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Abstract. This paper is concerned with “loop closing” for mobile robots. Loop closing is the problem of correctly

asserting that a robot has returned to a previously visited area. It is a particularly hard but important component

of the Simultaneous Localization and Mapping (SLAM) problem. Here a mobile robot explores an a-priori unknown

environment performing on-the-fly mapping while the map is used to localize the vehicle. Many SLAM implementations

look to internal map and vehicle estimates (p.d.fs) to make decisions about whether a vehicle is revisiting a previously

mapped area or is exploring a new region of workspace. We suggest that one of the reasons loop closing is hard in

SLAM is precisely because these internal estimates can, despite best efforts, be in gross error. The “loop closer” we

propose, analyze and demonstrate makes no recourse to the metric estimates of the SLAM system it supports and aids—it

is entirely independent. At regular intervals the vehicle captures the appearance of the local scene (with camera and

laser). We encode the similarity between all possible pairings of scenes in a “similarity matrix”. We then pose the loop

closing problem as the task of extracting statistically significant sequences of similar scenes from this matrix. We show

how suitable analysis (introspection) and decomposition (remediation) of the similarity matrix allows for the reliable

detection of loops despite the presence of repetitive and visually ambiguous scenes. We demonstrate the technique

supporting a SLAM system driven by scan-matching laser data in a variety of settings. Some of the outdoor settings

are beyond the capability of the SLAM system itself in which case GPS was used to provide a ground truth. We further

show how the techniques can equally be applied to detect loop closure using spatial images taken with a scanning laser.

We conclude with an extension of the loop closing technique to a multi-robot mapping problem in which the outputs

of several, uncoordinated and SLAM-enabled robots are fused without requiring inter-vehicle observations or a-priori

frame alignment.
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1. Introduction and Background

This paper is concerned with detecting “Loop Closure”—

correctly asserting that a mobile robot has returned to a

previously visited area. This is a particularly important

competency in relation to the Simultaneous Localization

and Mapping (SLAM) problem.

To motivate the work discussed in this paper we begin

by briefly reviewing the SLAM problem. SLAM is con-

cerned with having an autonomous vehicle continuously

localize in an a-priori unknown environment without re-

course to infrastructure and using only onboard sensors.

The idea is that a suitable representation (map) of the

environment can be constructed on-line that allows fast

metric localization of the vehicle. The overwhelming ma-

jority of successful SLAM algorithms couch the SLAM

problem in a probabilistic framework. By various means,

they try to estimate the joint probability of map and vehi-

cle trajectory conditioned on control inputs, sensor mea-

surements and data association. The latter is the process

of deciding how to associate sensor measurements with

new or existing elements of the map. The loop closing

problem, with which this paper is concerned, is essen-

tially a data association problem. A positive loop closure

occurs when the robot recognizes the local scene to be one

it has previously visited. We wish the robot to be able to do

this irrespective of internal map-vehicle estimates. After

all, loop closing is hard (and needed) precisely because
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these estimates are often in error. Although we do not

preclude the use of SLAM estimates in loop closure de-

tection, the advantages of having an independent loop

closure detection system appear clear.

It is important to point out the differences between the

problem of localization and loop closing. In localization,

it is known a priori that the robot is operating in a pre-

viously visited environment. The appearance of the local

scene must match one in a “database” of previously vis-

ited scenes. Additionally, the goal of a localization system

is to locate the robot accurately at every possible pose. In

contrast, it is not crucial that loop closure detection occurs

at every opportunity. If and when a robot returns to a pre-

viously mapped region, a single, reliable detection of loop

closing is all that is required for the map to be corrected.

In many contemporary feature-based SLAM algo-

rithms, simple geometric primitives such as corners or

lines are used as features. These features, by themselves,

are not particularly discriminative. They are distinguish-

able only by their global or relative locations. Many

data association techniques (Bar-Shalom, 1987; Neira

and Tardõs, 2001) used for loop closing are therefore de-

pendent on accurate map-vehicle estimates. These tech-

niques can close small loops, using Mahalonobis dis-

tances, reliably but are less successful when faced with

the large errors that inevitably accumulate while travers-

ing loops (see Fig. 2).

Problems remain when removing the need to create

maps as a collection of predefined geometric primitives.

A popular approach is “scan matching” in which laser

range scans are rigidly attached to vehicle poses. Se-

quential scans (and hence vehicle poses) are registered to

each other resulting in a trajectory of vehicle poses and

a map made implicitly from the now aligned raw laser

scans. In Gutmann and Konolige (1999), an approach

called “Local Registration and Global Correlation” was

introduced to determine topologically correct relations

between new and old poses after long cycles. To identify

loop closure, a large “scan patch” is correlated (over

motion in the plane) with a partition of the global

map. The intuition is that the larger scan patch will be

more reliable than a single laser scan in rejecting false

positives. However, the location of the search space is

still dependent on the robot pose estimate.

Vision has also been used successfully for localiza-

tion of a mobile robot (Wang et al., 2005; Wolf et al.,

2005). Location neighborhood relationships captured by

a Hidden Markov Model were exploited in Torralba et al.

(2003) and Kosecka et al. (2005) to localize a robot into

one of a small number of pre-defined locations. Con-

sidering the temporal relationship between images pro-

vides robustness against dynamic changes and inherent

appearance ambiguities. However the supervised la-

belling of images following an initial exploration stage

does not lend itself to the SLAM problem where there is

no controlled mode change from exploration to localiza-

tion. Vision-based global localization and mapping was

achieved in Se et al. (2005) by matching SIFT features de-

tected in a local submap to a pre-built SIFT database map.

3D submaps are built by aligning multiple frames while

the global map is built by aligning and merging multiple

3D submaps. Visual loop closure detection was attempted

in Levin and Szeliski (2004) through correspondences be-

tween omnidirectional images and in the context of this

work, the similarity between all images are expressed

in a distance matrix. The quality of the distance matrix

is improved by imposing epipolar constraints. It was ob-

served in both (Levin and Szeliski, 2004; Silpa-Anan and

Hartley, 2005) that off-diagonals can be found in the ma-

trix when the same path is travelled again and reverse-

diagonals in the matrix when the reverse path is taken.

However, this observation was not exploited further in

either paper. The visual appearance aspects of the work

in Ranganathan et al. (2006) has a common ground with

this paper—visual appearance is used to help close loops.

However the focus is on topological reasoning rather than

on to build a reliable loop closure detector.

Vision has also been used in SLAM for the extraction

of geometric features as natural landmarks from the en-

vironment (Davison and Murray, 2002; Se et al., 2002).

Given feature correspondences from images captured

from multiple calibrated cameras, 3D positions of image

features relative to the robot can be computed and used as

a measurement stream. In Davison (2003) an Extended

Kalman Filter is used to achieve realtime 3D-SLAM over

a modest (desk size) area with a single camera given

an initialization of scale. The relatively small map size

means that, in this system, loop closing is not an issue as

the vehicle (a hand held camera) does not execute large

looping trajectories and pose errors do not accumulate.

The paper will proceed as follows. We begin in

Section 2 by briefly describing the platform and sen-

sors that were used to generate all the data sets used in

this paper. This data will be used to illustrate aspects of

the loop-closing problem throughout the paper—hence

the introduction of experimental apparatus in an early

section. For a similar reason, we go on to describe in

Section 2 a laser-based SLAM system that, where appli-

cable, is used to generate maps—maps that have substan-

tial loops that need detecting. In Section 3 we describe

how scene appearance is encoded and how any two scenes

can be compared. In Section 4 we focus on how se-

quences of matches can be used to affirm or discredit

loop closure hypotheses. Section 5 introduces a method

in which spectral decomposition is invoked to remove

the effects of common-mode similarity and ambiguity

across captured scenes—something which impedes suc-

cessful execution of the sequence extraction described

in Section 4. The section concludes by discussing how

to adjudicate the statistical significance of loop closure
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detections. Section 6 offers an extensive set of results

demonstrating and analyzing the performance of our ap-

proach in a variety of indoor and outdoor settings and

also its application to multi-robot navigation. Finally the

paper concludes with Section 8 which summarizes the

contributions of this work.

