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Abstract

The debate over the prevalence of lateral gene transfers (LGTs) has been intense.
There is now to a large extent consensus around the view that LGT is an important
evolutionary force as well as regarding its relative importance across species. This
consensus relies, however, mainly on studies of individual gene families.

Up until now, the gold standard for identifying LGTs has been phylogenetic
methods where LGTs are inferred from incongruities between a species tree and
an associated gene tree. Even in cases where there is evidence of LGT, several
concerns have often been raised regarding the significance of the evidence. One
common concern has been the possibility that other evolutionary events have caused
the incongruities. Another has been the significance of the gene trees involved in
the inference; there may for instance be alternative, almost equally likely, gene trees
that do not provide evidence for LGT. Independently of these concerns, there has
been a need for methods that can be used to quantitatively characterize the level
of LGT among sets of species, but also for methods able to pinpoint where in the
species tree LGTs have occurred.

Here, we provide the first probabilistic model capturing gene duplication, LGT,
gene loss, and point mutations with a relaxed molecular clock. We also provide all
fundamental algorithms required to analyze a gene family relative to a given species
tree under this model. Our algorithms are based on Markov chain Monte Carlo
(MCMC) methodology but build also on techniques from numerical analysis and
involve dynamic programming (DP).

1 Introduction

The importance and prevalence of lateral gene transfers (LGT) have been debated in-
tensely. The interest in LGT is partly explained by its capacity to transfer pathogenic
elements and antibiotic resistance between bacteria, but also the concern that it could
transfer, e.g., pesticide resistance from genetically modified crops to other plants.

Transformation, transduction, and conjugation are the mechanisms through which
lateral gene transfer can be accomplished among bacteria. Especially transformation has
played a pivotal role in several ground-breaking biological experiments. Although DNA
had not yet been identified as the carrier of genetic information, pneumococcal strains were
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observed to be possible to transform by Griffith in 1928 [16]. Later, the Avery-MacLeod-
McCarty experiment showed that DNA is the substance causing bacterial transformation.
The possibility of lateral gene transfers among bacteria was realized already in 1946 [27, 28]
and demonstrated to occur between different bacterial species in 1959 [31]. A number
of studies have established that LGT occurs among prokaryotes, see for example [32]
and [4]. Evidence has also been presented for the occurrence of lateral gene transfers from
prokaryotes to eukaryotes and even between eukaryotes, see [23] for a recent review.

There has been an intense debate concerning the relative benefits of different meth-
ods for phylogenetic tree reconstruction. Today, however, it is common to describe the
development of phylogeny algorithms as a progression starting in 1965 with parsimony
methods [5, 26, 12], continuing with Maximum Likelihood (ML) methods introduced by
Felsenstein [11], and where the most recent contribution is Bayesian methods [21].

The first phylogenetic incongruence methods were constructed to identify gene du-
plications based on the parsimony principle. Goodman et al. [15] pioneered the field by
introducing the term reconciliation for an embedding of a gene tree into a species tree
explaining the evolution of the former. In later contributions, parsimony-based phylo-
genetic incongruence methods have been described for LGT alone [19], but also for the
combination of gene duplications and LGT [18]. The application of Kishino-Hasegawa
tests in [30] is another example of a phylogenetic incongruence method for LGT.

The statistical significance of the investigated phylogenetic trees has been a common
concern in the context of phylogenetic incongruence methods. Recently, partly prompted
by such concerns, Bayesian phylogenetic incongruence methods were developed for dupli-
cation analysis. In [37], the GSR model was presented; it is a probabilistic model integrat-
ing gene duplication, sequence evolution, and a relaxed molecular clock for substitution
rates. Based on the GSR model and using Markov Chain Monte Carlo (MCMC) methodol-
ogy, a Bayesian analysis tool, PrIME-GSR, was constructed, which takes a known species
tree into account and performs simultaneous gene tree reconstruction and reconciliation.

The extreme view that LGT hardly exists (implying that discrepancies between gene
and species trees are due to random effects or to insufficiently sophisticated tree recon-
struction methods, or possibly due to other events such as duplications) has lost most
of its supporters, and instead, LGT is recognized as a major evolutionary force. In fact,
due to its prevalence among prokaryotes, the appropriateness of using trees to represent
the evolution of some sets of species has been questioned [14, 7, 36], see also [8] and
references therein. Here, we will adopt an intermediate view that has emerged in recent
years with respect to prokaryotic evolution, namely, that although LGTs are common,
they occur with a frequency which is sufficiently low to render tree based representations
of organismal evolution meaningful [3].

