction in com-

plexity is extremely important for enabling video inference

with ensembles containing hundreds of patches.

Multi-scale search: To further speedup the elimination

process, we choose the first searched patches from a coarse



(a) The database sequence contains a short clip of a single person walking and jogging:

(b) Selected frames from the query sequence: (Colored frames = input; BW frames = output; Red=Suspicious)

(c) More frames from the query sequence... (Colored frames = input; BW frames = output; Red=Suspicious)

Figure 7. Detection of suspicious behaviors. New valid behavior combinations are automatically inferred from the

database (e.g., two men walking together, a different person running, etc.), even though they have never been seen before. behaviors

which cannot be inferred from the database clips are highlighted in red as being “suspicious”. For full videos see www.wisdom.

weizmann.ac.il/˜vision/Irregularities.html

scale, for two reasons: (i) There is a much smaller num-

ber of coarse patches in the database than fine patches (thus

decreasing the effective N in the first most intensive step),

and (ii) coarse patches are more discriminative because they

capture information from large regions. This eliminates

candidate origins very quickly. Nevertheless, there are cases

in which a valid ensemble cannot be explained in coarse

scales (e.g., due to partial occlusion). In these cases (which

are not very frequent), we repeat the elimination process

without the coarsest scale, starting with a finer-scale patch

as the first patch (but penalize the overall ensemble likeli-

hood score). This is done in order to distinguish between

these kind of ensembles and irregular (invalid) ensembles.

6 Applications

The approach presented in this paper gives rise to a vari-

ety of applications which involve detection of irregularities

in images and in videos:

1. Detecting Unusual Image Configurations: Given a

database of example images, we can detect unusual things

in a new observed image (such as objects never seen before,

new image patterns, etc.) An example is shown in Fig. 5.

Images of three different poses are provided as a database

(Fig. 5.a). Images of other poses are provided as queries

(Fig. 5.b). New valid poses (e.g., a man sitting on the chair

with both arms up, a man sitting on a chair with one arm up)

are automatically inferred from the database, even though

they have never been seen before. New pose parts which

cannot be inferred from the three database images are high-

lighted in red as being “unfamiliar” (Fig. 5.c). Fig. 5.d visu-

ally indicates the database image which provided most evi-

dence for each pixel in the query images (i.e., it tells which

database image contains the largest most probable region of

support for that pixel. Note, however, that these are not the

regions of support themselves). Uniform patches (with neg-

ligible image gradients) are assumed valid by default and

discarded from the inference process (for added speedup).

2. Spatial Saliency in a Single Image: Given a single

image (i.e., no database), salient image regions can be de-

tected, i.e., image regions which stand out as being different

than the rest of the image. This is achieved by measuring the

likelihood of each image region (the “query”) relative to the

remaining portions of the same image (the “database” used

for inferring this particular region). This process is repeated

for each image region. (This process can be performed effi-



A few sample frames from an input video (top row), and the corresponding detected behavioral saliency (bottom row):

Figure 8. Detecting salient behaviors in a video sequence (no database and no prior information). Saliency is

measured relative to all the other behaviors observed at the same time. In this example, all the people wave their arms, and one

person behaves differently. For full videos see www.wisdom.weizmann.ac.il/˜vision/Irregularities.html

ciently by adaptively adding and removing the appropriate

descriptors from the “database” when proceeding from the

analysis of one image region to the next). Such an example

is shown in Fig. 6. This approach can be applied to prob-

lems in automatic visual inspection (inspection of computer

chips, goods, etc.)

3. Detecting Suspicious Behaviors: Given a small

database of sequences showing a few examples of valid

behaviors, we can detect suspicious behaviors in a new

long video sequence. This is despite the fact that we have

never seen all possible combinations of valid behaviors

in the past, and have no prior knowledge of what kind

of suspicious behaviors may occur in the scene. These

are automatically composed and inferred from space-time

patches in the database sequence. An example is shown in

Fig. 7, which shows a few sample frames from a 2-minute-

long video clip, along with detected suspicious behaviors.

For full videos see www.wisdom.weizmann.ac.il/

˜vision/Irregularities.html. The result of our

algorithm is a continuous likelihood map. In our video ex-

amples, a single threshold was selected for an entire video

sequence query. More sophisticated thresholding methods

(hysteresis, adaptive threshold, etc.) can be used.

An important property of our approach is that we can in-

crementally and adaptively update the database when new

regular/valid examples are provided, simply by appending

their raw descriptors and locations to the database. No ”re-

learning” process is needed. This is essential in the context

of detecting suspicious behaviors, should a detected suspi-

cious behavior be identified as a false alarm. In such cases,

the database can be updated by appending the new example,

and the process can continue.

4. Spatio-Temporal Saliency in Video: Using our

approach we can identify salient behaviors within a sin-

gle video sequence, without any database or prior infor-

mation. For example, one person is running amongst a

cheering crowd. The behavior of this person is obviously

salient. In this case, saliency is measured relative to all

the other behaviors observed at the same time. The “va-

lidity” of each space-time video segment (the “query”) is

measured relative to all the other video segments within

a small window in time (the “database” for this partic-

ular video segment). This process is repeated for each

video segment. Such an example is shown in fig. 8.

For full videos see www.wisdom.weizmann.ac.il/

˜vision/Irregularities.html.

Video saliency can also be measured relative to other tem-

poral windows. E.g., when the saliency is measured relative

to the entire video, behaviors which occur only once will

stand out. Alternatively, when the saliency is measured rel-

ative to the past (all previous frames), new behaviors which

have not previously occurred will be spotted. This gives rise

to a variety of applications, including video synopsis.
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