2. Infrastructure

2.1. Hardware and Instrumentation

The research vehicle used is a small all-terrain vehicle,

equipped with wheel encoders, a calibrated camera, a 2D

laser scanner and a 3D laser scanner. Figure 1 displays an

image of the platform. At the top is a pan-tilt EVI-D30

camera used to capture all the images discussed from here

on. Below the camera is a SICK LMS-200 laser scanner

mounted on a mechanical oscillator allowing the 3D ge-

ometry of the local workspace to be captured. Behind

the front bumper is an additional laser which is used for

obstacle avoidance and, when suitable, SLAM.

2.2. A SLAM System

This section provides a brief summary of a SLAM system

which we will augment with loop closure detection. It is

provided here to provide a technical context for the loop

Figure 1. The research platform. At the top is a pan-tilt camera. In

the middle is a laser scanner mounted on a mechanical oscillator that

allows a 2D laser scanner to capture 3D scans of the environment. At

the bottom is a fixed laser scanner which is used to obtain 2D scans

parallel to the ground plane.

closure problem. If the reader is familiar with the field (s)

he may move straight to Section 2.3. The SLAM system

we use is the delayed state formulation used in Bosse et al.

(2004) and Leonard and Newman (2003) and has much

in common with work in Gutmann and Konolige (1999)

and Lu and Milios (1997) and more recently (Eustice

et al., 2005). There is nothing special about the choice

of SLAM filter employed here and any technique that

produces a metric vehicle position estimate could have

been used.

2.2.1. Formulation. The estimated quantity is a state

vector x(i | j) which initially contains a single vehicle

pose xv(0 | 0). In the 2D case, xv is a three element

vector of [x, y, θ ]T whereas xv is a six element vector of

[x, y, z, θ, φ, ψ]T for the 3D case. Associated with it is

a covariance matrix P(0 | 0). Here we are adopting the

usual notation that the quantity x(i | j) is the estimate

of the true state x at time i given measurements up until

time j .

At some time k + 1 the vehicle is subject to a noisy

control vector u(k + 1) such that the new position of the

vehicle can be written as a function of the control and the

last state estimate.

xv(k + 1 | k) = xv(k | k) ⊕ u(k + 1) (1)

where ⊕ is a 3D or 6D transformation composition oper-

ator. The second order statistics of x(k +1 | k) following

a control input to be written as

Pv(k + 1 | k) = J1(xv, u) P(k | k) J1(xv, u)T

+ J2(xv, u) U J2(xv, u)T

where the (k | k) and (k + 1) indices have been dropped

from xv and u respectively for clarity and U is the co-

variance of the noise process in control u. J1(a, b) and

J2(a, b) are the jacobians of a ⊕ b w.r.t a and b respec-

tively.

We employ a delayed state model in which at every

time step the state vector is augmented as follows:

x(k + 1 | k) =

[

x(k | k)

xvn(k | k) ⊕ u(k + 1)

]

(2)

=

⎡

⎢

⎢

⎢

⎢

⎣

xv1

...

xvn

xvn+1

⎤

⎥

⎥

⎥

⎥

⎦

(k + 1 | k) (3)

The state vector is simply a history of previous vehicle

poses where we extend the notation to write the i th pose

as xvi . No environment features are stored. Associated

with each vehicle pose is a set of laser scans (2D or 3D)
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and the latest image captured (the image will be used later

to aid loop closing). The augmented covariance matrix,

P(k + 1 | k), following the transformation of Eq. (2), can

be written as

P(k+1 | k) =

[

P(k | k) Pvp(k+1 | k)

Pvp(k+1 | k)T Pv(k+1 | k)

]

. (4)

It should be noted that k is not incremented at every

iteration of the algorithm. The odometry readings of the

vehicle are compounded until the overall change in pose

is significant. This overall, compounded transformation

becomes u(k) and the k is incremented and the above

state projection step described above is undertaken. In

this way the state vector grows linearly with the driven

path length and not with time.

2.2.2. Inter-Pose Measurements. The scan-matching

part of the algorithm works as follows. Consider two

poses at times i and j . Poses at times i and j have asso-

ciated laser scans L i and L j , each containing ni and n j

sets of x, y points (or x, y, z points in 3D) in the vehicle

frame of reference. Assuming that there is a substan-

tial overlap between the surfaces sampled in these two

scans, it finds a transformation T parameterized by the

vector zi j = [x, y, θ ]T or zi j = [x, y, z, θ, φ, ψ]T such

that

η =
∑

k=1:n j

�
(

L i , T
(

Lk
j , zi j

))

(5)

is minimized. The function �(L i , T (Lk
j , zi j )) returns the

unsigned distance between the kth point in scan j trans-

formed by zi j , and all of scan i . Note that we need not

assigning rigid point to point associations as is common

in Iterated Closest Point (ICP) (Fitzgibbon, 2001) like

algorithms. In our 2D implementation, � uses the dis-

tance transform of L i and uses the coordinates of the

transformed points of L j to calculate the distance to the

template scan L i . The further details of the scan matching

procedure are beyond the scope of this paper. However

two important points must be made. Firstly, the scan-

matcher needs to be seeded with an approximate initial

estimate of zi j . Our current implementation has a conver-

gence basin for typical indoor environments (labs, offices

and corridors) of around +/− 30 degrees and +/−5 me-

ters and takes 40 ms to compute. The need for a ball-park

initial estimate is not surprising as scan-matching is a

non-linear optimization problem and as such is vulnera-

ble to the presence of local minima. Secondly, as Lu and

Milios (1997) described, scan matching can be used to

provide constraints or “measurements” of the relation-

ship between poses. In this case the output of the scan

matcher is the transformation between pose i and pose j

in the state vector. For example matching between scan

Figure 2. Pre and post loop closing. Left: a small angular error while

passing through a swing door causes a gross error in position estimate

which places the true location outside the 3-sigma bounds of the vehicle

marginal. Right: After loop closure has been enforced a crisp map re-

sults. The issue at hand is how to detect that loop-closure should occur.

Here the similarity between two views is used.

k + 1 and k allows the following measurement equation

to be formed:

xv(k + 1 | k) = xv(k | k) ⊕ zk,k+1 (6)

There are several ways to use such an observation. It

could simply be stored and used (in linearized form)

as an observation in a sparse bundle adjustment as pro-

posed in Konolige et al. (2004). Or, as we choose here,

it can be used in a minimum mean squared error up-

date step. Essentially we linearize the equation and use

it as an observation in a non-linear Kalman filter which

explains the observation as a function of just the last

few entries in the state vector. Nevertheless it is impor-

tant to note the update will alter the entire state vec-

tor (which is the vehicle’s past trajectory) as shown in

Fig. 2.

2.3. Limitation of Current Loop Closing Techniques

Figure 2 illustrates the limitation of some traditional loop

closing techniques which rely on pose estimates. This is

by no means a large loop or an extremely challenging

environment for contemporary SLAM algorithms. How-

ever the accumulated spatial error is significant. Note

how, at the end of the loop, the true location of the vehi-

cle is well outside the 3-sigma marginal for the vehicle

location. We maintain that regardless of which SLAM

approach is used, however good the odometry is or what

onboard inertial sensors are employed, a data set could

be generated over some terrain or scale that results in

accumulation of gross errors in both map and pose es-

timate p.d.f. Figure 2 also shows the final map after

applying the loop closing constraint. Exactly how the

loop closure is detected will be explained in following

sections.
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3. Scene Similarity

The loop-closure detection discussed in this work is

achieved by scene sequence recall, principally using cap-

tured visual images but also later using laser images. For

clarity we shall proceed by initially concerning ourselves

with visual images only. In Section 6.5 we shall go on

to use the same techniques to work with laser images. A

fundamental entity in this work is the “scene database”

often referred to as simply the “database”. In the abstract,

the database is considered to be a “black-box” with time

stamped images as input and loop-closure detections as

output. Internally the database is a data structure of im-

ages, patches and descriptors which admits search and

retrieval operations. A key competency is the evalua-

tion of the similarity between any two images Iu and Iv .

Sections 3.1, 3.2 and 3.3 describe how this is achieved.

