
IET Research Journals

Special Issue on Privacy and Security in Smart Grids

Detecting Load Redistribution Attacks via
Support Vector Models

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Zhigang Chu1∗, Oliver Kosut1, Lalitha Sankar1
1School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
* E-mail: zchu2@asu.edu

Abstract: A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads
by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor
and a subsequent support vector machine (SVM) attack detector to determine the existence of load redistribution (LR) attacks
utilizing loads predicted by the SVR predictor. Historical load data for training the SVR are obtained from the publicly available
PJM zonal loads and are mapped to the IEEE 30-bus system. The features to predict loads are carefully extracted from the
historical load data capturing both temporal and spatial correlations. The SVM attack detector is trained using normal data and
randomly created LR attacks, so that it can maximally explore the attack space. An algorithm to create random LR attacks is
introduced. The results show that the SVM detector trained merely using random attacks can effectively detect not only random
attacks, but also intelligently designed attacks. Moreover, using the SVR predicted loads to re-dispatch generation when attacks
are detected can significantly mitigate the attack consequences.

1 Introduction

Leveraging information technology, the operation of modern electric
power grids largely rely on real-time sensing, monitoring, communi-
cation, and control. State estimation (SE) utilizes the power system
measurements collected by the supervisory control and data acquisi-
tion (SCADA) system to estimate the operating states. These states
are used by the energy management system (EMS) to allow for real-
time control of power system. In the last decade, the cyber-security
of SE has been studied with considerable attention. A class of false
data injection (FDI) attacks that replace measurements with counter-
feits have been shown to be able to easily spoof SE and the traditional
bad data detector (BDD) [1]. This finding serves as the basis of a
wide class of FDI attacks, called load redistribution (LR) attacks,
which make it appear as if the loads are redistributed among load
buses while the total load remain unchanged.

Worst-case consequences of LR attacks can be found using bi-
level optimization problems. These attacks can be designed to cause
physical or economic consequences. For physical consequences, [2]
attempts to find an attack to mask the outage of a transmission line,
and [3] designs attacks that can cause physical overflows. For eco-
nomic consequences, [4] and [5] show that LR attacks can change
locational marginal prices, and/or make profit for attackers. There-
fore, it is crucial to develop techniques to detect and mitigate LR
attacks.

Various attack detection techniques have been presented in the
literature. In [6], the authors propose a multivariate Gaussian-based
anomaly detector trained using correlation features of micro phasor
measurement units (µPMUs), but this detector requires installation
of µPMUs in the system. Liu et al. [7] detect and identify attacks
using reactance perturbation, but this method only works when the
attacker has limited resources. The authors of [8] attempt to mitigate
LR attacks using a tri-level optimization approach, and the authors
of [9] try to identify LR attacks by monitoring abnormal load devi-
ations and suspicious branch flow changes. However, they both only
focus on attacks that cause line overflows. In [10], a financially moti-
vated FDI attack model is analyzed and a robust incentive-reduction
strategy is proposed to deter such attacks by protecting a subset
of meters. More generally, machine learning techniques are also
deployed in detecting LR attacks. For example, [11] proposes su-
pervised and semi-supervised machine learning algorithms to detect
FDI attacks by exploiting the relationships between statistical and

geometric properties of attack vectors employed in the attack sce-
narios. A deep reinforcement learning-based approach is proposed to
detect LR attacks in [12]. In [13], three machine learning techniques
are introduced for attack detection, namely nearest neighbor, semi-
supervised one class SVM, and replicator neural network. These
three algorithms compare estimated loads with historical loads and
use thresholding to determine the existence of LR attacks.

Estimation-Detection Framework: In this paper, we introduce an
LR attack detection framework based on support vector models by
leveraging the historical load information commonly available to
system operators. While there are existing approaches in the liter-
ature to prevent attacks by installing of new devices [6] or protecting
specific measurements [10], guiding operators to utilize existing data
available to design software-based solutions is complementary to
those existing approaches. Our method determines the existence of
LR attacks directly through the estimated loads, which can be con-
veniently applied in conjunction with the current EMS operations.
When an LR attack occurs, the estimated loads obtained from the
SE results are different from the true loads, but the net loads are
the same. Thus, if accurate bus-level load predictions are available,
the existence of LR attacks can be determined by comparing the pre-
dicted and estimated loads. Moreover, if an LR attack is detected, the
predicted loads can be directly used to re-dispatch generation instead
of using the estimated loads. By doing this, the attack consequences
can be temporarily mitigated, giving operators time to perform other
corrective actions.

Support Vector Models: In particular, we propose a support vec-
tor regression (SVR) [14] based load predictor to accurately predict
loads, and a subsequent support vector machine (SVM) [15] based
attack detector that compares the predicted and observed loads to
detect LR attacks. Our choice of this modular design aims to sep-
arate the prediction and classification, so that each module can be
independently enhanced (e.g., using additional features) and also
replaced by other methods, as seen fit. Support vector models are
optimization-based machine learning approaches that can be used for
both regression and classification purposes. There are many different
machine learning methods, and we choose support vector models for
the following reasons: (i) they are mature methods that have been
proven to be effective for various regression/classification tasks in
power systems, including transient stability assessment [16], com-
ponent outage estimation [17], and state estimation [18]; (ii) they
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are analytically developed models with fewer and easier to tune pa-
rameters compared to many other machine learning methods, e.g.,
neural networks.

