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Introduction

A blockchain can be modeled as an ever-growing, large directed temporal network with 

more and more industries starting to adopt it for their businesses. In permissionless 

blockchains, interactions (also called as transactions) happen between different types of 

accounts. In Ethereum mainnet public blockchain, these accounts can be either Exter-

nally Owned Accounts (EOA) or Smart Contracts (SC). Here, transactions from an EOA 

(called as an external transaction) are recorded on the blockchain ledger whereas trans-

actions from an SC (called as an internal transaction) are not recorded on the ledger. 

Note that in Ethereum, SCs can issue external transactions by executing external calls 

also which would be recorded in the blockchain ledger.
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With actual money involved in most of the permissionless blockchains, an account 

must be able to perform secure transactions. Recently, many security threats to vari-

ous blockchain platforms have been identified (Bryk 2018). For some identified vulner-

abilities, counter-measures have been implemented. We do not delve into surveying all 

the security threats. In Chen et al. (2020), the authors survey security flaws that exist in 

the Ethereum blockchain. In many of the security vulnerabilities identified in Ethereum 

blockchain, hackers target other accounts by either hacking SCs or implementing 

malicious SCs for cyber-crimes such as ransomware, scams, phishing, and hacking of 

exchanges or wallets (Chainalysis 2019).

With an ever-increasing growth and adoption of the blockchain technology by the 

industry and the crypto-currency markets, permissionless blockchains are at the epi-

center of increased security vulnerabilities and attacks. Our motivation for this work is 

based on the fact that there is limited work on learning the behaviors of the accounts in 

permissionless blockchains which are malicious and potentially victimize other accounts 

in the future. We define malicious accounts as those accounts that have been founded 

to be involved in illegal activities such as phishing, hacking, scams, and Ponzi schemes. 

Benign accounts as those that perform only legitimate transactions. Although, these ille-

gal activities have different features, in this paper we assume that the transaction behav-

ior and features are consistent and are applicable to all types of malicious activities. �e 

results seem to bear out such assumption. In short, in this paper, we aim to identify mali-

cious accounts so that the potential victims and blockchains can deploy counter-meas-

ures. In this paper, henceforth, the term blockchain is used to represent a permissionless 

blockchain. �e techniques proposed in related studies classify accounts as malicious 

using either Machine Learning (ML) algorithms or motif-based (basic building block/

subgraphs of a network) methods. Nonetheless, the features used by the available tech-

niques are: (a) limited and not learned from the previous attacks on blockchains, and (b) 

extracted from the aggregated snapshot of time-dependent transaction graphs that do 

not consider the temporal evolution of the graphs.

�e temporal aspects attached to the features are essential in understanding the actual 

behavior of an account before we can classify it as malicious. For example, inDegree and 

outDegree features are time-variant and should be considered a time series. Nonethe-

less, it has been proven that the aggregated node degree distribution for accounts fol-

lows a power-law in blockchains such as Ethereum (Chen et al. 2018a). Here, questions 

that we ask are: does such behavior exist in all accounts? Is there a burst of degree for cer-

tain accounts at certain instances and can the existence of such bursts be used to identify 

malicious activity? To answer these questions, we first identify the existence of bursts. 

�en, we introduce features such as temporal burst, degree burst, balance burst, and 

gasPrice burst to study the effect of bursts.

�e fat-tailed nature of power-law degree distribution also gives rise to neighbor-

hood-based fitness preferential attachment in blockchains (Aspembitova et al. 2019). In 

Aspembitova et al. (2019) authors defined fitness as “the ability of a node to attract new 

connections” and showed that the accounts that have high fitness sometimes are short-

lived and indulge mostly in malicious activities while when they are long-lived they rep-

resent large organizations. Here, the authors define the fitness factor considering one 

previous time instance interactions. As it does not consider a temporal window, one 
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drawback of the method lies in its ability to correctly classify malicious transactions that 

appear at an interval of 2 time units or more. Inspired by this, we define a neighborhood-

based feature called attractiveness that takes into account a temporal window of size θa 

where (0 < θa < TDS) and TDS is the duration for which we collect the dataset (DS). Our 

attractiveness measure takes into account the stability of directed transactions that hap-

pened between two accounts in the past. Intuitively, a malicious account will have high 

attractiveness as it will tend to transact with new accounts while benign accounts will 

have high neighborhood stability or low attractiveness.