3.1. Interest Point Selection and Description

An image-based loop closure detection system was de-

veloped in Newman and Ho (2005) where the most re-

cently captured image against all previous images stored

in a database. This was the system used to detect the

loop closure in Fig. 2. Each image is described by visu-

ally salient features, which are used for image similarity

comparison. In contrast to Newman and Ho (2005), the

only interest point detector that is adopted in this paper

to extract features from images is the detector developed

in Mikolajczyk and Schmid (2004), which finds “Harris-

Affine Regions”. Harris-Affine Regions offer significant

invariance under affine transformations. Having found a

set of image features, we encode them in a way that is both

compact to allow swift comparisons with other features,

and rich enough to allow these comparisons to be highly

discriminatory. We use the SIFT descriptor (Lowe, 2004)

which has become immensely popular in global visual

localization applications (Se et al., 2002, 2005). In ear-

lier work (Newman and Ho, 2005), we used Maximally

Stable Extremal Regions (Matas et al, 2002) to select

regions for SIFT encoding but found that Harris Affine

regions lead to a greater diversity of SIFT features—an

advantage for our approach. We describe the transfor-

mation of an image, Iu into a set of n descriptors as

D : Iu → {d1 · · · dn}, where n is itself a function of

the input image. In the case of SIFT features, each di is

a 128-dimensional vector.

3.2. Descriptor Relevance

As suggested in Sivic and Zisserman (2003), each image

can be considered to be a document consisting of “visual

words”. In this case, each SIFT descriptor, di , is asso-

ciated with a visual word d̂i, in a “visual vocabulary,”

V = { d̂i,d̂2 . . .d̂|V|}. The vocabulary V is constructed

by clustering similar descriptors (in terms of euclidean

distance) into clusters. Each cluster of SIFT descriptors

is considered to be associated with a visual word, repre-

sented by its cluster center.

A two-stage clustering procedure is used to build the

visual vocabulary. The first is a seeding stage that em-

ploys a simple “leader follows” (Duda et al., 2001) strat-

egy. The algorithm walks through the set of all descrip-

tors creating a new cluster if no existing cluster center is

within some threshold dmin or alternatively assigning it to

the closest cluster center. In the latter case the cluster cen-

ter is shifted to the mean of all assigned descriptors. The

second stage builds a KD-tree from the cluster centers

(words) and performs nearest neighbour vector quanti-

sation of all descriptors onto them. This has the effect

of compacting clusters which otherwise can become ex-

tended in descriptor space owing to the motion of the

cluster center during the initial seeding stage.

Weights, wi , are assigned to each word (cluster center),

d̂i, according to its frequency in the entire image database.

The motivation here is that not all words (descriptors) are

equally good index terms—frequently occurring words

do not make good indexes. The weighting, wi , of each

word is based on the inverse document frequency (Sparck

Jones, 1972) formulation: wi = log10(N/ni ) where N is

the total number of images stored in the image database

and ni is the number of images containing d̂i.

Note that we do not preordain the size of the vocab-

ulary. Instead it is a consequence of the choice of the

dmin parameter. We typically choose dmin so we end up

working with vocabularies of around six thousand words

(dmin ≈ 300). The vocabulary generation can be run as

an off-line process operating on training images to pro-

duce a static lexicon of terms with which to describe

future images. This is of course not the only way clus-

tering could be undertaken; more sophisticated schemes

exist and would surely produce slightly different vocab-

ularies. Section 3.3 will describe how the vocabulary can

be used to build a similarity function S between image

pairs. The paper will proceed to use S for loop-closure

detection in a way that is independent of its internals.

Adopting a different, perhaps as yet unknown superior

clustering algorithm would simply constitute a different

implementation of a similarity function—one that could

be adopted with ease.

3.3. Calculating Scene Similarity

The vector space model (Sivic and Zisserman, 2003)

which has been successfully used in text-based image

retrieval is employed in this work. To measure the simi-

larity between two images, Iu and Iv , we examine their

cosine distance. Each image, Iu , has become a collection
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of words with different weights. If V contains |V| dis-

tinct words (clusters) we now create a vector
−→
I u =

[u1 . . . u|V|]
T where

ui =

⎧

⎨

⎩

wi if for d̂i ∈ Iu, min
k=1:|V|

|| d̂i −d̂k ||< ǫ

0 otherwise

for some distance threshold ǫ (typically 300 in all our

vision based experiments). The normalized inner product

of
−→
I u and

−→
I v can now be used to measure the similarity,

S(Iu, Iv) ∈ [0, 1], between images Iu and Iv:

S(Iu, Iv) =

∑|V|

i=1 uivi
√

∑|V|

i=1 u2
i

√

∑|V|

i=1 v2
i

. (7)

The similarity function allows the creation of a “sim-

ilarity matrix” which is a simple but central construct

in this paper. A typical visual similarity matrix (VSM)

is shown in Fig. 3.1 Each element Mi, j is the similarity

score, S(Ii , I j ), between image i and image j from an im-

age sequence I = [I1, I2 . . . ]. The diagonal elements are

unity because all images are self-similar. Note how loop

closures appear as a connected sequence of off-diagonal

elements with high similarity scores. Note also that there

are several, small, isolated off-diagonal dark (high simi-

larity) patches. These are caused by similar scenes that do

not constitute genuine loop closures. In the next section

we will discuss how to detect loop closure by looking

for sequences of similar images and hence reduce false

Figure 3. A typical visual similarity matrix with an obvious loop clo-

sure. Each element Mi, j is the similarity score, S(Ii , I j ), between image

i and image j from an image sequence I = [I1, I2 . . . ]. Cells with high

similarity scores are colored in dark tone while cells with low similar-

ity scores are colored in light tone. The diagonal elements are unity

because all images are self-similar. Loop closures appear as a con-

nected sequence of off-diagonal elements with high similarity scores.

The dark “squares” are caused by repeated visually similar scenes in

the environment.

positives. The motivation is that extended spatial regions

should appear similar under genuine loop closure.

As an implementation note, Eq. (7) need not explicitly

create and then dot product
−→
I u and

−→
I v to calculate the

elements of M. Instead an inverted file index returns all

images containing a particular word. By iterating over

all words the similarity matrix can be populated by ac-

cumulating word by word the contributions to the cosine

distance for each cell.

4. Detecting Sequences for Loop Closing

We wish to extract a sequence of matching images

from a visual similarity matrix. As the vehicle moves

through its work space it creates a sequence of images

I = [I1, I2 . . . ]. We pose the loop closure detection prob-

lem as finding two subsequences of I, A = [a1, a2 . . . ]

and B = [b1, b2 . . . ] where ai and bi are index variables,

whose overall similarity strongly suggests that the vehi-

cle is revisiting a region.

Importantly, there is nothing to say that ai = b j should

imply ai+1 = b j+1. It could be that ai+1 matches b j as

well, perhaps implying that two sequential images in I

are identical because the vehicle has stopped or, more

troubling, is imaging a scene with a repetitive structure.

We use a modified form of the Smith-Waterman algo-

rithm (Smith and Waterman, 1981), which is a dynamic

programming algorithm, to find A and B.

The algorithm proceeds by constructing a matrix H .

Each element, Hi,j, is the maximal cumulative similarity

score of a pairing of images ending with pairing Ii and

I j . Since the visual similarity matrix is symmetric, we

will need only to work with the lower triangular matrix

of M , excluding the main diagonal. For a practical imple-

mentation, a band of elements close to the main diagonal

are masked out. This is equivalent to not looking for loop

closure with images captured at locations that are less

than a fixed distance away. Such small loop closures can

be easily handled with existing SLAM techniques.

The element Hi,j is a cumulative sum of the costs of se-

quence of moves through M . The moves are parallel to the

direction on the principal diagonal. Three move types are

possible: diagonal, horizontal and vertical. The latter two,

although viable, are less preferable (one-to-many match-

ing) and so have a penalty term δ (0.1 in this case) associ-

ated with them. Moving from H (Ii−1, I j−1), H (Ii , I j−1)

and H (Ii−1, I j ), Hi,j becomes

Hi, j

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Hi−1, j−1 + S(Ii , I j ) if H (Ii−1, I j−1) is maximal,

Hi, j−1 + S(Ii , I j ) − δ if H (Ii , I j−1) is maximal,

Hi−1, j + S(Ii , I j ) − δ if H (Ii−1, I j ) is maximal

0 if S(Ii , I j ) < 0
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Table 1. Sequence extraction from a similarity matrix.