In the context of hosts and parasites, Huelsenbeck et al. developed a Bayesian frame-
work for the detection of host switching using MCMC and taking advantage of sequence
information from the host and the parasite species [20]. The model in [20] assumes a one-
to-one correspondence between hosts and parasites and does not consider duplications.
To our knowledge no probabilistic phylogenetic method has been proposed for simulta-
neous analysis of duplications and LGTs, although a probabilistic model based on the
birth-death process [24] was used in [18] to generate synthetic data, and a similar model
was used in [6] to estimate gene family sizes. However, the former never analyzed data
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with respect to the model; the latter was only concerned with gene family size, not trees,
and LGTs were modeled by introduction events without any explicit points of origin.

We provide the first probabilistic model capturing gene duplication, LGT, gene loss,
and point mutations with a relaxed molecular clock. We also provide all fundamental
algorithms required to analyze a gene family relative to a given species tree under this
model. In the next section, our probabilistic model is presented. In Section 3, we describe
an MCMC approach for estimating the posterior distribution of our model. It turns out
that computing the generation probability of a gene tree G with edge lengths l, Pr [G, l|θ]
(where θ consists of parameters of the model), is crucial. We carefully describe how
this probability can be expressed, and also, how it can be approximated by introducing
discretization points in the species tree. Section 4 contains derivations of differential equa-
tions for several important distributions, for instance the probability of extinction. The
corresponding distributions can be evaluated at the discretization points using numerical
techniques. Also in section 4, we describe how a dynamic programming (DP) algorithm
can be constructed for the approximation of Pr [G, l|θ] by taking advantage of differential
equations, which are also formulated in the section. Differential equations and algorithms
that enable approximation of the probability that G, l has been generated using k LGTs
are presented in Section 5. Finally, preliminary results from experiments on synthetic
data are presented in Section 6

2 A new model for duplication, LGT, loss, rate varia-

tion, and sequence evolution

The duplication-transfer-loss gene sequence evolution model with iid rates across gene tree
edges, which we denote DTLSR, is a joint generalization of models used in [18] (which
are here described for the first time) and the GSR model [37]. DTLSR integrates the
following probabilistic sub-models, which will be described more fully below:

1. A probabilistic duplication-transfer-loss model (DTL-model) describing a gene evolv-
ing over a species tree through gene duplication, LGT, and gene loss, thereby gen-
erating a gene tree.

2. A substitution rate model describing rate variation over the gene tree.

3. A sequence evolution model describing how nucleotide substitutions occur.

Let the species tree S and the gene tree G generated by the duplication-transfer-loss
process be planted trees, i.e., trees with a root of degree one. These trees also have
divergence times associated with their vertices. Because S and its divergence times are
considered given, they will be omitted from our notation for probabilities, i.e., Pr [·|S] will
be written Pr [·].

A gene tree vertex represents either a speciation, a duplication, or an LGT event; the
divergence time for a speciation vertex is given by the corresponding species tree vertex,
while the divergence time for a duplication or an LGT vertex is given by the duplication-
transfer-loss process. Divergence times associated with vertices of a tree induce edge times
in the natural way.
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We use the substitution rate model in order to obtain a relaxed molecular clock [35,
25, 1, 34, 9, 29, 33], which allows for more biological realism. The substitution rate model
also turns out to facilitate a more efficient and more accurate MCMC implementation. In
the next three subsections, we briefly describe each of the DTLSR sub-models.

2.1 Gene duplication, LGT, and gene loss

In the probabilistic DTL-model, a gene tree G evolves over a species tree S with given
divergence times. Over any edge 〈x, y〉 in the species tree, each gene lineage is exposed
to gene duplications, LGTs, and gene losses with rates δ, τ , and μ, respectively. That is,
in an interval of length h on a species tree edge 〈x, y〉 the probabilities of a single gene
lineage being exposed to a duplication, an LGT, and a loss are, respectively,

δh, τh, and μh. (1)

Moreover, the probability of two or more events happening in such an interval is o(h).
When a gene u is exposed to a duplication event, it is replaced by two children, which
both continue evolving over the same species tree edge as did u. When a gene u is exposed
to an LGT, it is replaced by two children: one continuing to evolve over the same species
tree edge 〈x, y〉 as did u, and one evolving over another species tree edge chosen uniformly
from those concurrent with 〈x, y〉 at the time of the LGT event. A loss of the gene u
removes it from the process as well as from the generated tree, in which also its former
parent is suppressed. Each gene lineage reaching a speciation vertex y in S splits into
two independent processes, each evolving down distinct outgoing edges of y. The process
continues recursively down to the leaves where it stops.