SVR has been widely used for load prediction in electric power
systems. In [19], a short-term load forecasting algorithm is proposed
combining SVR and particle swarm optimization. The authors of
[20] proposes a SVR model that predicts very short term loads us-
ing weather data and day ahead predicted loads as features. Similar
features along with additional time-related features are used to train
a SVR model that predicts short term and mid term loads in [21]. In
[22], Azad et al, predict the daily peak load using the historical peak
load consumption and the corresponding temperature and relative
humidity. Chong et al, propose a K-step ahead prediction using SVR
in [23]. However, the existing work on load prediction is largely fo-
cused on predicting the net load, which is not helpful in detecting LR
attacks because the net load remain unchanged under those attacks.

Proposed SVR Load Predictor: The aforementioned references
focus on predicting the net load utilizing temporal correlation. To
the best of our knowledge, we are one of the first to predict loads at
each bus, leveraging both spatial and temporal correlations between
all the loads in the system. Features selected for the SVR predictor
include historical load values of all loads chosen at distinct time in-
tervals prior to the target time (e.g., one hour before, one day before,
etc.) as well as the specific time information (e.g., month, week-
day/weekend). This choice allows for conveniently using the same
features to predict loads at different buses as the temporal features
for all loads implicitly capture the spatial correlations among them.

Proposed SVM Detector: SVM is a supervised learning approach
to solve classification problems, based on learning separating hyper-
planes. Our approach using SVR to detect attacks largely mirrors
existing approaches; our key contribution is in how we generate the
training data needed to learn the SVM model to classify accurately
over a large class of attacks. We now describe the dataset and our
approach to train and test the two models.

Dataset: We train and test our models using the publicly available
PJM metered zonal load data [24]. We map each of the 20 zones of
the PJM data to a load bus in the IEEE 30-bus system, leveraging the
fact that there are 20 loads in this system.

Training and Testing: To apply SVM on attack detection, it is nec-
essary to create training data in both classes, namely normal and
attacked data. The SVR predicted loads and the true loads (assum-
ing trustworthy historical data) naturally form the normal data. For
the attacked data, we propose a novel approach that generates ran-
dom LR attacks in order to maximally explore the attack space, and
thereby enhance accuracy in detecting any LR attack. Each of these
attacks alters a random number of loads, and a Gaussian distribution
is used to generate the deviation of each load from its true value. The
severity of the attacks is controlled by varying the maximum devia-
tion percentage over all loads. Our approach also guarantees the net
load change is 0 to satisfy the constraints of LR attacks. We use 80%
of the data for training, and the remaining 20% for testing.

In addition to the random attacks, we also generate two types of
intelligently designed LR attacks, namely cost maximization (CM)
and line overflow (LO) attacks, to test the effectiveness of our SVM
attack detector. CM attacks aim to maximize the operation cost [25];
and LO attacks attempt to overflow a target transmission line [3].
These two types of attacks are designed through optimizations to
maximize their economic/physical consequences.

Our results show that the proposed attack estimation-detection
framework can effectively predict and detect both random and in-
telligently designed LR attacks. Moreover, we illustrate that using
the SVR predicted loads to re-dispatch when attacks are detected
can significantly reduce the attack consequences.

Summary of Contributions: The key contributions of this paper
are as follows:

1. We propose an LR attack detection framework consisting of
an SVR load predictor and a subsequent SVM attack detector.
This modular design enables separate enhancement of each block,
and also provides sufficiently accurate predicted loads for attack
mitigation purposes.

2. In the SVR predictor , the extracted features leverage both tem-
poral and spatial correlations within the historical load data, which

allow for prediction of bus-level loads. Through training and testing
the proposed SVR predictor on the PJM metered load data [24], we
show that it can predict every load in the system with high accuracy.

3. Utilizing the SVR predicted loads, we train the SVM detector
using normal data and random LR attacks designed to maximally
explore the attack space. An algorithm to create such random LR
attacks is also proposed.

4. The performance of the detection framework is tested on ran-
dom attacks as well as two types of intelligently designed LR attacks.
These attacks aim to cause economic/physical consequences. Our
simulation results show that our detection framework can effectively
detect both random and intelligently designed attacks, even though
the detector is only trained using the former. Moreover, we show that
using the SVR predicted loads to re-dispatch upon detection of LR
attacks can significantly reduce the impact of LR attacks.

The rest of this paper is organized as follows. Section 2 introduces
LR attacks and existing approaches to create intelligently designed
LR attacks. Section 3 describes the structure of the proposed attack
detection framework, the formulations of SVR and SVM, as well
as random LR attack creation method for SVM training purpose.
Section 4 illustrates the performance of the SVR load predictor and
the SVM attack detector. Section 5 describes the attack mitigation
strategy and demonstrates its performance. Concluding remarks are
presented in Section 6.

2 Load Redistribution Attacks

2.1 Load Redistribution (LR) Attacks and Unobservable
False Data Injection (FDI) Attacks

Definition 1: LR attacks are a class of cyber-attacks that redistribute
loads among the buses, while keeping the net load unchanged. The
false loads in an LR attack PAtk satisfies

PAtk = P + ∆P , (1)∑
i

∆Pi = 0, (2)

where P is the true load vector, ∆P is the load change caused by
attack, and i is the load index.

Definition 2: The load shift τ is defined to be the largest load
change in percentage of the true loads:

τ = max
i

∣∣∣∣∆PiPi

∣∣∣∣× 100%. (3)

We use τ as an intrinsic metric to characterize the detectability of LR
attacks. We found that it is trivial to detect attacks with sufficiently
large τ , because load deviations far from true values are suspicious.
Thus, an attacker is likely to limit τ to avoid detection by this metric.
In this paper, we only consider LR attacks with τ ≤ 20%.