As the behavior of an account can change from malicious to benign or from benign 

to malicious over time, there is a need for continuous monitoring and analysis of the 

real-time transactions given the history of transactions performed by an account. We, 

thus, study the evolution of malicious behavior over different timescales by creating sub 

datasets and then answer the question: would a certain account show malicious behavior 

in the future? Towards this, we first apply different ML algorithms and identify the most 

suitable unsupervised ML algorithm for the entire dataset that is able to cluster accounts 

most accurately. �en we apply the identified algorithm to different sub datasets within a 

temporal scale to capture the behavior changes.

In summary, following are our main contributions:

• Feature engineering We identify feature vector for identifying malicious accounts 

based on previous attacks on blockchains and perform time series analysis. As new 

features, we propose temporal burst, degree burst, balance burst, gasPrice burst, and 

attractiveness.

• Comparative analysis We perform a comparative study with techniques proposed in 

the related studies and identify the best possible supervised and unsupervised ML 

algorithm with related hyperparameters when we use Ethereum transaction data.

• Results Our results demonstrate that for the supervised case, ExtraTreesClassifier 

performs the best with respect to balanced accuracy for the entire dataset while 

for the unsupervised case, we are able to identify 554 more suspect accounts using 

K-Means Clustering. Analysis of the behavioral changes reveal 814 suspects across 

different temporal granularities.

�e rest of the paper is organized as follows. In Sect. 2, we present background and the 

state of the art techniques for identifying malicious accounts and compare them. In 

Sects.  3 and 4, we present a detailed description of our methodology and the feature 

vector, respectively.�is is followed by an in-depth evaluation along with the results in 

Sect. 5. We finally conclude in Sect. 6 providing details on prospective future work. Fur-

ther, in Abbreviation section we provide a glossary of the acronyms used in the paper.

Background and related work

�ere are two types of blockchain technologies, permissionless and permissioned. �e 

major difference between the two technologies is that in a permissioned blockchain 

prior access approval is needed for performing any action on the blockchain while in 

permissionless blockchain anyone can perform actions on the blockchain without any 

approval. Further, there is no way to censor anyone from permissionless blockchains. 
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Such aspects lead to more frauds and malicious activities to prevail in permissionless 

blockchains. Ethereum and Bitcoin use permissionless technology.

Ethereum was developed by Buterin (2013) and allows users to run programs in its 

trusted virtual environment known as Ethereum Virtual Machine (EVM). �ese pro-

grams are called Smart Contracts (SC) and are stored on the ledger along with trans-

actions performed on a given fixed address. Ethereum uses “Ether” as its native 

crypto-currency for transfer and transaction fees. Smart Contracts (SC) can also send, 

store, and receive Ether. Once deployed, SC is a hard coded program that could only be 

fed with input to get output. SCs are also used by some applications for their processing. 

Such applications are called distributed applications or dapps. Although Ethereum is 

known for its security and trust, a small bug in a SC code can cause huge loss of crypto-

currency (Atzei et al. 2017). Ethereum manages a list of accounts along with the account 

balance. For a valid transaction usually amount is transferred from a sender to a receiver. 

If the receiver is an SC, its code is executed and the state of the SC is updated. Inter-

nally, a SC could send a message or perform internal transactions with other accounts. 

Ethereum currently uses a refined form of PoW (Proof of Work) consensus algorithm. 

PoW is computationally expensive and energy inefficient. Moreover, Appendix 1 pre-

sents a brief overview of PoW.

�ere are vast number of studies in fraud detection (Abdallah et al. 2016). Nonethe-

less, targeting Ethereum, Chen et al. (2020) base their survey on the attacks and defenses 

in Ethereum. We do not survey all the attacks and defense mechanisms in this work. 

However, we provide an in-depth understanding of different methods used to detect 

accounts involved in malicious activity. Several works have tried to identify or categorize 

malicious accounts and activities in different types of blockchains. As blockchains have a 

graph structure, most of these techniques study graph properties (such as node degree) 

to identify features before applying supervised or unsupervised learning.