The process also generates a realization explaining how the gene tree has evolved by
mapping each gene tree vertex to a pair with one component being the species tree edge
or vertex where the event happened and the other component being the time when the
event creating the vertex happened. We will later introduce several types of realizations
and the type of realization generated by the process will be called c-realizations. Com-
puting the probability of a given gene tree under the model is non-trivial and we will
use a combination of dynamic programming and techniques from numerical analysis to
accomplish this task.

2.2 Substitution rates

The purpose of the substitution rate model is to transform dated trees with leaves repre-
senting extant entities, such trees being necessarily ultra-metric (i.e., all root-to-leaf paths
have the same length), into trees consistent with a relaxed molecular clock. This provides
a biologically realistic prior distribution for edge lengths—the convolution of edge times
and substitution rates conventionally used in substitution models. We achieve a relaxed
molecular clock by assuming that edge substitution rates are independently and identi-
cally Γ-distributed variables with mean m and variance ν [29, 38]. We denote this gamma
distribution ρ.

Let l, r, and t denote functions associating an edge length, an edge specific rate, and
an edge time, respectively, to each edge of G so that, e.g., l(u, v) is the edge length of the
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edge 〈u, v〉. The relation between lengths, rates, and times over all edges will be denoted
by l = rt, or conversely r = l/t.

2.3 Sequence evolution

Each edge in the gene tree has, as explained above, been assigned an edge length by the
duplication-transfer-loss process and the substitution rate process. Sequence evolution
over the gene tree with these edge lengths can be modeled using any of the standard
substitution models used in phylogenetics [11].

3 MCMC and discretizing the gene tree probability

MCMC is commonly used to estimate the posterior of phylogenetic trees for given gene
sequences [21]. In this application of the MCMC methodology, it is natural to let the states
consist of trees with edge lengths and additional parameters. When considering to use
MCMC to estimate posterior probabilities under the GSR model [37], the most immediate
idea is to also include a reconciliation of the gene and species tree (which explains how
the gene tree evolved by mapping it into the species tree, the explanation may contain
duplications and losses but not LGTs) as a component of the state; this approach would,
however, lead to several technical complications. Fortunately, it is possible to evade these
problems by estimating an integral over all reconciliations [37]. Here we will use a similar
approach, although in our case, estimating the integral is significantly harder due to the
inclusion of LGTs.

To simplify notation, let θ = (δ, τ, μ, m, ν) denote the parameters of the DTLSR model
(there may also be additional parameters associated with the sequence evolution model,
but we omit these from the present notation). Our Markov chain will have states of the
form (G, l, θ) where G is a gene tree, l denotes edge lengths, and θ denotes parameters
of the DTLSR model. Ratios between posterior probabilities of the form p[G, l, θ|D] need
to be computed in order to determine acceptance probabilities of proposed states in our
Markov chain. This posterior probability can be rewritten as follows:

p[G, l, θ|D] =
Pr [D|G, l] Pr [G, l|θ] p[θ]

Pr [D]
, (2)

where the parameters θ are assigned independent priors (which will be uniform or some
other distribution that we can compute). As usual in MCMC estimation of posterior
probabilities, the denominators will cancel in any ratio between two such probabilities.
Moreover, the factor Pr [D|G, l] can be computed using the standard DP algorithm intro-
duced by Felsenstein [11]. The last component of our MCMC algorithm for estimating
the posterior of the DTLSR model is a procedure to estimate Pr [G, l|θ].

In the next subsections, we will show how to estimate Pr [G, l|θ] by summing over
realizations that only associate gene tree vertices to points from a set of discretization
points on the species tree. We will clearly describe the two approximations we make. The
expression below is formally incorrect (since our density function is discontinuous at the
vertices of S) but fits intuitively with the formal description we will give, and it also leads
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to a functional MCMC algorithm for estimating posteriors of gene trees. The integration
is over realizations t and the summation over discretized realizations:

Pr [G, l|θ] ≈

∫
t

p[G, l, t|θ]dt

=

∫
t

p[(r = l/t)|m, ν] p[G, t|δ, τ, μ]dt

≈
∑

t

p[(r = l/t)|m, ν] p[G, t|δ, τ, μ].

