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Abstract Target tracking is a fundamental problem in robotics research and has
been the subject of detailed studies over the years. In this paper, we introduce a new
formulation, based on the mathematical concept of random finite sets, that allows for
tracking an unknown and dynamic number of mobile targets with a team of robots.
We show how to employ the Probability Hypothesis Density filter to simultaneously
estimate the number of targets and their positions. Next, we present a greedy algo-
rithm for assigning trajectories to the robots that maximize submodular objective
functions and prove that this is a 2-approximation. We examine two such objective
functions: the mutual information between the estimated target positions and future
measurements from the robots, and the expected number of targets detected by the
robot team. We provide extensive simulation evaluations using a real-world dataset.

1 INTRODUCTION

Target detection, localization, and tracking has many applications, ranging from
search-and-rescue [9] to building smart cities [19]. Consequently, such problems
have long been a subject of study in the robotics community. Active target track-
ing typically refers to two types of tasks: estimating the trajectories of the targets
from the sensor data, and actively controlling the motion of the robotic sensors to
gather the data. Both problems have been studied in the literature under many differ-
ent settings. Solutions have been presented for radio-based sensors [12], range-only
sensors [34], bearing sensors [21], and range and/or bearing sensors [35], under
centralized and decentralized settings. Frew and Rock [8] design optimal trajecto-
ries for a single robot to track a single moving target using monocular vision. The
problem of keeping targets in a robot’s field-of-view can be formulated as a visual
servoing problem. Gans et al. [10] design a controller which guarantees stability
while keeping three or fewer targets in the field-of-view of a single mobile robot.
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Spletzer and Taylor [28] present a general solution for the multi-robot, multi-
target case using a particle filter formulation. Tracking multiple targets with multiple
robots requires explicit or implicit assignment of targets to robots. Xu et al. [32]
present a mixed nonlinear integer programming formulation for assigning robots to
targets as well as for determining optimal robot positioning. Such a formulation is
not directly applicable in our case since the number of targets itself is unknown,
and thus explicit assignment is not possible. Recently, there has been some work on
actively detecting and/or localizing an unknown number of stationary targets using
radio sensors [14, 27], range-only sensors [4], and arbitrary sensor models [7].

Unlike most existing work, we study the case of tracking an unknown and varying
number of indistinguishable targets. This introduces a number of challenges. First,
we cannot maintain a separate estimator for each target, since the required number
of estimators is unknown. Second, we must account for the fact that targets appear
and disappear from the environment. Third, we cannot maintain a history of the
target positions because we cannot uniquely identify individual targets, making pre-
diction difficult. Finally, the system must be capable of handling false positive and
false negative detections and unknown data association in addition to sensor noise.
Despite these challenges, we present positive results towards solving the problem.

To solve this estimation problem we turn to Random Finite Sets (RFSs). RFSs
are random variables whose realizations are finite sets. Distributions over RFSs have
both a distribution over the cardinality of the set (i.e., number of targets) and a dis-
tribution over the elements of the set (i.e., position of the targets). The Probability
Hypothesis Density (PHD) filter [22] is the most common estimation strategy based
on RFSs. The PHD filter has recently received attention in robotics for use in robot
localization [2], simultaneous localization and mapping [18], localizing static tar-
gets [7, 26], and more [1]. In this paper, we show how the PHD filter can be em-
ployed for tracking moving targets (Section 3.3).

An important consideration for target tracking is the motion model for the tar-
gets. A number of parametric motion models have been proposed in the literature
(see [20] for a detailed survey). We employ a data-driven technique to extract the
motion model, instead of assuming any parametric form. Specifically, we use Gaus-
sian Process (GP) regression to learn a map of velocity vectors for the targets, as
Joseph et al. do in their work [13]. Additionally, we show how to model the ap-
pearance and disappearance of targets within the environment (Section 3.2). Next,
we present a control policy to assign trajectories for all robots in order to maximize
the objective function over a receding horizon. We study two objective functions us-
ing the PHD filter: mutual information and the expected number of detections by the
robots. We show that both objective functions are submodular, and use a result based
on [30] to prove that our greedy control policy is a 2-approximation (Section 3.4).