In Pham and Lee (2016), authors used a bitcoin transaction network to detect mali-

cious activity. �ey were able to detect three malicious attacks using unsupervised ML 

algorithms with a limited amount of transaction data they had. In their followup work, 

they used a more comprehensive bitcoin transaction dataset (starting from genesis 

block until April 7th, 2013) (Pham and Lee 2017). �ey employed data in two types of 

graphs namely User Graph and Transaction Graph. In the user-graph, nodes represent 

accounts and edges represent transactions, whereas in the transaction-graph nodes rep-

resent transactions and edges represent the flow of bitcoins. �ey first studied the flow 

of bitcoins to prove the existence of anomalies and then performed clustering to identify 

different attacks. �ey were able to detect the existence of one attack using the Local 

Outlier Factor (LOF). Inspired by Pham and Lee (2017), in Monamo et al. (2016), Mon-

amo et al. also used bitcoin transaction data and proposed an update to counter scaling 

issues that are inherent in LOF. �ey validated their approach using trimmed K-Means, 

argued its usefulness in detecting anomalies, and detected 5 out of 30 fraudsters.

In another bitcoin-related malicious activity detection, authors studied the detection 

of addresses involved in the Ponzi scheme (Bartoletti et  al. 2018). �ey used super-

vised learning and validated their results after addressing the class imbalance that is 

inherent in any malicious activity related dataset. �ey identified that the Gini coeffi-

cient of outgoing Ethers and the ratio between incoming and total transactions are the 
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most important features for detecting Ponzi scheme related accounts. In another Ponzi 

scheme related study, in Chen et al. (2018b), authors use Ethereum data to extract fea-

tures from operation codes (opcodes) of the SC’s bytecode. �eir motivation behind 

the study was based on the fact that the opcodes reflect the logic implemented in a SC 

and therefore provide useful features for identifying Ponzi and non-Ponzi SC. �ey 

also figured out that opcode based features are more efficient than account based fea-

tures while detecting Ponzi scheme accounts. In Ostapowicz and Zbikowski (2019), the 

authors use partial Ethereum transaction data to classify malicious accounts. �ey also 

performed a sensitivity analysis to study the effect of different classifiers on the feature 

set. In Singh (2019), to counter class imbalance, authors assumed that the accounts con-

nected to malicious accounts via incoming transactions are also malicious. �ey then 

studied various supervised ML algorithms to identify malicious accounts over this over-

sampled Ethereum dataset. In a followup study of Singh (2019), in Kumar et al. (2020), 

the authors used only those benign accounts that have never transacted with malicious 

accounts. Further, their feature vector had only transaction based properties but not the 

graph based properties.

N-motifs are frequently occurring subgraphs that serve as a basic building block 

of a network. �e authors in Zola et al. (2019) defined N-motif as a path of length 2N 

between two entities. Here transactions were also considered as vertices. Using N-motifs 

that are present in the transaction graph, in Zola et al. (2019), the authors studied trans-

actions happening between entities (people or organizations with multiple accounts). 

�ey were able to correctly identify malicious accounts involved in gambling. In another 

study (Goldsmith et al. 2020), the authors analysed transfer of funds within a sub-net-

work and used temporal feature such as how quickly funds are cashed.

We present all the above-mentioned techniques in detail in Table 1 and present the 

features that the techniques use along with the studied ML algorithms, their hyperpa-

rameters, accounts considered in the dataset, and achieved performance score. Note 

that all these techniques use features that are based on some graph properties, transact-

ing amount, and active state to train the ML algorithm. However, several other stud-

ies, such as Chen et al. (2018a) and Cheng et al. (2019), use inferences drawn from the 

analysis of the transaction graph to mark malicious accounts. In Chen et al. (2018a), the 

authors try to identify accounts that indulge in DDos attacks and argue that accounts 

that create multiple rarely used contracts are malicious. A similar approach is followed 

in Jung et al. (2019) where the authors used only verified SC codes and introduced fea-

tures like SC size, lifetime, and average time between transactions (i.e. Inter-event time). 

In Cheng et al. (2019), the authors deploy honeypot and analyze remote procedure call 

(RPC) requests to identify malicious accounts. �ey then analyze transactions to mark 

accounts as suspicious that accept crypto-currency from malicious accounts.�ey per-

form behavior analysis to identify fisher accounts and attacks such as crypto-currency 

stealing.