I1 I2 I3 I4 I5 I6

M I1 1 −2 −2 0.64 −2 0.88

I2 −2 1 0.23 0.21 0.65 −2

I3 −2 0.23 1 0.37 0.25 0.71

I4 0.64 0.21 0.37 1 −2 −2

I5 −2 0.65 0.25 −2 1 0.22

I6 0.88 −2 0.71 −2 0.22 1

H I1 0 0 0 0 0 0

I2 0 0 0 0 0 0

I3 0 0.23 0 0 0 0

I4 0.64 0.75 1.02 0 0 0

I5 0 1.29 1.44 0 0 0

I6 0.88 0 2.0 0 0.22 0

The top matrix is an example of a simple visual similarity matrix

where each cell i, j is the similarity score between the images i and

j . Cells below a threshold (0.1) are re-scored to −2. Below is the

corresponding H-matrix calculated from the lower triangular matrix

of the visual similarity matrix shown above. A penalty (δ) of 0.1 is

used for this example. The sequence selected is underlined.

where “is maximal” refers to the largest of

H (Ii−1, I j−1), H (Ii , I j−1) and H (Ii−1, I j ).

A requirement of the Smith-Waterman algorithm is

that the similarity function must give a negative score

when two elements are very dissimilar. In our imple-

mentation, image pairs with a similarity score that falls

below a set threshold are deemed to be dissimilar and are

re-scored with a fixed negative value (−1).

The maximum value in the H-matrix, the “maximal

alignment score” ηA,B, is the endpoint of a pair of im-

age subsequences with the greatest similarity. From the

H-matrix at the bottom of Table 1, the maximal alignment

score is H (I6, I3), which is an accumulation of similarity

scores of the subsequence of underlined elements from

S(I4, I1) to S(I6, I3).

Figure 4. (a) A lower triangular matrix of a visual similarity matrix after loop closure has occurred. (b) The result of applying the modified

Smith-Waterman algorithm to find significant local alignments.

To take into account that the robot might have

traversed through the same area in opposite directions,

the row order of the visual similarity matrix is reversed

and the algorithm is repeated for that matrix order.

The larger of the two alignment scores is chosen. To

determine which images have contributed to the maximal

alignment score, the algorithm back-traces through the

contributing moves. The i-components produce A and

the j-components produce B.

We applied this algorithm to the uncluttered similarity

matrix shown in Fig. 3(a). Figure 4(a) shows the lower

triangular matrix. Figure 4(b) shows the significant

match sequences extracted and Fig. 5 shows the actual

images involved.

5. Ambiguity Management

The algorithm described in Section 4 works well in en-

vironments with few visually ambiguous or repetitive re-

gions. The question is how the algorithm will perform

in a more “confusing” environment such as the one re-

sulting in the visual similarity matrix shown in Fig. 6(a).

The astute observer will notice an off-diagonal dark line

starting at around image 450. This is the start of the

genuine loop closure. However, there are also numer-

ous dark (mutually similar) off-diagonal regions. These

are typically caused by repetitive imaging of architec-

tural features like windows, long brick walls or broadly

homogenous foliage. The concern now is that the visually

ambiguous regions will prompt incorrect loop closures.

False loop closures are a real disaster for SLAM systems,

leading to catastrophic map damage and “lost” vehicles.

Figure 7 shows an erroneous loop closure sequence ex-

tracted from the matrix shown in Fig. 6(a) before the

ambiguity management steps this section describes are

applied.



268 Ho and Newman

Figure 5. Two matching sequences A and B annotated with capture time. Note the occasional one-to-two pairings which correspond to vertical and

horizontal moves through the similarity matrix.

Figure 6. (a) shows a visual similarity matrix constructed from images

collected from an exploration run (around the path shown in Fig. 17).

(b) shows the visual similarity matrix after rank reduction. Note that

the off-diagonal dark line (which signifies the true loop closure) has

not been affected by the rank reduction whereas visually ambiguous

regions within the similarity matrix have been removed.

5.1. Spectral Decomposition

We will now discuss how decomposition of M can remove

the effects of these visually ambiguous regions in loop

closure detection. M is a symmetric real n × n matrix.

There is an orthogonal matrix V and a diagonal D such

that M = VDVT . The columns of V are eigenvectors,

v1 . . . vn of M and diagonal entries of D are its eigenvalues

λ1 . . . λn .

M = [v1 . . . vn]

⎡

⎢

⎣

λ1 0

. . .

0 λn

⎤

⎥

⎦

⎡

⎢

⎣

vT
1

...

vT
n

⎤

⎥

⎦

=
∑n

i=1 viλiv
T
i

where vi is the i th column vector of V , λi is the i th diag-

onal entry of D, λ1 ≥ λ2 ≥ · · · λk ≥ 0 and the rank of M

is equal to n. The outer product expansion form for the

eigenvalue decomposition, M =
∑

viλiv
T
i , expresses M

as a sum of rank one matrices M⊖
i = viλiv

T
i . Figure 8(a)

is the first (i = 1) rank one matrix of the visual simi-

larity matrix shown in Fig. 6(a). Structurally, these two

matrices are very similar. Figure 8(b) shows nine dif-

ferent images associated with high scoring cells in this

outer product matrix. All of these images have significant

amounts of vegetation within the images. The decompo-

sition has extracted the dominant theme within this par-

ticular environment. Indeed, there is vegetation scattered

throughout this particular environment explored by the

robot witnessed by the distribution of high scoring cells

along the main diagonal. Continuing, Fig. 9 shows the

rank one matrix associated with the second largest eigen-

value and its associated set of images. High scoring cells

in this matrix are concentrated in a smaller area while low

scoring cells are spread throughout the matrix. The nine

images suggests that images with rectangular structures

such as bricks and windows are generally associated with

this particular eigenvector. All of these images are images
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Figure 7. An erroneous loop closure detection in the presence of ambiguity. This is one of the sequence matches that results by applying the sequence

detection algorithm directly to the matrix in Fig. 6. Although the two sequences are indeed similar, repeating visual entities such as wall patterns,

window styles, vegetation, results in a Type I (false positive) error.

Figure 8. On the left is the first rank one approximation (M⊖
1 = λ1v1v

T
1 ) of the visual similarity matrix shown in Fig. 6. On the right are nine

images with the highest scores in the matrix. These images are mostly images of vegetation which, because they spread across the matrix as dark

colored cells, constitute a common theme throughout the database.

Figure 9. On the left is the second M⊖
2 rank one approximation of the visual similarity matrix shown in Fig. 6(a). On the right are nine images with

the highest scores in the matrix. These images are mostly images with rectangular shaped entities such as windows and bricks. Given that the robot

was exploring in an urban environment, it is not surprising that such features are common.
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captured around the circumference of a building compris-

ing red brick walls interlaced with white, Georgian win-

dows. Many buildings have similar facades. We should

be concerned that a false loop closure could be triggered

when the robot traverses to the rear of the building, which

appears similar to its front.

These few examples suggest that the principal eigen-

vectors of M associate with “themes” which permeate a

particular environment. While these themes, which cap-

ture common similarity between many images, are useful

for summarizing an environment they are detrimental

when detecting loop closure. Consider the images in

Fig. 9. The images are all of a single building presenting

a distinctive Victorian architecture on all of its facades

(the building is actually at the northern apex of the aerial

photograph in Fig. 17). When naively passing the matrix

of Fig. 6(a) through the sequence extraction routine of

Section 4 false positives result—for example the one

shown in Fig. 7. The top row is of the north eastern side of

the northern apex while the bottom row is of the western

side (camera looks right then left). Although these two

sequences do look similar, the ambiguity resulting from

the repetitive nature of the building and foliage on the

far side of the road causes a false positive detection. In

Section 5.2 we shall describe how this problem can be

addressed.

5.2. Removing Common Mode Similarity

Generally, images with visually ambiguous artifacts are

detrimental to our needs because they appear similar to

many different scenes. We can expect to enhance and

increase robustness in loop closure detection by removing

the effects of such artifacts.

By decomposing the similarity matrix into a sum of

outer products we are able to remove the effects of com-

mon mode similarity without removing the images them-

selves. This is an important point—an image can contain

both visually ambiguous artifacts and globally salient

artifacts. A similar approach was used in Alter et al.