In addition to the theoretical analysis we offer, we evaluate our algorithm us-
ing simulated experiments. While our framework may be applied to a number of
robot and sensor models, for the purposes of testing we restrict our attention to
fixed winged aerial robots with downward facing cameras. We use a real-world taxi
motion dataset from [23] for the targets and to verify our models. The simulation
results reveal that robot teams using the information-based control objective track a



smaller number of targets with higher precision compared to teams that maximize
the expected number of detections (Section 4).

2 PROBLEM FORMULATION

We address the problem of a team of R robots monitoring an area in order to detect,
localize, and track an unknown number of moving targets using an inexpensive cam-
era. The robots are able to localize themselves within the environment (e.g., using
GPS) and robot r has pose qr

t at time t.
The number of targets, nt , is unknown and varies over time, since individ-

ual targets may enter and leave the area of interest. We use Random Finite Sets
(RFSs) to represent the number and state of targets at any time. In the target
tracking scenario, RFSs may represent either targets states or measurements. Let
Xt = {x1,t ,x2,t , . . . ,xnt ,t} denote a realization of a RFS of target states at time t. A
probability distribution of a RFS is characterized by a discrete distribution over the
cardinality of the set and a family of densities for the elements of the set conditioned
on the size, i.e.,

p(X = {x1, . . . ,xn}) = p(|X |= n) p({x1, . . . ,xn} | |X |= n). (1)

The first statistical moment of a distribution over a RFS is called the Probability
Hypothesis Density (PHD). The PHD, v(x), is a density function over the state space
of an individual target with the property that the integral over any region S is the
expected number of targets in that region, i.e.,∫

S
v(x)dx = E[|X ∩S|]. (2)

The PHD filter makes the assumption that targets are independent and identically
distributed and that the cardinality of the target set is characterized by a Poisson
distribution. The likelihood of such an RFS is

p(X) = exp
(
−
∫

v(x)dx
)

∏
x∈X

v(x), (3)

which is fully characterized by the PHD.
Each robot receives a set of measurements Zr

t = {zr
1,t ,z

r
2,t , . . . ,z

r
m,t} to targets that

it detects within the field of view (FoV) of its sensor. The number of measurements,
mt , varies over time due to false negative and false positive detections and the mo-
tion of the robots and the targets. Let pd(x | q) denote the probability of a robot at q
detecting a target with state x. pd(x | q) = 0 for targets outside of the FoV of the sen-
sor and having pd(x | q)< 1 indicates the possibility of a false negative, or missed,
detection. When a target is successfully detected, the sensor returns a measurement
z ∼ g(· | x,q). The sensor can also return measurements to clutter objects, causing
false positive detections. Let c(z | q) denote the PHD of clutter measurements.



The PHD filter is somewhat analogous to the Kalman filter, recursively updating
the statistical moments necessary to fully characterize a distribution over the target
states. Like the Kalman filter, there are two equations: the prediction and the update,

v̄t(x) =b(x)+
∫

ps(ξ ) f (x | ξ )v(ξ )dξ (4)

vt(x) =
(
1− pd(x | q)

)
v̄t(x)+ ∑

z∈Zt

pd(x | q)g(z | x,q)v̄t(x)
c(z,q)+

∫
pd(ξ | q)g(z | ξ ,q)v̄t(ξ )dξ

. (5)

Here v̄t(·) is the predicted target PHD; b(·) is the PHD of target births, which ac-
counts for new targets entering the area; ps(·) is the target survival probability, which
accounts for targets leaving the area; and f (· | ξ ) is the target motion model. In the
following section, we show how to learn these parameters from a real-world dataset.

Note that the representation in the PHD filter is inherently different from more
traditional target trackers. With the PHD, there is no notion of target labels or of
individual target tracks. Instead, the PHD filter tracks the density of targets over
time, yielding information about the bulk motion rather than about the motion of
individual targets. Future work will examine the recent Labeled MeMBer filter [25],
which is also based on RFSs but uses a different representation such that it is able
to output labeled target tracks.

3 TARGET TRACKING FRAMEWORK

The representative problem that we consider is of a team of fixed-wing aerial robots
equipped with downward-facing cameras tracking vehicles driving on the ground.
However the same methodology could be extended to work with robots with other
mobility constraints (e.g., ground vehicles or quadrotor platforms) and other sensor
modalities (e.g., lidars or 3D depth cameras).