3.1 Definitions

We will now introduce several concepts that will be useful in the rest of the article. When
the notation introduced in this subsection is used, the tree will be clear from the context.
For each species tree T and each vertex x ∈ V (T ), there will be an associated divergence
time t(x). Associated with each edge 〈x, y〉 of a species tree is the interval I(x, y) =
[t(y), t(x)]. The leaves of a species tree have divergence time 0 and each internal vertex
has divergence time > 0. We will assume that all speciations have taken place at distinct
times although all our results can easily be modified to allow concurrent speciations.

The following definitions are standard. An edge 〈x, y〉 has tail x and head y and it is
an outgoing edge of x. For a pair of edges e and f of the same tree, if the head of e is the
tail of f , then e is the parent of f and f a child of e. If there is an edge 〈x, y〉 in the tree T ,
then x is the parent of y and denoted pT (y). The proper ancestor relation is the transitive
closure of the parent relation. That a is a proper ancestor of b in the tree T is denoted
a >T b, and b is also said to be a proper descendant of a. If a equals b or is a proper
ancestor of b in T , then a is an ancestor of b in T , which is denoted a ≥T b. Two vertices
are said to be comparable if one is a descendant of the other, and incomparable otherwise.
Finally, the planted subtree of T containing u, its parent pT (u), and all descendants of u
is denoted T u.

3.2 A discrete approximation of the probability of a gene tree

In this subsection, we show how to properly express Pr [G, l|θ]. A key step is to discretize
the species tree, which will also give us subintervals of the edges of S in which the dis-
cretization points can be considered to be midpoints. We will use two approximation
steps in order to compute Pr [G, l|θ]. The first approximation is an assumption that only
one of any two comparable vertices in G can be created by the events occurring in a par-
ticular subinterval. The second approximation is obtained by approximating the density
function in any point of the subinterval by the density function’s value in the subinterval’s
midpoint.

We will now in two steps introduce discretization points in S to obtain a second
species tree S′ and then also a third species tree S′′. Let S′ be the tree obtained from S
by recursively for each t ∈ {t(x) : x ∈ V (S)} subdividing each edge 〈x, z〉 of S such that
t(z) < t < t(x) by introducing a new vertex y and letting the divergence time of y be
defined by t(y) = t. See Figure 1a and 1b for an example.
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Figure 1: The subdivisions and subintervals of the species tree. (a) A species tree
S. (b) The tree S′. (c) The tree S′′. (d) The subintervals Δ associated with the vertices
of S′′. Note how each discretization point in D is a “midpoint” of a subinterval.
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We subdivide S′ by introducing new vertices at a number of discretization points D.
The set of discretization points can in principle be arbitrary, although the accuracy of the
algorithm will depend on it. It is, for instance, natural to use all multiples of an interval
length d as the set of discretization points, i.e.,

D = {dk : k ∈ N+ and dk ≤ t(root(S′))}.

We will for convenience assume that D and {t(x) : x ∈ V (S′)} are disjoint. Let S′′ be
the tree obtained from S′ by recursively for each t ∈ D subdividing each edge 〈x, z〉 such
that t(z) < t < t(x) by introducing a new vertex y and letting the divergence time of y
be defined by t(y) = t. See Figure 1c for an example.

A continuous realization (c-realization) of G is a function c : V (G) → {〈e, t〉 : e ∈
E(S′) and t ∈ I(e)} ∪ {〈x, t(x)〉 : x ∈ V (S)} such that for each u >G v,

ct(u) > ct(v),

where ct(u) denotes the projection of the second component of c(u). The projection of
the first component of c(u) is denoted cV (u). A speciation realization (s-realization) of G
is a function s : U → V (S) where U ⊆ V (G) such that for each u, v ∈ U , u >G v implies

t(s(u)) > t(s(v)).

A discrete realization (d-realization) of G is a function d : V (G) → (V (S′′)\V (S′))∪V (S)
such that for each u >G v,

t(d(u)) > t(d(v)).

Notice that for each edge e of S′′, there is a unique edge 〈x, y〉 of S′ such that the path in
S′′ between the vertices x and y contains e; we say that the edge 〈x, y〉 captures the edge
e. Analogously for each vertex z ∈ V (S′′) \ V (S′), there is a unique edge 〈x, y〉 of S′ such
that the path in S′′ between the vertices x and y contains z; we say that the edge 〈x, y〉
captures the vertex z.