The most common way to generate LR attacks in the literature is
through unobservable FDI attacks against power system state esti-
mation (SE). FDI attacks are a class of cyber-attacks that involves
an attacker maliciously replacing power system measurements with
counterfeits. Under DC power flow assumption∗, the true measure-
ment vector z, consisting of the line power flow and bus power
injection measurements, is given by

z = Hθ + e, (4)

where θ is the state vector (voltage angles), H is the dependency
matrix between measurements and states, and e is the noise vector. A
row ofH corresponding to a power flow measurement has non-zero
entries only at “from” and “to” buses, which are line admittance and

∗For simplicity, we focus on DC power flow settings, but our work can be

generalized to AC cases as in [3].
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its negative, respectively. A row of H corresponding to the power
injection measurement at a bus contains a non-zero entry at that bus,
which is the negative of the sum of all admittance on lines connecting
that bus; as well as non-zero entries at all buses connecting to that
bus, which are the admittances of corresponding transmission lines.

Definition 3: A false measurement vector z̄ created with state
attack vector c,

z̄ = H(θ + c) + e, (5)

is unobservable to the conventional bad data detector (BDD) em-
bedded with SE, because it is not distinguishable from the true
measurements if the true states were (θ + c).

Let B be the dependency matrix between bus power injections
and states, and letG be a given generation vector, then the bus power
injections without attack can be expressed as

G− P = Bθ. (6)

With attack, the false injections are given by

G− PAtk = B(θ + c). (7)

Substituting (6) into (7) yields the load change vector

∆P = PAtk − P = −Bc. (8)

Note that since 1TB = 0T , the net load change is
∑
i

∆Pi =

−1TBc = 0. Thus, given a generation dispatch, an unobservable
FDI attack leads to an LR attack.

2.2 Intelligently Designed LR Attacks

Although an attacker can inject arbitrary c as long as it controls the
measurements corresponding to all non-zero entries of Hc, its goal
will be to maliciously choose c so that the resulting false loads can
mislead the system re-dispatch to cause physical and/or economical
consequences. We define these attacks as intelligent attacks, whose
consequences can be maximized by solving optimization problems.
In this paper, we consider two specific intelligent attacks to test
the robustness of our proposed detector, namely cost maximization
(CM) attacks [25] and line overflow (LO) attacks [3].

CM attacks are a class of FDI attacks that aim to maximize the
operation cost after re-dispatch. The attack vector c of CM attacks
can be obtained through the following bi-level optimization problem:

maximize
c

aTG∗ (9a)

subject to − τP ≤ Bc ≤ τP (9b){
G∗,P ∗L

}
= arg

{
min
G,PL

aTG

}
(9c)

subject to
∑

G =
∑

P (9d)

PL = R(G− P +Bc) (9e)

− Pmax
L ≤ PL ≤ Pmax

L (9f)

Gmin ≤ G ≤ Gmax (9g)

where a is the generation cost, PL is the cyber line power flows,
R is the power transfer distribution factor (PTDF) matrix, Pmax

L
is the line power flow limits, and Gmax and Gmin are generation
upper and lower limits, respectively. In the upper level, (9a) mod-
els the attacker’s objective to maximize the operation cost, and (9b)
models the load shift limit. The lower level problem (9c)-(9g) is the
system DCOPF under attack. This bi-level optimization problem can
be converted to a single level mixed-integer linear program (MILP)
by replacing the lower level DCOPF with its Karush-Kuhn-Tucker
(KKT) conditions [26], and then converting the complementary

slackness conditions to mixed integer constraints. The optimal c is
obtained by solving the MILP.

LO attacks attempt to maximize the physical power flow on a tar-
get line l after re-dispatch, and possibly cause overflows. Optimal c
for LO attacks can be obtained by changing the objective function of
(9) to maximizing physical power flow:

maximize
c

∣∣∣P l∗L −Rl ·Bc∣∣∣ (10)

subject to (9b)− (9g),

where P l∗L is the optimal cyber power flow on target line l,Rl is the
lth row ofR, and the second term in (10) characterizes the impact of
false loads on the physical power flow of line l.

3 Proposed Attack Detection Framework

Figure 1 illustrates the structure of our proposed LR attack detec-
tion framework. During the real-time operation, features are selected
from the historical load data until the current time step to capture
both spatial and temporal correlations. Loads at the next time step
are then predicted by the SVR load predictor using these features.
One SVR model is trained for each load using the same features.
Subsequently, the SVM attack detector takes the predicted loads and
loads estimated after SE to determine the existence of LR attacks.

For detecting attacks, it should suffice to skip the SVR load
predictor and plug all SVR features into the SVM to perform classifi-
cation. However, in this paper we include the SVR for the following
two reasons. The first one is that we aim to not only find an attack
detection technique, but also have a corrective mechanism when at-
tacks are detected. Using the (accurate) predicted loads to perform
control actions when attacks are flagged provides time to locate the
attacked measurements without causing severe consequences. The
second reason is for easier scaling of the proposed models to large-
scale power systems. Without the SVR predictor, the number of
features used in SVM classifier will be very large, making it difficult
to train and perform real-time classifications. With the SVR predic-
tor in place, the SVM detector only needs the predicted and observed
load values as features, making it useful for large-scale systems.