3.1 Sensor Parameterization

The problem of detecting vehicles using aerial imagery has been well studied [11,
33]. We use such studies to inform our selection of the sensor detection, measure-
ment, and clutter models. The approaches presented in [11,33] are similar, searching
for image features over a range of scales in order to detect cars of different sizes or
to detect cars from different elevations or with different image resolutions. In gen-
eral, the system is able to have a higher detection rate if we accept a larger number
of false positive detections [33, Fig. 12], [11, Fig. 8]. The detection rate may also
vary with the number of pixels per target, which may be computed, using the robot
pose, the approximate length scale of a target, and the image resolution, to be

# pixels per car = pixels per radian× arctan
length of target

distance from camera to target
. (6)



We assume a logistic relationship between the number of pixels per target, npx(x,q),
and the detection rate,

pd(x | q) = p0 +
pd,max− pd,0

1+ exp(−k(npx(x,q)−np,0))
, (7)

where pd,0, pd,max, k, and npx,0 are design parameters.
The camera returns pixel (i.e., bearing) measurements to the cars detected within

the image. Using the pose of the robot, we can project measurements onto the
ground plane to localize the targets. The measurement model is

g(z | x,q) = N (z; [rx,cx]
T ,σ2I), (8)

where rx,cx are the pixel row and column values in an image taken at q, of a target
at x, σ is the standard deviation in pixels, and I is a 2×2 identity matrix.

Like the targets, the clutter is modeled as a Poisson RFS, which is completely
characterized by the PHD. Without a priori knowledge of locations that are likely
to have clutter, the best choice is to use a uniform distribution over the measurement
space. For most computer vision-based detection algorithms, the expected number
of clutter detections depends upon the detection model, with a high detection likeli-
hood resulting in a higher detection rate [11, 33].

3.2 Target Parameterization

In order to predict how the target set evolves, we need models for the motion of
individual targets as well as the birth/death processes of the targets. A number of
motion models have been proposed in the literature, ranging from adversarial [5]
to stochastic [20]. We take a data-driven approach to modeling the targets’ motion,
utilizing real-world datasets that are available [15]. In particular, we use Gaussian
Process (GP) regression [24] to learn the function that maps the position coordinates
of the targets to velocity vectors, as shown by Joseph et al. [13]. Unlike [13], we use
a single GP rather than a mixture of GPs.

GP regression is a Bayesian approximation technique to learn some function
f (X) given measurements y= f (x)+ε corrupted by Gaussian noise, ε ∼N (0,σ2).
Here, x = [x1,x2]

T refers to the position coordinates of the targets. We learn two sep-
arate functions, f1 and f2, one for each axis of the ground plane, assuming that the
velocities along the two axes are independent. Instead of assuming a parametric
model for fi, GP regression assumes that the joint distribution of fi(X) defined over
any collection of positions, X = {x1, . . . ,xk}, is always Gaussian. Thus, fi(X) is
completely specified by its mean function, mi(X) = E[ fi(X)] and covariance func-
tion, ki(X ,X ′) = E[( fi(X)−mi(X))( fi(X ′)−mi(X ′))].

Given observed velocity vectors Y1 and Y2 taken at some subset of positions,
X , GP regression predicts the velocity vectors at another set of positions, X∗, as a
Gaussian distribution with conditional mean and variance values [24]:
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Fig. 1 The mean and covariance of the Gaussian Process regression motion model over a patch
of the environment. The measured velocity vectors are shown in red, and the velocity vectors
predicted over a grid are given in blue.

mi(X∗|X) = mi(X∗)+Ki(X∗,X)[Ki(X ,X)+σ
2I]−1(Yi−mi(X))

σ
2
i,X∗|X = Ki(X∗,X∗)−Ki(X∗,X)[Ki(X ,X)+σ

2I]−1Ki(X ,X∗),

where Ki(X ,X ′) is a matrix whose (m,n)th entry is given by the covariance between
xm ∈ X and xn ∈ X ′. We take the prior function, mi(X), to be a zero-mean distribu-
tion. Thus, if the covariance function is known, the above equations can fully predict
the velocity values at arbitrary positions.