All the above techniques either use a limited set of ML algorithms on a highly scaled-

down data inducing over-fitting or apply inferences on the graph structure to identify 

malicious activities and accounts. In most cases, the studies use features that do not cap-

ture temporal behavior and are approximated by the average (mean) behavior, thereby, 

further inducing a bias in their study thus having high accuracy. On the other hand, 
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techniques that use large datasets and have high class imbalance, either have high recall 

and low precision or low recall and high precision (Ostapowicz and Zbikowski 2019). 

Nonetheless, using our features, we identified the ML algorithm that provides not only 

the best precision but also the best recall. In brief, these measure are described next. Let 

C be the set of n distinct classes present in a dataset such that C = {C1,C2, ...,Cn}.

• Precision For a particular class i, the precision is defined as the ratio of correctly 

predicted observations of a class to the total observations that are predicted under 

that class. Let Pj,i represents the number of observations of class j that are predicted 

under class i such that j ∈ C . Formally, precision is defined as: 

• Recall For a particular class, recall is defined as the ratio of correctly predicted obser-

vations of a class to the total observations of that particular class. Let Ri,j represents 

the number of observations of class i that are predicted under class j. Formally, recall 

is defined as: 

• Balanced accuracy For an imbalanced dataset, accuracy can be deceiving. However, 

balanced accuracy gives well enough representation of the performance of the model. 

Balanced accuracy is defined as the average recall score obtained in each class. For-

mally, balanced accuracy is defined as: 

• F1 score It is represented by the harmonic mean of precision and recall. It can also be 

described as a weighted average of precision and recall. Formally, F1 score is defined 

as: 

• MCC score Mathews Correlation Coefficient (MCC) is the correlation between the 

ground truth and the predicted results. It is defined as: 

Methodology

We use Ethereum mainnet blockchain transaction data and first validate our assump-

tions and approach. We segment the transaction data into sub-datasets (SD) to capture 

the behavioral changes. We create the SDs using different temporal granularities ( Tg 

(1)Precisioni =

Pi,i
∑

j∈C Pj,i

(2)Recalli =

Ri,i
∑

j∈C Ri,j

(3)Balanced_Accuracy =

1

n

∑

j∈C

Recallj

(4)F1_Scorei =
2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli

(5)
MCC =

∏

i∈C Pi,i −
∏

j∈C−{i} Pj,i
√

∏

i∈C

[(

∑

j∈C Pj,i

)

×

(

∑

j∈C Pi,j

)]
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such that Tg ∈ TG ) where TG = {Day , Week, Month, Quarter, HalfYearly, Year, All} . A 

granularity becomes coarser as we move from Day to Year. Here, a SD in a Day consists 

of transactions of 6000 blocks. �e choice of 6000 blocks is based on the fact that in 

Ethereum approx. 6000 blocks are created every day. At a coarser Tg , a SD in a Week con-

sists of 7 Days data. Similarly, a SD in a Month consists of 30 Days data, a SD in a Quar-

ter consists of 3 Months data, a SD in a HalfYearly consists of 6 Months data, and a SD in 

a Year consists of 12 Months of data.

On all the features that are time series based (features described in Sect. 4), we per-

form time series analysis of all the SDs at different Tg to quantify them. To perform such 

task, we use tsfresh that “extracts characteristics from a time series” (Christ et al. 2016, 

2018). �e analysis reveals that features such as quantile and median best describe the 

time series for most of the features we have. We observe this behavior not only in the 

entire dataset but also in different SDs at different Tgs.