For each vertex x ∈ V (S′′)\V (S′) that is captured by the edge e ∈ E(S′), we associate
what can be called a subinterval of e as follows. Assume that y is the single child of x.
First, if pS′′(x) ∈ V (S′), define tp(x) to be t(pS′′(x)), and otherwise define tp(x) to be
(t(pS′′(x)) + t(x))/2. Second, if y ∈ V (S′), define tc(x) to be t(y), and otherwise define
tc(x) to be (t(x) + t(y))/2. Finally, let Δ(x) = [tc(x), tp(x)) and let |Δ(x)| denote the
length of the the interval Δ(x), i.e., |Δ(x)| = tp(x)− tc(x). See Figure 1d for an example.

Let s be an s-realization of G. A c-realization c of G is a c-extension of s if cV |c−1

V
(V (S)) =

s. Similarly, a d-realization d of s is a d-extension of s if d|d−1(V (S)) = s. A c-realization
is sparse if for each x ∈ V (S′′) and each pair of vertices u, v ∈ V (G),

u >G v and ct(u) ∈ Δ(x) implies ct(v) /∈ Δ(x).

Let sG be the set of s-realizations of G. Let dG be the set of d-realizations of G. For
any s-realization of G, let χc(s), χs(s), and χd(s) be the sets of c-extensions, sparse c-
extensions, and d-extensions of s, respectively. Since the vertices of S create discontinuities
in the density p[G, l, c|θ], we express the probability Pr [G, l|θ] as the following sum:∑

s∈sG

Pr [G, l, s|θ] =
∑
s∈sG

∫
c∈χc(s)

p[G, l, c|θ]dc.
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We approximate the RHS by ∑
s∈sG

∫
c∈χs(s)

p[G, l, c|θ]dc.

Notice that, for any c-realization or sparse c-realization c,

p[G, l, c|θ] =
∏

〈u,v〉∈E(G)

p[l(u, v), c(v)|c(u), θ].

As a notational convenience, we define |Δ(x)| = 1 for x ∈ V (S′). Our approximation of
the probability Pr [G, l|θ] can now be summarized as

Pr [G, l|θ] =
∑

s∈sG

∫
c∈χc(s)

p[G, l, c|θ]dc

≈
∑

s∈sG

∫
c∈χs(s)

p[G, l, c|θ]dc

=
∑

s∈sG

∫
c∈χs(s)

∏
〈u,v〉∈E(G)

p[l(u, v), c(v)|c(u), θ]dc

≈
∑

s∈sG

∑
d∈χd(s)

∏
〈u,v〉∈E(G)

p[l(u, v), d(v)|d(u), θ] · |Δ(d(v))|. (3)

In the next section, we will show how to compute the right hand side of the above equation.

4 Computing the probability of a gene tree using DP

In this section, we will show how to compute the RHS of (3) using DP. In the DP algorithm,
two distributions will turn out to be useful. First, the probability of extinction, for which
we will derive differential equations in Subsection 4.1. Second, in Subsection 4.2, we will
derive differential equations for the probability of a single gene u evolving, between two
points in the species tree, to a single descendant v that may give rise to descendants in
the extant species (u may also have other descendants contemporary to v but these will
go extinct before reaching the leaves of the species tree). In the last subsection, we derive
a DP algorithm for computing (3) from differential equations.

Let φ = δ + τ + μ. When the notation introduced in this paragraph is used it will
be clear from the context whether the species tree concerned is S′ or S′′. Two vertices x
and y are said to be contemporary if t(x) = t(y). Two edges 〈x, y〉 and 〈x′, y′〉 are said to
be contemporary if t(x) = t(x′) and t(y) = t(y′) (in fact, in both S′ and S′′, t(x) = t(x′)
implies t(y) = t(y′) and the other way around). An edge generation is a maximal set of
pairwise contemporary edges. The edge generation containing e is denoted GE(e) and the
edges contemporary to e, i.e., GE(e) \ {e}, is denoted CE(e). For two edges e, f , if e is the
parent of f , then GE(e) is the parental generation of GE(f).
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4.1 The probability of extinction

In this subsection, we derive differential equations for the probability of extinction, which
can be solved numerically. For e ∈ E(S′) and t ∈ I(e), let Qe(t) be the probability of
extinction when starting with a single gene at time t on edge e. The following system of
differential equations follow from standard techniques for Poisson processes [10, 2] and the
fact that when an LGT occurs, the edge to which the transfer is made is chosen uniformly:

d

dt
Qe(t) = δ(Qe(t))

2 + τ

⎛⎝ ∑
f∈CE(e)

1

|CE(e)|
Qe(t)Qf (t)

⎞⎠ + μ − φQe(t). (4)

For e = 〈x, y〉 ∈ E(S′), the initial values for the system of equations above are given by

Qe(t(y)) =

⎧⎪⎨⎪⎩
0 if y is a leaf,

Qf (t(y)) if f is the single child of e,

Qf (t(y))Qg(t(y)) if f and g are the two children of e.