We assume that the covariance function belongs to the Matérn class with pa-
rameter ν = 3/2 [24] since this choice of covariance function yields a better fit as
compared to the standard squared-exponential function used by Joseph et al. [13].
The length hyperparameter of the Matérn covariance is learned using training data
from the Cabspotting taxi dataset from [23]. Figure 1 shows the predicted mean and
variance values given by the GP regression using the learned hyperparameter values.

We use an empirical approach to learn the target survival and birth processes. For
both processes, we overlay a uniform grid (1 m resolution) over the environment.
Whenever a target appears in a cell, we add one to the survival count if the target was
previously in another cell, we add one to the birth count if the target was previously
outside the environment, and add one to the death count if at the next time step the
target leaves the environment. The birth count for each cell is initialized to 10, so
that the distribution of birth locations is uniform if there is no data. Similarly, the
survival and death count for each cell are initialized to 9 and 1, respectively. The
survival probability in a cell is given by the ratio of the survival count to the total
survival and death counts in that cell. In the absence of data, this yields a uniform
probability of survival of 0.9.

Figure 2a shows the environments used in the simulations, with the target survival
probability in Fig. 2b and birth PHD in Fig. 3. As Fig. 2b shows, the targets survive
with high probability in the majority of the environment. The probability decreases
near the western and southern edges of the environment, where there are roads along
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Fig. 2 (a) The area of interest, a roughly 6.15×5.56 km region surrounding downtown San Fran-
cisco. (b) The probability of target survival as a function of position.
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Fig. 3 Empirical target birth PHD.

the edge of the environment. These same areas also have the highest rates of target
births, as Fig. 3b shows. One may also clearly see the highways in the southeast and
the bridge in the northeast, which have the highest rates of traffic, and thus of target
births and deaths. The target birth rate per minute, when considering all 536 taxis in
the dataset, is 4.548 targets per minute of real time. The actual and fit birth rates are
shown in Fig. 3a, with the Poisson approximation fitting the data well.

3.3 PHD Filter

We utilize the Sequential Monte Carlo (SMC) PHD filter from Vo et al. [31]. This
approximates the PHD using a set of weighted particles, v(x) ≈ ∑

Pt
i=1 wi δ (x− xi).

The SMC PHD filter allows for arbitrary, non-linear sensor and motion models,
including a finite field of view for the sensor. New particles are added to the PHD



using the birth PHD described above as well as using the most recent measurement
set. A fixed number of particles, Pb, are drawn from the birth PHD and an additional
Pm particles are drawn from the inverse measurement model for each measurements
in the most recent set, Zt . The weight of each of these particles is w =

∫
c(z)dz

Pb+|Zt |Pm
,

where |Zt | is the cardinality of the measurement set.

3.4 Control Policy

In this section, we present our control policy for assigning trajectories for the robots.
We study two objective functions for the control policy.

3.4.1 Mutual Information (MI) Objective

Mutual information is a way of quantifying the dependence between two random
variables [6], and can be defined in multiple ways

I[X ,Z ] =
∫

p(X ,Z) log
p(X ,Z)

p(X)p(Z)
dXdZ =

∫
KL
[
p(X | Z)||p(X)

]
p(Z)dZ. (9)

The last term above states that mutual information can be interpreted as the ex-
pected Kullback-Leibler divergence between the prior and the posterior, given the
unknown future measurements. Thus, maximizing mutual information between the
target set and the future measurements of the robots will cause the robots to take
measurements that will change their belief quickly.

The robots utilize a receding horizon control policy. Each robot generates a set of
candidate trajectories, with T measurements along each trajectory at evenly spaced
intervals. The optimal strategy is then to choose robot trajectories that maximize the
mutual information between the target set and its future measurements,

Q∗τ = argmaxQτ∈Q1:R
τ

I[Xt+T ;Y 1:R
τ | Qτ ], (10)

where τ = {t + 1, . . . , t + T} is the time horizon, Xt+T is the predicted loca-
tion of the targets at time t + T , Y 1:R