Fig. 1: Structure of the proposed LR attack detection framework.

3.1 The SVR Load Predictor

Given data samples xj ∈ Rp, j = 1, 2, 3, ...,m and target values
y ∈ Rm, an SVR attempts to find the best parameters wr and br to
fit |yj −wTr φ(xj)− br| ≤ ε by solving the following optimization
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problem [14]:

minimize
wr,br,ζj ,ζ′j

1

2
wTr wr +M

n∑
j=1

(ζj + ζ′j) (11a)

subject to yj −wTr φ(xj)− br ≤ ε+ ζj (αj) (11b)

wTr φ(xj) + br − yj ≤ ε+ ζ′j (α′j) (11c)

ζj , ζ
′
j ≥ 0, ∀j, (11d)

where ε is the regression tolerance, ζj , ζ′j are slack variables to allow
for outliers,M is the penalty factor for outliers, αj , α′j are dual vari-
ables, and φ(·) is a function that implicitly maps the data samples
to a higher dimensional space. The dual formulation has a smaller
number of variables and allows for applying the kernel trick:

minimize
α,α′

1

2
(α−α′)TQ(α−α′) (12a)

+ ε1T (α+α′)− yT (α−α′)

subject to 1T (α−α′) = 0 (12b)

0 ≤ αj , α′j ≤M, ∀j (12c)

whereQ is a positive semi-definite matrix, andQij = Q(xi,xj) =

φ(xi)
Tφ(xj) is the kernel. Once the optimal solutions (α∗,α′∗)

are obtained, the regression value ynew of a new data sample xnew
can be computed as

ynew =

n∑
j=1

(α∗j − α
′∗
j )Q(xj ,xnew). (13)

To accurately predict the load values, many different features can
be used, including time, weather, temperature, location, and load
type (residential/commercial/industrial). Intuitively, it would be the
best if we use all the features to perform the prediction, but many
of them are unavailable, and some of them may be redundant. The
features used in the SVR load predictor also depend on the avail-
able dataset. For example, the time step of the prediction depends on
how frequently the historical load data are recorded. For the specific
dataset we use in this paper, we select time information and histor-
ical load values at several time points relative to the target time to
capture the temporal correlation, and load values at the same time
points for all loads to capture the spatial correlation.

The publicly available PJM hourly zonal metered data [24] is
adopted. Our SVR load predictor aims to accurately predict the load
values at hour h+ 1 when the current hour is h. The features we
use include time information and historical load values up to hour
h. We select month (mo), hour (hr), and weekday/weekend (wd) as
the time information features, t = [mo,wd, hr]. Note that hr here
is the wall clock time, for example, hr = 14 for 2 PM, and is differ-
ent than h, which is a unique point in time. Here we only distinguish
between weekdays and weekends since loads tend to be similar dur-
ing weekdays, i.e., wd = 1 for weekdays and wd = 2 for weekends.
The temporal correlation of each load is captured by including its
historical values, at hour h and s previous hours; and at hour hr and
hr + 1 of d previous days, as features. For load i, the load value
features fi are given by

fi = [Phi , P
h−1
i , ..., Ph−si , Ph−24di ,

Ph−24d+1
i , ..., Ph−24i , Ph−23i ]. (14)

Thus, a training data sample xj consists of t and fi captures the
temporal correlation of load i. To capture the spatial correlations, we
concatenate the load value features of all the loads. Once the model
is trained, we can extract the same feature at an arbitrary hour to
form xnew and predict ynew, the loads at the next hour. Note that
if bus-level historical data is available in a smaller time resolution,
similar concept can be applied to predict bus-level loads at that time
resolution.

3.2 The SVM Attack Detector

Given data samples uj ∈ Rq, j = 1, 2, 3, ...n and a vector of class
labels v ∈ {1,−1}n, an SVM attempts to find the decision bound-
ary with the maximal margin to best classify uj by solving the
following optimization problem [15]:

minimize
wm,bm,λj

1

2
wTmwm + C

n∑
j=1

λj (15a)

subject to vj(w
T
mφ(uj) + bm) ≥ 1− λj (βj) (15b)

λj ≥ 0, ∀j. (15c)

Similar to the SVR formulation in (11), λj is a slack variable to
allow for outliers, C is its penalty factor, and βj is the dual variable.
Again, applying the kernel trick, the dual formulation is used:

minimize
β

1

2
βTQβ − 1Tβ (16a)

subject to vTβ = 0 (16b)

0 ≤ βj ≤ C, ∀j. (16c)

Note that here Qij = vivjQ(ui,uj) = vivjφ(ui)
Tφ(uj). Once

the optimal solution β is acquired, the label vnew for a new input
data sample unew can be obtained by

vnew = sgn(

n∑
j=1

vjβ
∗
jQ(uj ,unew)) (17)

where sgn(·) is the sign function.
The outputs of the SVR load predictor P̂ are used as input fea-

tures of the SVM attack detector, as well as the time information and
the observed loads. Depending on the existence of attack, input data
samples of the SVM are given by

uj = [mo,wd, hr, P̂ ,P ], if vj = −1, (18a)

uj = [mo,wd, hr, P̂ ,PAtk], if vj = 1, (18b)

where vj = −1 indicates that there is no attack, and vj = 1 oth-
erwise. Feeding the training uj along with their labels vj into the
SVM optimization dual problem (16) yields the optimal solution of
β. Using β and uj , we can determine the label vnew of any testing
data unew as in (17).