For one generation of edges of S′, the systems of equations for Qe can be solved using
standard Runge-Kutta numerical solvers [17] once the systems for proper descendant
generations have been solved. That is, we can solve these equations first for the generation
of edges incident to the leaves and then continue upwards to the root of the species tree.
For the edge generation GE(e), we solve Qe(t) for all t ∈ {t(x) : x ∈ V (S′′)} ∩ I(e).

4.2 The probability of exactly one mortal descendant

In this subsection, we apply the same approach as in the previous subsection. In this
case, we are interested in the probability of a single gene u evolving, between to points in
the species tree, to a single descendant v that may give rise to descendants in the extant
species (u may also have other descendants contemporary to v but none of these should
give rise to extant descendants).

By a ghost we mean a gene in the probabilistic DTL-model that will not have any
descendants among the leaves of the species tree. In contrast, a mortal is a gene that may
or may not yield descendants among the leaves of the species tree. For a pair of edges e, f
of S′ such that s ∈ I(e), t ∈ I(f), and t < s, define Qef (s, t) as the probability of starting
on e at time s and having one mortal in f at time t and all other descendants at time t
being ghosts.

Let e, f ∈ E(S′) be two contemporary edges. As before, the following system of
differential equations can be obtained using standard techniques:

d

ds
Qef (s, t) = 2δQe(s)Qef (s, t) − φQef (s, t)

+ τ
∑

g∈CE(e)

1

|CE(e)|

(
Qgf (s, t)Qe(s) + Qef (s, t)Qg(s)

)
.

The initial values for the above equations are given by

Qef (t, t) =

{
1 if e = f,

0 otherwise.
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For one generation of edges of S′, the systems of equations for Qef and Qe can be solved
together using standard Runge-Kutta numerical solvers. For the edge generation GE(e),
we solve Qfg(s, t) for all f, g ∈ GE(e) and s, t ∈ {t(x) : x ∈ V (S′′)} ∩ I(e).

We will now show how to compute Qef when e is a proper ancestor of f , i.e., when e
and f belong to different edge generations of S′. Let e = 〈x, y〉 and assume that g is the
unique edge that is contemporary with e and has two children g′ and g′′. For any s ∈ I(e)
and t ∈ I(f), Qef (s, t) can be written

Qef (s, t) = Qeg(s, t(y))
(
Qg′f (t(y), t)Qg′′ (t(y)) + Qg′′f (t(y), t)Qg′(t(y))

)
+

∑
h∈CE(g)

Qeh(s, t(y))Qhf (t(y), t).

The above equations are solved for all s ∈ {t(x) : x ∈ V (S′′)} ∩ I(e) and all t ∈ {t(x) :
x ∈ V (S′′)} ∩ I(f). These equations can be solved for all pairs of edge generations and
discretization points recursively from the leaves of the species tree towards the root.

4.3 The final recursion

In this subsection, we derive a DP algorithm for computing (3) from the differential
equations in the previous subsections.

We will need to compute the probability of extinction at the vertices of S′′ and the
probability of evolving to exactly one mortal between any pair of vertices in S′′. For
e = 〈y, z〉 ∈ E(S′′) and x ∈ V (S′′) which is the head of the edge f in S′′ and satisfies
t(x) ≤ t(z), we define p11(e, x) as follows

p11(e, x) = Qe′f ′(t(y), t(x)),

where e′ and f ′ are the edges of S′ that capture e and f , respectively.
Now, to compute the probability of a gene tree G, we sum the probabilities of every

possible mapping of the gene tree vertices on the vertices of S′′. For x ∈ V (S′′) \ L(S′′)
and u ∈ V (G)\L(G), define a(x, u) as the probability of Gu given that the event creating
u occurred at x. For e ∈ E(S′′) and u ∈ V (G), define s(e, u) as the probability of the
planted tree Gu when starting at the tail of e. These two probabilities can be computed
as follows. If x is a speciation, then

a(x, u) = s(e, v)s(f, w) + s(e, w)s(f, v),

where e, f are the outgoing edges of x and v, w are the children of u. If x is not contem-
porary to any speciations, then

a(x, u) = 2δs(e, v)s(e, w) + τ
∑

f∈CE(e)