τ is the collection of binary measurements
for robots 1 to R from time steps t + 1 to t + T , and Qτ are the future poses
of the robots. These measurements depend on the future locations of the robots
Qτ = {q1

t+1, . . . ,q
1
t+T , . . . ,q

R
t+T}. Computing Q∗τ is computationally challenging,

nevertheless, we show that a greedy strategy approximates Q∗τ by a factor of 2.
We utilize binary measurements, rather than the full measurements sets, in order

to decrease the computational complexity of the control policy. This allows us to
derive a closed-form expression for (10), and we have previously shown that this
approach effectively drives a team of robots to detect and localize static targets [7].
The binary measurements are defined to be y = 1(Z 6=∅), where 1(·) is the indica-
tor function. Here y = 0 is the event that the robot receives no measurements to any
(true or clutter) objects while y = 1 is the complement of this, i.e., the robot receives
at least one measurement. Kreucher et al. [17] take a similar approach, using a bi-



nary sensor model and an information-based objective function to schedule sensors
to track an unknown number of targets.

Theorem 1. The mutual information between the target set and the binary measure-
ment model is a lower bound on the mutual information between the target set and
the full measurement set, i.e., I[X ;Y | Q]≤ I[X ;Z | Q].

Proof. Note that y is deterministically related to Z, y = 1(Z 6=∅). This allows us to
apply the Data Processing Inequality [6, Theorem 2.8.1], which states that functions
of the data cannot increase the amount of information. ut

We utilize a greedy approximation strategy to evaluate (10), similar to that used
by Tokekar et al. [30]. Using this approach, each robot computes the utility of each
action according to (10). The robot and action with the highest utility are selected.
The remainder of the team then plans again, conditioned on the action of the first
robot, and the robot and action with the highest utility are again selected. This pro-
cess repeats until all robots have been assigned an action. Using the fact that mu-
tual information is a submodular set function of robot poses, we can show that this
greedy assignment policy is a 2-approximation.

Lemma 1. I[X ;Y | Q] is a submodular set function of Q.

Proof. See [16, Proposition 2]. ut

Theorem 2. Let QG be the robot poses selected by the greedy assignment policy and
Q∗ be the robot actions selected by the full, joint evaluation of (10). Then greedy is
a 2-approximation, i.e., I[X ;Y | QG]≥ 1

2 I[X ;Y | Q∗].

Proof. It is known that the greedy algorithm yields a 2-approximation for maximiz-
ing a monotone, submodular function subject to a partition matroid constraint [3].
We can create a set system using the candidate robot actions, as shown in [30]. This
set system defines a partition matroid, which along with the previous lemma proves
the desired result. ut

3.4.2 Expected Number of Detections (END) Objective

The Expected Number of Detections (END) objective function is given by

N[X | Q] =
∫ (

1−∏
q∈Q

(
1− pd(x | q)

))
v(x)dx. (11)

This objective gives the expected number of targets detected by at least one robot,
and is a submodular set function of Q so the greedy assignment algorithm will be a
2-approximation, similar to the previous theorem.

Lemma 2. The END objective function, N[X | Q], is a submodular function of Q.



Proof. The difference in the objective when adding a single robot is

N[X ;Q∪{q′}]−N[X ;Q] =
∫

pd(x | q′) ∏
q∈Q

(1− pd(x | q))v(x)dx.

For any R⊆ Q, the product ∏r∈R(1− pd(x | r))≥∏q∈Q(1− pd(x | q)) since pd(x |
q) ∈ [0,1],∀x,q. Thus N[X ;R∪{q′}]−N[X ;R] ≥ N[X ;Q∪{q′}]−N[X ;Q], so by
definition N[X ,Q] is submodular. ut

Fig. 4 Sample UAV trajectories.

3.4.3 Trajectory Generation

We use a simple model for a fixed-wing air-
craft with three basic control inputs: for-
ward velocity, yaw rate, and pitch rate. For
each control input we select a range of pos-
sible values. For each possible set of control
inputs we integrate the position, yaw, and
pitch forward in time using a 1-step Euler
integration scheme. Any trajectories that bring the robots above or below the eleva-
tion limits are discarded as invalid, as are any that result in collision. The remaining
trajectories are interpolated to yield the T poses at which each robot will take a
measurement. Figure 4 shows sample trajectories for a single robot.