3.3 Generating Random LR Attacks to Train the SVM

We train the SVM detector using normal data and randomly designed
LR attacks. The SVM detector trained using random attacks is ex-
pected to maximally explore the space of LR attacks, and hence,
perform well in detecting any LR attacks. Given true loads P , the
false loads PAtk in these random attacks are acquired using (1),
PAtk = P + ∆P . Thus, finding PAtk is equivalent to finding ∆P .
In each attack, we assume the attacker changes K loads at random,
whose indices form a set K, so that PK(k) and ∆PK(k) indicates
the load and load change of the kth attacked load, respectively,
k = 1, 2, . . . ,K . The load changes of these attacked loads, denoted
γ, can be arbitrary. However, according to the LR attack property
(2), they must be constrained to have a 0 sum. Thus, we model γ
with a joint Gaussian distribution with 0 mean and covariance matrix
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Γ:

γ ∼ N (0,Γ) (19)

γk = ∆PK(k). (20)

Given a load shift τ , the diagonal entries of Γ must satisfy

Γkk = V ar(γk) = (
1

2
τPK(k))

2, ∀k (21)

to ensure that the probability of |γk| ≤ τPK(k) is 95%, because the
probability of deviating beyond 2×standard deviation in a Gaussian
distribution is 5%. Recall that the load changes caused by a valid LR
attack must satisfy (2), which can be rewritten as∑

i

∆Pi =
∑
k

∆PK(k) = 1Tγ = 0. (22)

Eq. (22) is equivalent to

E[(1Tγ)2] = E[1TγγT1]

= 1TΓ1

= 0. (23)

Finding a valid γ is equivalent to finding a positive semidefinite ma-
trix Γ that satisfies (21) and (23). Since Γ is a covariance matrix, it
must be positive semidefinite:

Γ � 0. (24)

Any Γ satisfying (21), (23) and (24) would suffice for our applica-
tion. Finding Γ is equivalent to solving a semidefinite program with
arbitrary objective, constrained by (21), (23) and (24). The proce-
dure to acquire false loads PAtk is summarized in Alg. 1. Varying
the attack hour h, load shift τ , and number of attacked loads K, we
can find feasible Γ to obtain γ using (19), and subsequently create
an arbitrary number of false loads PAtk using (1). Note that for spe-
cific combinations of h, τ,K, and K, sometimes no feasible Γ can
be found, but we can simply re-run Alg.1 with different inputs. Since
(19) is drawing γ randomly from a Gaussian distribution, the result-
ing real load shift τr of PAtk may be different than the input τ . We
keep drawing γ until τr ≤ τ . The false loads created are then used
to generate data samples to train and test the SVM detector.

Algorithm 1 Generating random LR attack false loads
Input: h, K, τ
Output: PAtk

1.Obtain the true loads P at hour h.
2.Randomly selectK loads to attack and letK denote the set of indices

of the attacked loads.
3.Find a Γ satisfying (21), (23) and (24) with τ,K,K, andP . This can

be done by solving a semidefinite program with arbitrary objective,
constrained by (21), (23) and (24). If no feasible Γ can be found,
terminate.

4.Draw the non-zero load changes γ from N (0,Γ) and obtain false
loads PAtk using (1).

5.Calculate the real load shift τr of PAtk using (3). If τr > τ , go to
step 4). Otherwise, terminate.

4 Numerical Results

We use the publicly available PJM zonal hourly metered load data
[24] from 2015 through 2018 for 20 transmission zones as the his-
torical data to train and test our LR attack detection framework. In

order to conveniently create intelligently designed LR attacks as de-
scribed in Section 2.2, we map each zone to a load bus in the IEEE
30-bus system, leveraging the fact that there are 20 loads in this sys-
tem. The mapping relationship is adopted from [13], and all load
values are multiplied by a scaling factor of 1.308× 10−3 to obtain
a system with moderate amount of congestion. Table 1 describes the
mapping rules between load indices, PJM zones, and bus indices.
The SVR and SVM models are implemented in Python using the
Scikit-learn package [27]. The random, CM and LO attack creation
are implemented in Matlab with solver Gurobi. All experiments are
conducted on a 2.7 GHz CPU with 32 GB RAM.

Table 1 Mapping rules between load indices, PJM zones, and bus indices

Load Zone Bus Load Zone Bus
1 DOM 2 11 PL 17
2 AE 3 12 PN 18
3 JC 4 13 PE 19
4 CE 7 14 RECO 20
5 AEP 8 15 ATSI 21
6 DPL 10 16 DUQ 23
7 PS 12 17 BC 24
8 DEOK 14 18 ME 26
9 PEP 15 19 EKPC 29

10 DAY 16 20 AP 30

4.1 The SVR Load Predictor Performance

The multi-output SVR load predictor is achieved by solving one
SVR optimization problem (11) for each load. In our experiments,
we trained three SVR models to justify the contribution of captur-
ing spatial correlations, as well as to see the influence of different
selected features. Model 1 predicts each load using only time in-
formation t and its own load value features. A data sample used in
Model 1 to predict load i is given by

xj,i = [t,fi]∀i. (25)

Model 2 and 3 use t and fi, ∀i, as features to predict all loads. A
data sample in these two models is given by

xj = [t,f1,f2, ...fnl ], (26)

where nl is the number of loads in the system. In Model 2, s = 3
and d = 2; and in Model 3, s = 4 and d = 3. The ground truth
yj,i = Ph+1

i is the true load value at hour h+ 1 for load i. Table 2
presents some properties of the three tested SVR models. Compar-
ing Models 1 and 2, we can see the influence of considering spatial
correlations in addition to temporal correlations, as these two mod-
els use the same temporal features, but Model 2 additionally uses the
features of all the loads to capture spatial correlations.