(2000) when removing principal “eigengenes” and “eige-

narrays”. The relative magnitude of λi is a measure of the

degree to which of the dyad M⊖
i = viλiv

T
i expresses the

overall structure of the similarity matrix M.

If themes are responsible for the dominant structure in

M then, because
∑r

i=1 viλi v
T
i is the best rank-r approxi-

mation to M under the Frobenius norm, we should expect

their effect in M to be captured in the dominant eigenval-

ues/vectors. Thus, we can diminish the effect of visual

ambiguity/repetitive scene structure by reconstructing M

by omitting the first r terms of the summation in Eq. 8.

We shall now discuss how to choose r .

Figure 10(a) shows a distribution of eigenvalues ob-

tained from the EVD of the visual similarity matrix in
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Figure 10. (a) shows a typical distribution of eigenvalues of the visual

similarity matrix in Fig. 6 (a). (b) shows how, for this M , H (M, r ) varies

with r , the number of rank reductions applied.

Fig. 6(a). The magnitudes of the eigenvalues initially drop

dramatically before the rate of decline levels off—there

are a few principal eigenvectors that go a long way to

describing the entire matrix.

For an n × n M, we define the relative significance,

ρ(i, r ) of λi to the last n − r eigenvalues as

ρ(i, r ) = λi/

n
∑

k=r

λk (8)

Using this we can measure the complexity of decompo-

sition of M as an entropy

H (M, r ) =
−1

log(n)

n
∑

k=r

ρ(k, r )log(ρ(k, r )). (9)

Equation (9) measures the complexity of the compo-

sition of M with first r − 1 dyads removed. H (M, r ) = 0
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corresponds to an ordered and redundant M which can be

represented by a single eigenvector. H (M, r ) = 1 corre-

sponds to a disordered similarity matrix where all eigen-

vectors are equally expressive. Our approach is to se-

quentially remove outer-products from M until H (M, r ) is

maximised leaving a similarity matrix in which no one

single theme dominates. We may replace M with a rank

reduced version

M
′ =

n
∑

i=r⋆

viλi v
T
i r ⋆ = arg max

r
H (M, r ) (10)

Figure 10(b) depicts H (M, r ) as a function of r (using

the data set whose eigenvalues are shown in Fig. 10(a).

For this particular case, the maxima was reached after

removing the first four outer products. Figure 6(b) shows

the final rank reduced matrix.

The rank reduction technique successfully removes

visually ambiguous regions without removing the im-

portant loop-closing off-diagonals—see for example

Fig. 11(a). Applying the modified Smith-Waterman al-

gorithm on M
′ we can successfully detect loop closure

as shown in Fig. 11(b). Both of these figures correspond

to the matrix shown in Fig. 6(a) which has substantial

intrinsic ambiguity. Figure 12 shows the images which

constitute the final (correct, in contrast to Fig. 7) loop

closure sequences A and B.

Figure 11. (a) shows a zoomed in portion of a lower triangular matrix of a visual similarity matrix after loop closure has occurred. The visually

ambiguous regions has been removed through rank reduction. (b) shows the result of applying a local sequence alignment algorithm to find the most

significant local alignment.

Figure 12. Positive, correct loop closure detection in an ambiguous setting. The top row is sequence A and the lower row sequence B. The original

similarity matrix is shown in Fig. 6.

Of course, applying the procedure to simpler data sets

with less ambiguity also works. For example, Fig. 3

showed a similarity matrix created from images taken

while driving around the exterior of a 1970s tower block.

The rank reduced version and extracted loop closure se-

quences are shown in Fig. 13.

5.3. Sequence Significance

We wish to evaluate our confidence in the pairing be-

tween A and B. Is it really due to genuine loop closure?

We need to be convinced that this score is due to the tem-

poral ordering of the revisited scenes and that a random

ordering of the images would not yield a similar maximal

alignment. Maxima resulting from a randomized popu-

lation can be well described by the Gumbel or Extreme

Value Distribution (E.V.D.) (Gumbel, 1958):

p(ηA,B) =
1

β
exp−z exp− exp−z

(11)

where

z =
ηA,B − μ

β
(12)

where ηA,B is the maximal alignment score, μ is the mean

of the distribution and β is the standard deviation of the
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Figure 13. On the left is a lower triangular matrix of the largely unambiguous similarity matrix shown in Fig. 3 after rank reduction. Contrast this

figure with Fig. 4(a). On the right is the result of applying the modified Smith-Waterman algorithm to find matching sequences A and B.

Figure 14. Typical Gumbel distribution of maximal segment scores

(ηA,B) from 1000 shuffles of the similarity matrix.

distribution. This p.d.f can be used to judge the signif-

icance of the maximal alignment score for the pair of

matching image subsequences. Adopting the approach

suggested in Altschul and Erickson (1985), we randomly

shuffle the visual similarity matrix and obtain the max-

imal alignment score each time. This results in a distri-

bution similar to that shown in Fig. 14 (1000 shuffles).

The distribution parameters μ and β are estimated (we

fit the parameters using Levenburg Marquardt) from the

histogram of maximal alignment scores.

Equipped with estimates μ̂ and β̂ and the closed form

c.d.f of the distribution we can evaluate the probability

of scores greater than or equal to ηA,B conditioned on all

N images:

P(η ≥ ηA,B | M) = 1 − exp− exp−z

(13)

Equation (13) allows the evaluation of the probability that

an extracted sequence of image matches, 〈A,B〉, with

score ηA,B, could have been generated at random from

M. The differences between the sequence score ηA,B ob-

tained from the original, temporally ordered M and those

obtained from the randomly shuffled versions are solely

attributable to the topology or connectedness of the spa-

tial locations at which the vehicle captured the images.

Thus Eq. (13) can be used to evaluate the probability,

conditioned on all previous scene appearances, that the

detected sequence does indeed indicate a bona-fide loop

closure.

An important distinction between global localisation

and loop-closing is that in the former it is often known

a-priori that a correspondence between a vehicle’s local

scene and a stored representation of the workspace exists.

In the case of loop-closing this is not the case—the vehi-

cle may never revisit the same location. It is also possible

that within the totality of images, I, multiple loop clo-

sure events are captured. The probabilistic formulation in

Section 5.3 allows for both these situations. Sequences

can be extracted from M in decreasing order of alignment

score, ηA,B, until the probability of false positives asso-

ciated with ηA,B becomes excessive. We typically set a

threshold of 0.5%.

The entire loop-closure detection process can now be

summarised:

1. From n images build a n ×n similarity matrix M as
described in Section 3.

2. Remove Common mode similarity via rank reduc-
tion as described in Section 5.2.

3. Estimate Gumbell distribution parameters from the
rank reduced similarity matrix, M′ as described in
Section. 5.3.

4. Extract highest scoring sequence from M ′.
5. Test significance of the alignment score using

Eq. (13), if acceptable, advise loop closure, go to
4.

6. End
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Table 2. Description and references to four data sets.

Discussion

Data set Purpose & Illustration

Thom Benign workspace, producing

a clean similarity matrix

with little ambiguity

Section 3.

Figures 3 and

5.

Jenkin Medium sized loop around a

set of buildings. Used to

showcase combination of

loop closure detection with

SLAM system

Section 6.1.

Figures 16

and 12.

New

College

Larger data set with

combination of visual

themes. again a noisy data

similarity matrix results

with hard to discern loop

closures.

Section 6.2.

Figures 19

and 18.

Cloisters Repetitive visual structure

producing a noisy similarity

matrix

Section 6.3.

Figures 26

and 28.

6. Results

Data sets of images captured from various exploration

runs can be found in http://www.robots.ox. ac.uk/∼klh/

dataset.htm. They are divided into four sets: “Thom”,

“Jenkin”, “New College” and “Cloister”. The qualities

of the data sets are summarised in Table 2. The following

sections examine the performance of our loop-closure

detection system when applied to these data sets while

6.4 discusses the execution times.

Figure 15. The pre-loop closing estimated trajectory of the vehicle. The sharp turn compounded with long gently curved traversals leads to a gross

error in position estimate. Each cell is 20 by 20 m.