4 RESULTS

To test the performance of the different objective functions, we ran a series of exper-
iments using simulated robots, varying the number of robots, the length of the plan-
ning horizon, the objective function, and the target motion model. We used teams
of 2, 4, and 6 robots, keeping the number of planning steps constant (T = 2) and
keeping the total number of actions for the team constant (RT = 12). We perform
5 trials with each configuration, randomly selecting a subset of 80 targets from the
taxi database for the ground truth target motion in each trial. Note that the true num-
ber of targets in the area of interest varies over time as targets enter and leave. The
robots monitor the area from Fig. 2a, which is scaled down by a factor of 100 from
the real world. We also sped up the data by a factor of 60, so 1 s in simulation repre-
sents 1 min of real time, in order to speed up the simulations. The data is taken from
4–9 pm on May 18, 2008, a time of day where there will be plenty of taxi traffic.

It is worth noting that a number of competing multi-target tracking methods ex-
ist [29], most notably the Multiple Hypothesis Tracker (MHT) and Joint Probabilis-
tic Data Association (JPDA). However, to the best of our knowledge, there do not
exist active multi-robot control policies based on these estimation algorithms. This
makes comparisons to these methods beyond the scope of this paper.
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(a) GP motion model with MI objective
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Fig. 5 Ratio of the expected number to the true number of targets over a single run for R = 2 and
T = 6.
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(b) GP motion model with END objective

Fig. 6 The elevation of the robots over a single run for R = 2 and T = 6.

4.1 Moving Targets

The two target motion models that we consider are the Gaussian Process (GP) de-
scribed in Sec. 3.2, and a Gaussian random walk (GRW) model. In GRW we model
the target as performing a random walk, with a velocity drawn at random from a
Gaussian distribution. Note that these models are used only to update the PHD; the
actual targets trajectories are given by the taxi dataset. In both cases we use the sur-
vival and birth processes described in Sec. 3.2, with the birth rate set to 0.6788 to
account for the reduced number of data files used.

Figures 5–7 show how the ratio of the expected number of targets to true targets,
the robot elevation, and the target set entropy change during a single run. These are
representative trials of a team of 2 robots with a planning horizon of 6 time steps.

Figures 8–10 show the ratio of the expected number of targets to true number of
targets, the fraction of true targets within the sensor FoV, and the ratio of expected
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(b) GP motion model with END objective

Fig. 7 The entropy of the target set over a single run for R = 2 and T = 6.

targets to true targets within the sensor FoV, respectively. In general, the fraction
of targets tracked by the team depends much more on the motion model and the
objective function than on the team size or planning horizon, despite the fact that
larger teams and planning horizons cause the robots to observe a larger number of
targets. Additionally, the ratio of the expected number of targets to the true number
of targets within the sensor FoV is largely independent of the objective function,
team size, or planning horizon.

Overall, the robot teams using the information based control objective (MI) esti-
mate and track fewer targets than the teams using the END objective but each target
is tracked with higher quality. Additionally, the teams using the GP-based motion
model track more targets than those using the GRW motion model.

The reason for this difference is due to the emergent behavior of the different
control objectives. Robots using the MI objective tend to stay closer to the ground in
order to decrease uncertainty in the location of individual targets. On the other hand,
robots using the END objective fly at a higher altitude, as Fig. 11 shows. Note that
increasing the altitude decreases the probability of detection, while increasing the
sensor FoV. Consequently, flying to the highest altitude is not necessarily optimal.
Figure 12 shows the average target entropy. This is substantially lower for the teams
using MI, indicating that the targets are being tracked with less uncertainty.

4.2 Static Targets

We also test the performance of our framework with static targets using a team of 4
robots with a planning horizon of 3. The simulation parameters are identical, except
we replace the 80 taxi data traces with 80 randomly drawn static target locations.
The resulting final estimated number of targets and target entropies are shown in
Fig. 13. The final estimated number of targets is very close to 1 using both objective
functions, indicating that the system is able to correctly determine the number of
targets. The entropy is also lower than in the case of moving targets.
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(b) Gaussian process

Fig. 8 Average ratio of the expected number of targets to the true number of targets over a single
run.