1

|CE(e)|

(
s(e, v)s(f, w) + s(e, w)s(f, v)

)
,

where e is the outgoing edge of x. We define a(x, u) to be zero in the two other possible
cases, i.e., when x is a leaf or has out-degree one and is also contemporary to a speciation.
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For e = 〈x, y〉 ∈ E(S′′) and u ∈ V (G), we can compute s(e, u) as follows:

s(e, u) =

⎧⎨⎩p11(e, σ(u))ρ
(

l(p(u),u)
t(x)

)
if u ∈ L(G),∑

z∈Q(x) p11(e, z)ρ
(

l(p(u),u)
t(x)−t(z)

)
a(z, u) otherwise,

where Q(x) is the set of all vertices z of S′′ such that t(z) < t(x).

5 Counting Transfers

In this section we present differential equations and algorithms that enable approximation
of the probability that G, l has been generated using k LGTs. We wish to compute the
probability that G is generated and that exactly k LGTs has occurred on the paths to
the leaves of G during the generation of G. In order to accomplish this, we will compute
almost the same probabilities as in the previous section, but with the addition of an index
k to keep track of the number of LGTs used. In this sense, this section is an extension of
the previous section. The probability of extinction is the same as before, since we are not
counting the number of LGTs only creating ghosts.

Let e and f be two contemporary edges of S′′. For t ≤ s ∈ I(e), define Qefk(s, t) to
be the probability of starting on e at time s having some number of ghosts at time t and,
except for these ghosts, having only produced one mortal on f at time t using exactly k
LGTs (so there is a path containing k LGTs that end on f at time t). For k > 0, the
following holds

d

dt
Qefk(t) = 2δQe(s)Qefk(s, t) − φQefk(s, t)

+ τ
∑

g∈CE(e)

1

|CE(e)|

(
Qgf(k−1)(s, t)Qe(s) + Qefk(s, t)Qg(s)

)
.

For k = 0 a similar expression can be obtained

d

dt
Qef0(t) = 2δQe(s)Qef0(s, t) − φQef0(s, t) + τ

∑
g∈CE(e)

1

|CE(e)|
Qef0(s, t)Qg(s).

As before, the initial values for the above equations are given by

Qefk(t, t) =

{
1 if e = f and k = 0,

0 otherwise.

We will now show how to compute Qefk when e = 〈x, y〉 and f belong to different
edge generations. Assume that g is the unique edge in GE(e) that has two children g′ and
g′′. For any edge h ∈ CE(g), let h′ denote the unique child of h. For any s ∈ I(e) and
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t ∈ I(f), Qefk(s, t) can be written

Qefk(s, t) =∑
k′+k′′=k

(
Qegk′ (s, t(y))

(
Qg′fk′′ (t(y), t)Qg′′ (t(y)) + Qg′′fk′′(t(y), t)Qg′ (t(y))

)

+
∑

h∈CE(g)

Qehk′(s, t(y))Qh′fk′′(t(y), t)

)
.

For e = 〈y, z〉 ∈ E(S′′) and x ∈ V (S′′) such that t(x) ≤ t(z), we define p11k(e, x) as
follows

p11k(e, x) = Qe′f ′k(t(y), t(x)),

where e′ and f ′ are the edges of S′ that captures e and f , respectively.
To compute the probability of a gene tree G with k LGTs, we sum the probabilities

of every possible mapping of the gene tree vertices on the vertices of the subdivision S′′.
For x ∈ V (S)\L(S) and u ∈ V (G)\L(G), define ak(x, u) as the probability of generating
Gu using exactly k LGTs given that the event creating u occurred at x. For e ∈ E(S′)
and u ∈ V (G), define sk(e, u) as the probability of generating the planted tree Gu using k
LGTs when starting at the tail of e. These two probabilities can be computed as follows.

If x is a speciation, then

ak(x, u) =
∑

k′+k′′=k

sk′ (e, v)sk′′(f, w) + sk′(e, w)sk′′ (f, v),

where e, f are the outgoing edges of x and v, w are the children of u. If x is not contem-
porary to any speciations, i.e., contemporary to any vertices of S, then

ak(x, u) =
∑

k′+k′′=k

2δsk′(e, v)sk′′ (e, w)

+ τ
∑

k′+k′′=k−1

∑
f∈CE(e)

1

|CE(e)|

(
sk′ (e, v)sk′′ (f, w) + sk′′ (e, w)sk′ (f, v)

)
,

where e is the outgoing edge of x. We define ak(x, u) to be zero in the two other cases,
i.e., when x is a leaf or has out-degree one and is also contemporary to a speciation.