6.1. Scenario I

To further illustrate the effectiveness of our approach in

supporting SLAM we consider a 3D, laser-based SLAM

scenario in an outdoor environment. The SLAM algo-

rithm was described in Section 2. For every 0.5 m the

robot traverses and for every 30 degrees change in head-

ing, an image is captured. The camera orientation toggles

after capturing an image between 60 degrees left and

60 degrees right. Every image and laser scan captured is

time stamped. The robot travelled a distance of just over

370 meters before returning back to a previously visited

location. The similarity matrix constructed for this envi-

ronment is that shown earlier in Fig. 6(a). Figure 11(a)

shows a portion of the same matrix following rank re-

duction and (b) highlights the loop closing sequence ex-

tracted. The matching sequences A and B are shown in

Fig. 12. Figure 15 shows the trajectory of robot poses

maintained by the SLAM system (Newman et al., 2006)

before loop closure. Note that the estimated position of

the robot is more than 100 meters off its actual position

when it has completed a loop—well outside the 5-sigma

bound of the vehicle marginal. Many standard loop clo-

sure detection techniques based on pose estimates will

fail under such gross errors.

6.1.1. Loop Closure Geometry. We have a system that,

given a sequence of time-stamped views, can detect prox-

imity to a previously visited location. Now however, to

execute the loop closure, we need to know the geometry

of the loop closure—the euclidean transformation
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between recent and past views that constitutes the loop

closure.

One option would be to use image time to index into

the pose state x vector described in Section 2, which is,

after all, a sequence of past poses, to find which previous

pose i occupied the scene we are now revisiting at time

j . However, this approach has problems when it comes

to undertaking a laser scan match to deduce precise es-

timate of the interpose transformation zi, j – without a

reliable prior or “seed solution” the iterative scan match-

ing method we adopt is prone to converge to an incorrect

minima. At the same time, exhaustive search in 6D is

prohibitively slow. Instead, we shall use the sequences A

and B and laser range data to estimate Ti, j .

Consider the following common projective model of

two identical cameras with projection matrices P and P ′

(Hartley and Zisserman, 2000). A homogenous 3D image

scene point X = [X, Y, Z , 1]T is imaged at x = P X for

the first camera and x ′ = P ′ X for the second camera.

Without loss of generality the origin can be fixed at the

center of the first camera, and, if the second camera center

is parameterized by a rotation matrix R and a translation

t with respect to the origin, then P and P ′ can be written

K [I | 0] and K [R | t] respectively. Here K is the matrix

of intrinsic camera parameters. In the case of calibrated

cameras (K known) the image points, x and x ′, are related

by the “Essential matrix” E such that x
′T Ex = 0.

The determination of relative camera poses via decom-

position of the essential matrix has been used to good ef-

fect in robot localization (Kŏsecká and Yang, 2004; Royer

et al., 2004) and SLAM navigation (Eustice et al., 2004).

Given two image views of the same scene, five points

of correspondence are selected for use in an implemen-

tation of the algorithm presented in Nister (2004). This

“Five Point Method” is capable of dealing with planar

degeneracy if the matrix of intrinsic camera parameters

is known.

The essential matrix has a convenient structure. It can

be written in terms of R and t as [t]× R where [t]× de-

notes the 3 × 3 skew symmetric (cross product) matrix

constructed from t . Given the elements of E this de-

composition yields four possible solutions for R and t .

The correct solution is selected by application of a final

cheirality constraint; scene points must be in front of the

cameras. The two images used in the geometry estima-

tion are those with the greatest similarity score within the

image sequence returned from the loop-closure detector.

The resulting t is correct only up to scale and we look

to range information from the laser data to perform the

metric upgrade.

Given the instantaneous rigid transformation between

the laser scanner and the camera, 3D laser data can be

expressed in the 3D coordinate frame of the camera and

projected onto the image plane. For each of the five vi-

sual features, the nearest projected laser-range points are

Figure 16. Using loop closure detection. A 3D, post loop-closing,

SLAM map. The total length of this loop is 371 m.

found. Out of the five image features, the image fea-

ture which has the closest projected laser range point is

selected. The 3D position of this image feature is now

known allowing the final scale ambiguity to be removed

yielding metric R and t .

Given estimates of R and t the iterative laser scan

matching can proceed, starting with these estimates as

an initial solution to Ti, j . The scan matcher further aligns

the two scans, refining estimates of Ti, j to use as a mea-

surement on the SLAM state vector.

Figure 16 shows a 3D laser map after loop closure

detection using our technique. The huge discrepancy

in pose estimates of the robot does not affect the per-

formance of our loop closure detection technique. The

actual loop closure was achieved via constrained non-

linear optimization in a manner similar to that described

in Estrada et al. (2005) and Cole and Newman (2006).

Figure 17 is a plan view of the final estimated vehicle

trajectory superimposed over an aerial photograph of the

workspace. A metric grid has been placed over the area

of interest—each grid box is 20 m by 20 m.

6.2. Scenario II

We now consider a more challenging scenario moving

around through both gardens and buildings at different

elevations. This setting is beyond the capabilities of our

current SLAM system and so we use a GPS sensor to

provide ground truth. The experiment proceeded as be-

fore: for every metre travelled and for every 30 degrees

change in heading, an image is captured. The camera

toggles from 60 degrees left and right. Each image cap-

tured is time-stamped. Throughout the experiment, GPS

NMEA strings are logged.

Figure 18 shows an aerial image of the environment

where the experiment was conducted. GPS estimates of

the robot’s position are plotted onto the image as white
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Figure 17. An aerial image of the workspace with the final estimated

vehicle trajectory and metric grid superimposed upon it.

Figure 18. An aerial image of the test scenario—New College Gar-

dens. The position of the mobile robot is measured by a GPS receiver

with positional uncertainty of around 5m. The path taken by a mobile

robot is marked with white crosses. There are various breaks in GPS

signal reception. The large yellow crosses mark the positions where

loop closure is detected.

crosses. Due to intermittent GPS reception, certain por-

tions of the robot’s trajectory are missing.

In all, 568 images were collected during this experi-

ment. The visual similarity matrix for this environment

is shown in Fig. 19(a). This is a highly visually confus-

ing environment as there were many repetitive patterns.

From the visual similarity matrix, it can be observed that

there are plenty of visually ambiguous regions, marked

by the dark squares. A rank reduced matrix is shown

in Fig. 19(b) after removing the top five eigenvalues

and corresponding outer products. Due to multiple loop

closure at different locations, there are multiple dark off-

diagonals.

Figure 20(b) shows nine different images associated

with high scoring cells in v1λ1v
T
1 . All of these images have

significant portions of vegetation within the images. The

decomposition has extracted the dominant ‘theme’ within

this particular environment. The distribution of the vege-

tation in the environment can be seen from the distribution

of high scoring cells along the main diagonal of v1λ1v
T
1

shown in Fig. 20(a). The white portion corresponds to

images of the building, images of the courtyard and im-

ages taken in the middle of the open field. Figure 21(b)

shows nine different images associated with high scor-

ing cells in v2λ2v
T
2 . It is harder to discern the category

of images—perhaps a bias towards textured material like

leaves and grainy walls. Figure 22(b) shows nine differ-

ent images associated with high valued cells in v3λ3v
T
3 .

All of the photos contain images of the wall encircling

the park—witnessed by the spread of dark cells through-

out the matrix. Finally, Fig. 23(b) shows nine different

images associated with v4λ4v
T
4 . These images are mostly

images of a building seen only at the start and end of the

experiment. The matching sequences A and B are shown

in Fig. 24. Although this is a particularly challenging en-

vironment in which to detect loop closure, the system is

able to extract suitable loop closure evidence. In the third

column along the sequence, the matched images look

very different due to a wide difference in viewpoint. Nev-

ertheless the overall scene similarity accumulated along

a trajectory has enough statistical significance to imply a

loop-closure event.

6.2.1. Analysis. This environment is a particularly chal-

lenging one with the structure of the initial M being in-

dicative of a general lack of distinctive images. Three

main loops were successfully detected as depicted in

Figs. 25(a)–(c) as large crosses. The detection of the sec-

ond loop (b) is an excellent example of the kind of chal-

lenging detection that our architecture enables. We note

that the northernmost east-west border remains ambigu-

ous even after H (M, r ) is maximised (in this case by rank

reduction by 5).

Analyzing the Type II errors (missed positives) pro-

vides more insight into our approach. Starting with the

extreme right of the aerial image shown in Fig. 25(d), a

small loop (marked by a yellow ellipse) was not detected.