0

0.2

0.4

0.6

0.8

1

R
=

2
, 

T
=

2
, 

M
I

R
=

2
, 

T
=

6
, 

M
I

R
=

4
, 

T
=

2
, 

M
I

R
=

4
, 

T
=

3
, 

M
I

R
=

6
, 

T
=

2
, 

M
I

R
=

2
, 

T
=

2
, 

E
N

D

R
=

2
, 

T
=

6
, 

E
N

D

R
=

4
, 

T
=

2
, 

E
N

D

R
=

4
, 

T
=

3
, 

E
N

D

R
=

6
, 

T
=

2
, 

E
N

D

A
v
g

. 
fr

a
c
ti
o

n
 t

ru
e

 t
a

rg
e

ts
 i
n

 F
o

V

(a) Gaussian random walk

0

0.2

0.4

0.6

0.8

1

R
=

2
, 

T
=

2
, 

M
I

R
=

2
, 

T
=

6
, 

M
I

R
=

4
, 

T
=

2
, 

M
I

R
=

4
, 

T
=

3
, 

M
I

R
=

6
, 

T
=

2
, 

M
I

R
=

2
, 

T
=

2
, 

E
N

D

R
=

2
, 

T
=

6
, 

E
N

D

R
=

4
, 

T
=

2
, 

E
N

D

R
=

4
, 

T
=

3
, 

E
N

D

R
=

6
, 

T
=

2
, 

E
N

D

A
v
g

. 
fr

a
c
ti
o

n
 t

ru
e

 t
a

rg
e

ts
 i
n

 F
o

V

(b) Gaussian process

Fig. 9 Average fraction of the number of true targets within the team’s field of view over a single
run.

5 CONCLUSIONS

In this paper we describe a framework for detecting, localizing, and tracking an un-
known number of moving targets using a team of mobile robots. The robot team uses
the Probability Hypothesis Density filter to simultaneously estimate the number of
targets and the states of the targets. The PHD filter is robust to false negative and
false positive detections and sensor noise and does not require any explicit data asso-
ciation. Using the estimate of the target set from the PHD filter, the robots greedily
select actions that maximize submodular control objectives. The two control ob-
jectives that we consider in this paper are the expected number of detected (END)
targets by the team and the mutual information (MI) between the predicted targets
and the future detections of the robots. We validate our framework through exten-
sive simulations using a real-world dataset for target motion. Robot teams using the



0

0.2

0.4

0.6

0.8

1

R
=

2
, 

T
=

2
, 

M
I

R
=

2
, 

T
=

6
, 

M
I

R
=

4
, 

T
=

2
, 

M
I

R
=

4
, 

T
=

3
, 

M
I

R
=

6
, 

T
=

2
, 

M
I

R
=

2
, 

T
=

2
, 

E
N

D

R
=

2
, 

T
=

6
, 

E
N

D

R
=

4
, 

T
=

2
, 

E
N

D

R
=

4
, 

T
=

3
, 

E
N

D

R
=

6
, 

T
=

2
, 

E
N

D

A
v
g

. 
ra

ti
o

 e
x
p

. 
to

 t
ru

e
 t

a
rg

e
ts

 i
n

 F
o

V

(a) Gaussian random walk

0

0.2

0.4

0.6

0.8

1

R
=

2
, 

T
=

2
, 

M
I

R
=

2
, 

T
=

6
, 

M
I

R
=

4
, 

T
=

2
, 

M
I

R
=

4
, 

T
=

3
, 

M
I

R
=

6
, 

T
=

2
, 

M
I

R
=

2
, 

T
=

2
, 

E
N

D

R
=

2
, 

T
=

6
, 

E
N

D

R
=

4
, 

T
=

2
, 

E
N

D

R
=

4
, 

T
=

3
, 

E
N

D

R
=

6
, 

T
=

2
, 

E
N

D

A
v
g

. 
ra

ti
o

 e
x
p

. 
to

 t
ru

e
 t

a
rg

e
ts

 i
n

 F
o

V

(b) Gaussian process

Fig. 10 Average ratio of the expected number of targets to the true number of targets within the
team’s field of view over a single run.
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Fig. 11 Average elevation of the robots over a single run.
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(b) Gaussian process

Fig. 12 Average entropy of the target set over a single run.
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Fig. 13 Performance of our framework with static targets.

END objective track a higher fraction of the targets but do not localize the targets
with high precision. Conversely, robot teams using MI track a smaller number of
targets but have significantly lower uncertainty in the target positions.
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