Table 2 Statistics of SVR models

Model s d m p Training time (h)
1 3 2 35011 11 1.927
2 3 2 35011 163 4.234
3 4 3 34987 223 33.324

The dimension of the data matrixX,m× p, and target value ma-
trix Y ,m× nl, depend on the values of s and d. Derivation of m
and p are described in the Appendix. For each model, the training
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data matrix Xtrain contains all data from 2015 - 2017, and data in
2018 are used asXtest. Each column ofXtrain is scaled to zero mean
and unit variance, and each column ofXtest is scaled using the mean
and variance of the corresponding column in Xtrain. The same split
and scaling are performed on Y to obtain Ytrain and Ytest as well.
The parameters in training the SVR models are chosen as ε = 10−2

and M = 100. The radial basis function (RBF) kernel

Q(xi,xj) = −σ‖xi − xj‖2 (27)

is used with σ = 10−2. Applying the trained SVR predictor on
Xtrain and Xtest yields the predicted loads Ŷtrain and Ŷtest, respec-
tively.

Two metrics are used to evaluate the performance of the SVR
load predictor, namely root mean square error (RMSE) and mean
absolute percentage error (MAPE). RMSE measures the square root
of the average squared error for each load, and hence the unit is MW.
MAPE measures on average how much the predicted loads deviate
from their true values in percentage. These metrics for each load i
are calculated as

RMSEtrain,i =

√√√√ 1

m

m∑
j=1

(Ytrain,i,j − Ŷtrain,i,j)2 (28)

MAPEtrain,i =
1

m

m∑
j=1

∣∣∣∣∣Ytrain,i,j − Ŷtrain,i,j

Ytrain,i,j

∣∣∣∣∣ (29)

where Ytrain,i is the ith column of Ytrain, and Ȳtrain,i is its mean.
These metrics are similarly applied on Ytest to evaluate the perfor-
mance of the SVR load predictor on testing data.

Figures 2 illustrates the RMSE and MAPE for the SVR models.
RMSE values largely depend on the load values itself, for example,
load 5 has the largest RMSE value because it is the biggest load in
the system. From Figure 2(b) we can see that the MAPE for most
loads are around 1%, and MAPE for load 19, the most difficult load
to predict, is around 2%. Comparing these quantities for Models 1
and 2, we can see that they are both smaller for Model 2. Recall that
the difference between Models 1 and 2 is that Model 2 considers all
prior loads, while Model 1 only includes the prior data at the load
of interest. This result indicates that considering spatial correlations
does improve the performance of the SVR load predictor. Compar-
ing Models 2 and 3, it can be concluded that including too much
historical data as features decreases the accuracy of the SVR load
predictor. Besides, it can be seen from Table 2 that using too many
features makes it extremely slow in training the SVR model. Thus,
in the following sections, Model 2 is adopted to generate predicted
loads used by the SVM attack detector.

In addition, we benchmark the performance of our SVR predictor
against three commonly used regression techniques, namely least-
squares (LS), ridge regression, and LASSO, in terms of RMSE and
MAPE. Least-squares is pure linear regression. Ridge regression is
least-squares linear regression with regularization on the l2-norm of
the coefficients, while LASSO regularizes on the l1-norm. Least-
squares attempts to solve

minimize
w,b

∑
j

(yj −wTxj − b)2. (30)

With regularization, ridge regression aims to find the optimal solu-
tion to the following optimization problem

minimize
w,b

∑
j

(yj −wTxj − b)2 + ρr‖w‖22, (31)

while LASSO solves

minimize
w,b

∑
j

(yj −wTxj − b)2 + ρl‖w‖1, (32)

where ρr and ρl are regularization parameters for ridge regression
and LASSO, respectively.
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Fig. 2: Performance of the SVR models under two metrics: (a)
RMSE, and (b) MAPE. Model 1 does not capture spatial correla-
tions. Model 2 uses temporal features of 3 previous hours and 2
previous days. Model 3 uses temporal features of 4 previous hours
and 3 previous days. Both Models 2 and 3 capture spatial correlation.

Figures 3(a) and 3(b) illustrate the RMSE and MAPE, respec-
tively, on testing data Xtest of our SVR predictor (Model 2), least-
squares, ridge regression, and LASSO. All models are trained in
Scikit-learn using the same training data Xtrain. Ridge regression
and LASSO regularization parameters are ρr = ρl = 1, which are
the default settings as in the SVR case. It can be seen that the SVR
model outperforms the other three regression approaches.

4.2 The SVM Attack Detector Performance on Random
Attacks

The predicted loads P̂ ofm = 35011 hours, along with their ground
truth values P and time information, yield 35011 normal data sam-
ples for the SVM detector in the form of (18a). The length of each
data sample q = 3 + 20× 2 = 43. The normal data matrix Unormal
is of size 35011× 43. We randomly select 80% of these vectors for
training and the remaining 20% for testing. We create 105 attacked
data samples in the form of (18b) using Alg. 1, resulting inUattack of
size 105 × 43 with real load shift τr ranging from 1% to 20%. From
now on, we omit the subscript in τr for easier presentation.