This is because there is not enough overlap between the

first pass and the second pass. In fact, there is only one

point of intersection between them at the entrance of the

courtyard. Consequently, there should only be one correct

image match from that loop closure. However, the single

image did not score significantly enough to trigger a loop

closure. This is a limitation of our approach—a certain

amount of overlap between the first pass and second pass

must occur before a statistically significant alignment
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Figure 19. (a) shows the highly ambiguous visual similarity matrix constructed from images from the “New College” data set. (b) shows the visual

similarity matrix after rank reduction. Note that the off-diagonal dark line (which signifies the loop closure) has not been affected by the rank reduction

whereas visually ambiguous regions within the similarity matrix have been removed. Due to multiple loop closure at different locations, there are

multiple dark off-diagonals.

Figure 20. (a) shows the first rank one approximation of the visual similarity matrix shown in Fig. 19. (b) shows nine images with the highest scores

in v1λ1v
T
1 . These images are mostly images of vegetation.

Figure 21. (a) The matrix v2λ2v
T
2 extracted from M shown matrix shown in Fig. 19. (b) shows nine images with the highest scores.
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Figure 22. (a) shows the third approximation, v3λ3v
T
3 , of the matrix shown in Fig. 19. (b) shows nine images associated with the largest elements.

Figure 23. (a) v4λ4v
T
4 (b) images associated with the nine largest element values. These images are mostly images of a building seen only at the

start and end of the experiment.

Figure 24. Two matching sequences of images (A,B). These images correspond to the bottom right loop closure in Fig. 25(b). It is not immediately

apparent that this is indeed a loop-closure. In the third column along the sequence, the two images look very different due to a substantial difference

in viewpoint.

score, ηA,B, can accumulate. The precise amount of

overlap required to acquire significance depends on

the environment itself and the numerical similarity be-

tween individual images as described in Section 5.3.

Naturally, more ambiguous scenes require longer

sequences.

The middle yellow ellipse in Fig. 25(d) marks an-

other potential loop closure that was not detected. Again,

there was only a small area of trajectory coincidence.

A bigger problem here is that in the center of the park

all the scene diversity (the borders) is in the far field

and coupled with a 90◦ difference in heading this leads

to utterly different images. This is a strong motivator

to use an omni-cam instead of a standard pan/tilt/zoom

camera.

Finally, the yellow ellipse on the extreme left highlights

the last potential loop closure that was not detected. The

reason for this failure can be seen in Fig. 23. The subtrac-

tion of v4λ4v
T
4 removed the elements of M indicating simi-

larity between images of the building facades. Essentially

this loop was not detected because of a high likelihood of

false loop closure caused by the repetitive architecture of

the building. Our policy, to support SLAM, is to strongly

prefer Type II errors over Type I errors.
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Figure 25. (a) shows the first loop closure event correctly detected. Loop closure was detected right at the start of the loop. Interestingly, none of the

ensuing eastern leg was detected as a return to a previous location. The next detection is shown in (b) when the vehicle rejoins a previous trajectory

following a excursion into a courtyard. (c) shows the third loop closure event. The first half of the loop was well detected by our loop closure but,

once again, something about the east-west botanical border inhibited loop closure detection. Finally, (d) highlights loop closure events that were not

detected with yellow ellipses.

6.3. Scenario III

In our final loop closing experiment, our algorithm is

put to test in an environment where, by design, every

local scene is visually similar. The question is whether

our loop closure detection will fail where there are

no obvious globally distinct scenes. This experiment

took place in the cloister of a college, see Fig. 26.

The control parameter settings for the camera were

the same as the previous experiments. A sequence of

268 images were collected. The similarity matrix is

shown in Fig. 27(a). The cleaned M
′, matrix is shown in

Fig. 27(b).

6.3.1. Analysis. The two matching sequences are

shown in Fig. 28. It can be confirmed that this is indeed a

correct match by observing the presence of plaques and

the occasional statue. Note that given the background of

common mode similarity between images it took twelve

images to accumulate enough evidence to render the

alignment score ηA,B “significant” and trigger a loop

closure. A SLAM map resulting from the loop-closure

is shown in Fig. 31.

Figure 26. A view from inside the cloisters which by intention present

a repetitive and ambiguous architectural theme.

This environment can be summarized as a continuous

stretch of arched windows and a continuous stretch of

wall. Only two principal eigenvectors were selected to

be removed by our entropy maximization method. The

two outer products and corresponding images are shown

in Figs. 29 and 30. As expected these correspond to the

two aforementioned dominant themes.
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Figure 27. (a) shows a visual similarity matrix constructed from images collected from an exploration run around the cloister shown in Fig. 26. (b)

shows the matrix after rank reduction.

Figure 28. Loop closure detection in the cloisters. The above sequence of twelve images triggered the loop closure in this repetitive environment.

The validity of the detection can be verified by noting the presence of plaques and other antiquities across paired images.

6.4. Timing

Table 3 shows the execution times for the various com-

ponents of the loop closure detection scheme described

in this paper. Results are shown for the four vision data

sets used throughout the paper. The code was written in

C++ and run on a 2 GHz Centrino Processor (Samsung

X50 Laptop) with 1 GB of RAM.

The nature of the SLAM algorithm we use means that

loop closures can be applied between any two poses,

Figure 29. (a) shows the first rank one approximation of the visual similarity matrix shown in Fig. 27. (b) shows nine images with the greatest cell

values—all are images of the windows.

past or present, and so the loop closure detection pro-

cess need not run in step with the state estimation. We

don’t expect loop closure events to be common-place so

we can afford run-times of minutes. However for truly

large data sets we run the risk of falling more and more

behind. For example running with two thousand images

the procedure takes over 10 minutes. As stated earlier in

Section 3, it is not necessary to build a new vocabulary

for every run—it can be a one-shot off-line task from

a large training data set. Indeed, as can be seen from
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Table 3. Run times for the four different data sets described in Table 2.

DataSet

Cloisters Thom New College Jenkin

# Scenes 212 387 510 485

V Creation Pass 1 (s) 7 27 29 134

Pass 2 (s) 4 8 10 20

|V| 2603 3822 3138 5982

Detection M Creation (ms) 6 200 400 900

Rank Reduction (s) 0 1 3 3

EVD Estimation (s) 2 10 18 16

Loop Extraction (ms) 4 80 90 100

Total (s) 2 11 21 20

Figure 30. (a) shows the second rank one approximation to the similarity matrix in Fig. 27 and (b) shows nine images with the highest cell values.

All of the photos are images of the wall which is always in view hence dark cells are spread throughout the matrix.

the table, this opportunity becomes important as both the

number of scenes grows and the number of descriptors

per image increases (the Jenkin data set timings have ,

on average, just under three times as many features per

image as the other three data sets). As the number of

scenes increases the cost of the rank reduction becomes

more significant and for truly huge data sets (e.g 5000

images) it dominates. We are working on a way to per-

form the rank reduction incrementally so the entire pro-

cedure need not be repeated every time a new scene is

captured.

6.5. Using Laser Images

Our approach is not limited to similarity matrices for

visual images. It is equally applicable to any similarity

matrix which is formed by an appropriate similarity

function that compares sensor observations from dif-

ferent local scenes. We demonstrate the applicability

of our approach when using raw 2D, 180◦ laser scans.

The details of the similarity function S(L i , L j ) which

compares two scans L i and L j can be found in Ho and

Newman (2005b). In summary the method considers the

spatial appearance of the two scans and compares them

in terms of their entropy, shape and interest points. As

required, the function returns a similarity score between

zero and one. Figure 32(a) shows a spatial similarity

matrix (SSM) constructed from 2D laser scans collected

from an exploration run around a building. We can see

the off-diagonals for the laser similarity matrix are less

defined, reflecting the diminished certainty in matches

coming from less discriminative (relative to the visual

images) data. Figure 32(b) shows the SSM after rank

reduction.

Figure 33(a) shows a lower triangular matrix of the

SSM shown in Fig. 32(b). Figure 33(b) shows the re-

sult of applying the local sequence alignment algorithm.