For e = 〈x, y〉 ∈ E(S′) and u ∈ V (G), we can compute sk(e, u) as follows:

sk(e, u) =

⎧⎨⎩p11k(e, σ(u))ρ
(

l(p(u),u)
t(x)

)
if u ∈ L(G),∑

k′+k′′=k

∑
z∈Q(x) p11k′ (e, z)ρ

(
l(p(u),u)
t(x)−t(z)

)
ak′′ (z, u) otherwise,

where Q(x) is the set of all vertices z of S′ such that t(z) < t(x).

6 Experimental results

In this section, we present results of preliminary experiments performed on synthetic data.
For our species tree, we selected a subset of the taxa in the yeast tree which together with
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S. cerevisiae

K. lactis

C. albicans

Y. lipolytica

N. crassa

A. nidulans

S. pombe

100 MY

Figure 2: The yeast tree used in the experiments. The root-to-leaf time of the tree
is approximately 400 million years. In the experiments, the time was rescaled so that the
root-to-leaf time became 1.0 and the total birth-rate became 0.17 (relative to the new
time scale).

divergence times was presented in [37]. The species tree is shown in Figure 2. The species
tree was rescaled so that the root-to-leaf time equaled 1.0. In addition, an edge of length
0.1 preceding the root was introduced in order to allow duplication events to occur prior
to the first speciation. Naturally, LGT events may not take place along this edge.

We generated 11 distinct sets of gene trees according to the probabilistic DTL-model,
each comprising 100 trees. Analysis of the data from [37] yields an estimated death rate
of approximately 0.17. When generating the trees, both the death rate μ and the total
birth rate, i.e., δ + τ , were kept fixed at 0.17, while the LGT rate τ varied between 0%
and 100% of the total birth rate in steps of 10% increments. All gene trees were produced
starting with a single lineage at the earliest point of the species tree.

We used the resulting gene tree topologies and divergence times to generate sequences
using the JTT amino acid substitution model [22]. Edge rates were drawn iid from a
gamma distribution with mean 0.5 and variance 0.1, with no rate variation among sites.
The output of this procedure was aligned amino acid sequences of length 1,000.

In order to verify the soundness of our probabilistic model, we analyzed the posterior
distributions of the duplication and LGT rates. The gene tree topologies were kept fixed to
the true topologies, while the remaining parameters were inferred by the MCMC process.

As we are not yet able to perform automatized convergence testing, we conducted a
series of pilot tests to analyze mixing and simulation length requirements. We selected
several of the smallest and largest trees from each set and ran three seperate chains with
1,000,000 iterations per tree, sampling every 100th iteration. A small number of trees
proved too small for stable performance, each such tree had only two leaves. These were
consequently removed from further consideration. Parameter trace plots on remaining
trees indicated good mixing. Convergence was evaluated using the Gelman-Rubin test [13],
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Figure 3: Results of tests performed on synthetic data. The estimated duplication
and LGT rates are plotted against the true rates. The blue curve plots the true rates
showing the ideal estimation curves. The green curve shows our reference estimate of the
rates using previous knowledge about the true duplication vertices and transfer edges.
The red curve is obtained by first estimating the number of events using the posterior
distribution of the rates, and analogous to the green curve, using these values to obtain
estimates of the rates.

where all parameters had a joint test statistic ≤ 1.02, with the exception of the LGT rate
in one instance reaching 1.08. All tests were conducted with the first 10% of the samples
removed as burn-in. We concluded that these settings are sufficient to provide convergence
in most cases, and used them in subsequent analyses.

The output of each tree, i.e., the merged chain triplet, was used to estimate the
posterior distribution. We then analyzed the marginal distributions of the duplication
and LGT rates, and after applying a moderate smoothing kernel, the MAP rate for each
gene tree was used to estimate the number of duplication and LGT events.

The true number of duplication vertices and transfer edges divided by the total length
of the species tree was used to estimate the birth rates of each gene tree. The average value
for each set was used as a reference estimate of the birth rates. Similarly, the estimated
number of duplications and LGTs derived from the posterior distributions were divided
by the total length of the species tree to obtain estimates of the birth rates from our
MCMC procedure. Figure 3 shows the results.
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