We obtain different SVM models to compare their performances
by varying the penalty factor C and τmin (the minimal τ used in the
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Fig. 3: Performance comparison of SVR against least-squares, ridge
regression, and LASSO, in terms of (a) RMSE, and (b) MAPE.

training data). The normal data in the training data matrix Utrain are
the same for all models, i.e., the same 80% of Unormal. The attacked
data in Utrain include 80% of attacked data samples with τ ≥ τmin.
The testing dataUtest consists of the remaining 20% of attacked data
that are not used in training with all load shifts, and are the same for
all models. For each model, every column of training data matrix
Utrain is scaled to zero mean and unit variance, and the same scaling
is performed to the testing data. The kernel function used in the SVM
detector is also the RBF kernel in the form of (27), but this time σ is
calculated as σ = 1/q (this is the “scale” option in Scikit-learn).

Figure 4 illustrates the effect of τmin on missed detection rate
and false alarm rate. The false alarm rate is calculated by applying
the detector on all m = 35011 normal data samples, including both
training and testing. The parameter C is fixed at 1000. τmin controls
the amount of attacked training data. For instance, if τmin = 3%,
Utrain contains 80% of attacks with τ ≥ 3%, but does not contain
any attack with τ < 3%. Intuitively, attacks with higher τ are fur-
ther away from the normal data than those with lower τ . Thus, a
detector trained with a low τmin will have a high false alarm rate, as
the SVM is trying to find a decision boundary between normal data
and attacks with small load shift. However, it should perform better
in detecting attacks with small τ than detectors trained with large
τmin. If system operators can tolerate the consequences of small at-
tacks, they can increase τmin to achieve smaller false alarm, and vice
versa. In Figure 4, the blue lines indicate the missed detection rate
of attacks with certain load shift τ , and the red line shows the false
alarm rate. It can be seen that as τmin increases, the false alarm rate
decreases, but the missed detection rate increases for attacks with
small load shifts. This observation justifies the intuition discussed
above, indicating that τmin is indeed a trade-off between false alarm
rate and detection probability for small attacks. Note that for attacks

with large τ , the effect of τmin is insignificant. For testing attacks
with extremely small τ , the missed detection rates are very high even
with small τmin, because these attacks are in principle very difficult
to detect. However, these attacks are also unlikely to cause severe
consequences. From Figure 4, we can see that τmin = 3% is a good
choice for our dataset.
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Fig. 4: Effect of minimum training load shift τmin. False alarm
rate and missed detection rate when testing random attacks are each
plotted as a function of τmin. Data is shown for C = 1000.

The parameter C trades off misclassification of training exam-
ples against simplicity of the decision boundary. A small C makes
the decision boundary smooth, while a large C aims at classifying
all training samples correctly. Therefore, detector with large C is
expected to have a better performance. However, a large C allows
for fewer outliers, making it harder to solve the SVM optimization
problem (15), so the training time increases. System operators can
determine the value of C according to the computational capability
of their hardware. Figure 5 shows the performance of models trained
with different C on testing random attacks while fixing τmin = 3%.
The largerC is, the higher detection probability we can achieve. This
model performs well on attacks with large τ , and the detection prob-
ability almost achieves 100% starting at τ = 7%. System operators
can similarly vary τmin and C to obtain SVM model with satisfac-
tory performance, in terms of false alarm rate and missed detection
rate.
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Fig. 5: Effect of outlier penalty factor C on testing random attack
detection probability. Data is shown for τmin = 3%.
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4.3 The SVM Attack Detector Performance on Intelligently
Designed LR Attacks

In this section, we evaluate the performance of the trained SVM de-
tector on cost maximization (CM) and line overflow (LO) attacks.
According to the previous section, here we choose SVM parameters
C = 2000 and τmin = 3% to balance false alarm rate and missed
detection. The procedures to generate these attacks are described as
follows. On the IEEE 30-bus system, we first perform base case
DCOPF for each hour in year 2015 through 2018 using the true
loads. At hour h, if there are at least 2 lines whose power flows
are greater than 80% of their ratings, we say those lines are criti-
cal lines, and h is a critical hour. The total number of critical hours
is found to be 8038. We focus on critical hours because the false
loads are likely to cause congestions at those times, which in turn
change the generation dispatch to have consequences. For each criti-
cal hour, we solve optimization problem (9) 20 times to obtain attack
vector c fo CM attacks with τ = 1%, 2%, . . . , 20%. For each criti-
cal line, we solve (10) 20 times to obtain c for LO attacks, also with
τ = 1%, 2%, . . . , 20%. Every non-zero c is used to construct false
load vector PAtk as in (8). If a PAtk makes the DCOPF infeasible, it
is discarded. The total number of false loads for CM attacks and LO
attacks are 113031 and 343135, respectively.
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Fig. 6: Detection probability on CM and LO attacks as a function
of load shift τ . Subplot (a) is for all attacks, and subplot (b) is only
for attacks with consequences. Data is shown for τmin = 3% and
C = 2000.

Figure 6(a) illustrates the detection probability versus the load
shift τ on CM and LO attacks. For both attacks, the detection
probabilities almost achieve 100% when τ ≥ 4%. For attacks with

τ = 3%, the detector performance drops to 97% for LO attacks, but
it is still perfect in detecting CM attacks. Comparing with the per-
formance on random attacks as shown in Figure 5, it can be seen
that intelligently designed attacks are easier to detect than random
attacks.

Figure 6(b) illustrates the detection probability versus load shift τ
on CM and LO attacks with consequences. CM attacks with conse-
quences are those that increase the operating cost by more than 1%.
LO attacks with consequences are those result in physical overflows.
Comparing Figures 6(a) and 6(b), it can be seen that the detector
performs even better on attacks with consequences.