Figures 34, 35 and 36 illustrate the rank one matrices

based on the top three eigenvalues and their associated

laser scans. Our technique has successfully detected loop

closure events using laser scans despite their reduced de-

scriptive power. We believe that our approach could be

applied to other sensing modalities for which a suitable

scene similarity function S(Ii , I j ) can be defined where

Ii , I j are scenes captured in the native sensor modality.
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Figure 31. A post loop closure 2D SLAM map of the cloister with

robot trajectory. The map is built with a 2D laser scanner and the south-

ern, east-west traversal is as shown in Fig. 26. The curved structures

appearing to cross the cloister corridors are artifacts stemming from the

uneven floor pitching the vehicle and causing the laser scans tp intersect

the floor before the walls.

7. Application to Multiple Vehicles

The approaches of current collaborative multi-robot map

building algorithms can be broadly classified into three

main categories: (1) merging sensory data from multiple

robots with known data association between features in

local maps built by different robots (Fenwick et al., 2002);

(2) detecting other robots to determine relative position

and orientation between local maps (Fox et al., 2000;

Konolige et al., 2003) or assuming relative poses between

robots are known (Thrun, 2001); (3) deriving the transfor-

mation between robots’ coordinate systems through the

matching of landmarks (Dedeoglu and Sukhatme, 2000;

Thrun and Liu, 2003). Generally, algorithms with strong

assumptions about known data association or relative

Figure 32. (a) shows a spatial similarity matrix (SSM) constructed from laser scans collected from an exploration run around a building. (b) shows

the similarity matrix after rank reduction.

poses have been limited to simulatation or highly en-

gineered experiments. The algorithms that have worked

with real world data with weaker assumptions have been

limited to those that rely on detection of other robots. This

approach means that, in an exploration task, the robots

might duplicate each other’s work by exploring the same

environment without being aware of each other’s past

accomplishments. Alternatively, the robots may hypoth-

esize their relative positions and try to congregate at a

hypothesized meeting point. This allows the robots to

determine accurately each other’s relative poses but dis-

tracts them from the task of exploration (Konolige et al.,

2003). A more exploration-efficient way of joining lo-

cal maps is to detect map intersections, independently of

coordinate frames, and then align the maps.

Map intersection detection can be considered to be a

loop closing problem; where one robot “closes the loop”

of the map built by another (Ho and Newman, 2005a).

Here we use visual appearance to detect intersections be-

tween local maps built by multiple robots. These common

intersections can be used to align the maps.

7.1. Map Joining Techniques

Data association is an infrequently considered problem

in multi-robot mapping. In Thrun and Liu (2003) this is

addressed by introducing an algorithm that aligned lo-

cal maps into a global map by a tree-based algorithm

for searching similar looking landmark configurations.

The landmark configuration consists of relative distances

and angle between a triplet of adjacent landmarks. An-

other landmark-based algorithm for map matching was

described in Dedeoglu and Sukhatme (2000), which com-

bined topological maps of indoor environments. Land-

marks such as corners, T-junctions, ends-of-corridor

and closed doors were stored in the search space for
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Figure 33. On the left is a lower triangular matrix of a spatial similarity matrix (SSM) after loop closure has occurred. On the right is the result of

applying the sequence extraction algorithm.

Figure 34. On the left is the first rank one approximation of the SSM shown in Fig. 32. On the right are 16 laser scans with the element values.

Figure 35. On the left is the v2λ2v
T
2 approximation of the spatial similarity matrix shown in Fig. 32. On the right are 16 laser scans with the highest

scores in the matrix. These laser scans can be broadly defined as having parallel lines.
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Figure 36. On the left is the third rank one approximation of the SSM shown in Fig. 32. On the right are 16, broadly T-shaped, laser scans with the

highest scores in the matrix.

Figure 37. Local maps of different parts of the same building built by different robots. There is an overlap between each of the maps but it is not

easy to discern from the laser patches alone.
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Figure 38. A similarity matrix constructed from comparison between

image sequences collected by two robots. The dark line highlights the

sequence of images that are similar to each other—indicating that there

is an overlap in the two environments explored. Note there is no simi-

larity along the diagonal as in all previous similar figures because axes

i and j correspond to images captured by different robots.

correspondences. However, spatial configuration of three

landmarks or simple geometric primitives are not very

discriminative features.

A vision-based approach was used in Hajjdiab and

Laganiere (2004) to combine maps built by a team of

robots in the same worksite. Images described by color

histograms are compared against each other to find the

best matching image pairs. In the experimental setup,

only images of planar surfaces are captured. Therefore,

an inter-image homography can be calculated for selected

Figure 39. Matching subsequences between image streams gathered by different robots. The local regions in each map are shown to the right of

each pairing—the first for the top sequence and the second (far right) for the second (lower) sequence.

image pairs. If the homography is supported by a suffi-

ciently high number of corners, intersection is found and

robot paths can be registered with respect to one another.

However, the use of a single image pair for matching

is prone to false positives (hence our motivation for us-

ing sequences). Importantly, none of the algorithms de-

scribed above have any mechanism to determine that two

local maps have no common overlap. They simply find

the ‘best’ alignment possible between the two.

Figure 37 shows that the intersections between planar

maps (ubiquitous in contemporary mobile robotics) may

be far from obvious. However, application of the image-

based techniques described in the paper can be of great

help.

7.2. Map Alignment

A visual similarity matrix is constructed for each pair

of robots. Each element MA,B(i, j) is the similarity be-

tween image i from robot A and image j from robot B.

Every image from robot A is compared with all images

from robot B. When there is an overlap between the local

maps of the robots, there will be a connected sequence

of elements with high similarity scores found within the

visual similarity matrix. This is shown by the dark line

in Fig. 38.

7.3. Map Joining Results

In our experiment, four robots start exploring from differ-

ent locations of the same building. Each robot builds its
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Figure 40. A fused map formed by detecting intersections between

and aligning the four local maps shown in Fig. 37.

own local map as shown in Fig. 37. By comparing the im-

age sequences collected by robot A and robot B, a 114 by

146 similarity matrix is constructed. The time complexity

of comparing an image from one sequence against all the

images in the other sequence is O(log(p)) where p is the

number of visual words stored in the database. The aver-

age time to compare one image against the other sequence

of 145 images is 0.269 seconds. The time complexity of

the sequence extraction algorithm is O(nm) where n and

m are the lengths of the respective sequences. For this par-

ticular similarity matrix, sequence extraction took less

than 0.3 seconds. All figures are for a Pentium 4, 2.40

GHz CPU. Figure 39 shows typical pairs of image sub-

sequences found by the sequence extraction algorithm.

Since each image and laser scan is time-stamped, we can

extract the portion of the local maps that correspond to

regions in which the images were captured. An estimated

2D transformation alignment between maps can then be

calculated (using principal moment alignment for exam-

ple) and used to bring the two geometric maps into close

proximity. From here, scan matching produces accurate

map-to-map transformations, allowing the four maps to

be fused resulting in the map shown in Fig. 40. In the case

for 3D laser scan matching, an initial transformation es-

timate can be obtained using the approach described in

Section 6.1.1.

8. Conclusion

We have introduced a novel technique to robustly detect

loop closure events. We do this by detecting sequences

of similar scenes. Searching for matching scene image

sequences implicitly exploits the temporal and spatial

proximity of image acquisition locations and allows

evidence to be integrated over the vehicle trajectory.

Through suitable decomposition of a similarity matrix,

we are able to remove the effects of ambiguous artifacts.

This procedure is driven by consideration of the distribu-

tion of information throughout the matrix. This enhances

the robustness of our technique in environments that can

be markedly visually and geometrically confusing. Fur-

thermore, we are able to test the statistical significance of

sequences detected to further reduce the chances of com-

mitting Type I (false positive) errors. We have provided

extensive experimental results over a range of realistic

and challenging outdoor settings using visual images

and in each case analyzed performance in the context of

the SLAM problem. Where appropriate, we have used a

combination of metric and visual information to not only

detect but also execute loop closure. The image sets used

are available on-line. We showed how our technique can

be equally well applied to detecting loop closure without

the benefit of a vision system when using laser images

alone. Finally, we posed the multi-robot map-joining

problem as a special case of loop-closure detection. We

used our technique to find the work-space intersection of

four SLAM maps further emphasizing the value of this

appearance based techniques in the SLAM domain. The

work presented addresses a central problem in mobile

robotics and SLAM research. It offers a promising

way to proceed that, importantly, is independent of the

SLAM techniques it supports.
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