5 Attack Mitigation

If LR attack is flagged by our detection framework, the simplest
way to mitigate the attacks is to temporarily use the loads output
by the SVR load predictor for re-dispatching purposes. To test the
mitigation performance using this method, we compare the worst
consequences of intelligently designed attacks with and without our
detection framework.

In order to obtain the consequences, we run DCOPF three times
using different loads. Under normal operation, running DCOPF with
true loadsPnormal yields the attack-free generation dispatchGnormal.
Using attacked loads PAtk to run DCOPF gives attacked dispatch
GAtk. Applying GAtk on true loads Pnormal yields attacked line
flows PL,Atk = R(GAtk − Pnormal). When an attack is detected,
the system runs DCOPF using the SVR predicted loads PSVR and
the resulting dispatch is GSVR. The corresponding line flows are
given by PL,SVR = R(GSVR − Pnormal).

Figure 7(a) illustrates the mitigation results for CM attacks. The
word “maximum” on the y-axis indicates the worst consequence
among all attacks with each load shift τ . The red line indicates
the maximum cost increase without using our proposed detection
framework, calculated as aT (GAtk −Gnormal) (recall that a is the
generation cost vector). When an attack is detected, the resulting cost
increase is obtained by aT (GSVR −Gnormal). When the detector
fails to detect an attack, the cost increase is the attack consequence
aT (GAtk −Gnormal). Thus, for each load shift, if all attacks are
detected, the data point on the blue line is given by aT (GSVR −
Gnormal). Otherwise, it is max[aT (GAtk −Gnormal),a

T (GSVR −
Gnormal)]. Similar procedure is performed to create Figure 7(b) for
LO attacks. The red line is obtained by taking the maximum P lL,Atk
for each load shift (line l is the target line). The blue line is obtained
by P lL,SVR if all attacks are detected, and max[P lL,Atk,P

l
L,SVR]

otherwise.
From Figures 7(a), we can see that for load shift τ ≥ 3%, the

increases in operation cost are significantly reduced by using SVR
predicted loads when an attack is flagged. For LO attacks, the over-
flows are significantly reduced for load shift τ ≥ 4%. The largest
cost increase caused by CM attacks that are not detected is 8.17%
(at τ = 2%), and the largest overflow caused by LO attacks that are
not detected is 3.96% (at τ = 3%). Thus, even though our detec-
tor fails to detect a small number of attacks, their consequences are
minor. Note that at τ = 1%, using the SVR predicted loads leads
to larger overflow due to inaccurate predictions, but the overflow is
still very small. Therefore, the consequences of LR attacks can be
successfully mitigated using the SVR predicted loads, which gives
operators time to take other corrective actions.

6 Concluding Remarks

A machine learning based load redistribution (LR) attack detection
framework is proposed. This detection framework consists of a sup-
port vector regression (SVR)-based load predictor and a support
vector machine (SVM)-based attack detector. The SVR load pre-
dictor is trained using features selected from historical load data to
capture both spatial and temporal correlations. The prediction results
indicate that the SVR load predictor can accurately predict loads at
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Fig. 7: Mitigation results of (a) CM attacks and (b) LO attacks.
For each load shift, the points on the red lines indicate the worst
consequence as a result of attack, and the points on the blue lines in-
dicate the worst consequence with our attack detection framework.
Points on the blue line are obtained by taking the maximum of two
quantities: (i) resulting worst consequence if re-dispatch using SVR
predicted loads when attack is flagged; and (ii) the worst attack
consequence when the detector fails.

all buses. The SVM attack detector is trained using randomly gen-
erated LR attacks, and is shown to be effective in detecting both
randomly generated and intelligently designed attacks, especially
those with consequences. Using the proposed attack detection frame-
work, system operators can make control decisions based on the
predicted loads when attack is flagged to mitigate the consequence
of the attacks. It also gives operators time to find the source of the at-
tacks. Future work will include finding attack localization techniques
that help system operators identify the loads and/or meters that are
modified by the attacker.
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Appendix

The parameters s and d in (14) determines the dimension of SVR
input data matrix X,m× p. For example, for Model 2, s = 3 and
d = 2, the length of fi is given by

nf = s+ 1 + 2d = 8. (33)
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The resulting data sample length p = 3 + 20× nf = 163. Since we
use load values of previous d = 2 days as features, the start hour of
our data is 01/03/2015, 0 AM. The end hour is 12/31/2018, 10 PM
because for 12/31/2018, 11 PM, we do not have ground truth values
of its next hour. In each of the four years, the hour when daylight
saving time ends has two load values with identical time stamps, and
we approximate the load value at this hour by taking the average of
those two values. As a result, the number of data samples for the
SVR load predictor is

m = (365× 3 + 366− d) ∗ 24− 1− 4 = 35011. (34)

The target values for hour h are the metered loads of the 20 zones
at hour h+ 1. Thus, for each data sample of length p = 163, the
SVR outputs a vector of length 20 as prediction. We use the first
26253 data samples in year 2015 through 2017 to train the SVR load
predictor and use the remaining 8758 data samples in 2018 to test
its performance. The resulting training data matrix Xtrain is of size
26253× 163, training target value matrix Ytrain is of size 26253×
20, testing data matrix Xtest is of size 8758× 163, and the testing
target value matrix Ytest is of size 8758× 20. The dimensions of
these matrices for other models can be similarly determined.
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