We first apply the AutoML pipeline using TPOT (Olson et al. 2016) to identify the best 

ML classifier on the entire dataset and validate state of the art techniques. From a given 

set of ML pipelines, TPOT reports the ML pipeline that produces the best results, in 

our case the best balanced accuracy. We configure TPOT with not only the state of the 

art supervised ML algorithms and their hyperparameters but also with other hyperpa-

rameters to identify best results and to be sure that related studies did identify hyper-

parameters for which the balanced accuracy was the best. Note that TPOT internally 

performs imputation and feature scaling also. A detailed explanation of TPOT is out of 

scope of this work, thus we do not present the internal architecture of TPOT. Besides 

supervised learning, as our aim is to detect malicious accounts, we also apply cluster-

ing to identify accounts that show similar behavior to that of malicious accounts. Note 

that for training purposes, we use 80% of the dataset while we test on the remaining 

20% of the dataset. For the entire dataset, we find that K-Means provides best silhouette 

score for k = 9 when we consider both EOAs and SCs while k = 10 when we consider 

only EOAs. For the clusters identified as malicious, we use cosine similarity to quantify 

the similarity among the accounts within a cluster. We acknowledge that there are other 

methods as well to identify similarity, but for this work we use cosine similarity. Assum-

ing that K-Means with hyperparameter k = 9 identified for entire dataset (both EOAs 

and SCs) performs the best for all temporal sub-datasets at different temporal granu-

larities, we determine a probability for an account to be malicious at different temporal 

granularities.

In summary, Fig.  1 presents an overview of our methodology. Here, for the data-

set we have, we first pre-process the data to generate necessary graph structure and 

segment the it based on different Tg s . On the full dataset, we then identify distribu-

tions and generate necessary heat maps. All the data segments are then passed to the 

feature constructor which captures all the needed features. As there are two types 

of features: time series based and non-time series based features, for all the time 

series based features in each data segment we ran tsfresh. �e results, depending 

on the data segment, are then integrated with the non-time series based features in 

that data segment. Once we obtain the needed features, we further segment the data 

based on EOAs and SCs and perform PCA (Principal Component Analysis) to reduce 

the dimensionality of our dataset. We then execute supervised ML algorithm on the 
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derived datasets using AutoML tool to identify the best ML algorithm. Further, we 

also apply different unsupervised ML algorithms, for example K-means, to identify 

the number of clusters for which the silhouette score is the best, then perform cosine 

similarity to identify potential benign accounts that may seem malicious. Once the 

best setting for clusters is identified, we use it for the temporal analysis on different 

SDs and generate probability distribution for an account to be deemed malicious.

Feature engineering

A typical blockchain is a temporal-directed graph. Let Gt(V t ,Et) be the temporal 

snapshot of the blockchain graph, where V t is a set of accounts at time t and Et is the 

set of directed edges or the transactions that happen between two accounts in Vt at 

time t. Figure  2 shows 3 temporal snapshots of blockchain graph where 5 accounts 

interact with each other at different epochs. Here, at time t0 , 3 accounts ‘A’, ‘B’, and 

‘C’ interact where one account (account ‘B’) sends crypto-currency to the other 2 

accounts. Similarly, at t1 and t2 , 2 and 3 accounts interact, respectively. �e figure also 

shows corresponding aggregated graph where the edges with more than one occur-

rences are weighted with the number of occurrences.

Fig. 1 Overview of our methodology

Fig. 2 Sample blockchain temporal graphs and corresponding aggregated graph
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We used both temporal and aggregated graph structure of blockchain to extract fea-

tures. �e set of features (F) defined in the related work is limited and, in most cases, 

does not convey correct temporal behavior. We extend the feature set and introduce 

new features to detect malicious accounts. We follow a two-fold methodology to 

identify the relevant features. First, we study different attacks that have happened in 

the past to understand what features malicious accounts revealed after engaging in 

malicious activity. Second, as most of the account features (for example, inDegree) 

are time series based, we perform time series analysis to identify features that best 

represent the salient properties of the relevant time series. Below we provide a list of 

all the features we use:

• Non Time Series based (set Fn|Fn ⊂ F)

• Active state (AS) malicious activities are usually short-lived (Aspembitova et al. 

2019) and remain, for example, until remediation is introduced. It is thus essen-

tial that we consider features such as when the account first transacted (transact-

edFirst), last transacted (transactedLast), how long it has been active (duration-

Active), and since when the account is continuously transacting (activeSinceLast).

• Time series based (set Ft |Ft ⊂ F  ) We analyze each of the following time series 

based features using tsfresh (Christ et  al. 2016, 2018) and select 3 top features 

identified for each of the following attributes. Nonetheless, as inter-event time 

(IET) itself is a time series, we use it as a feature as well.

• inDegree (iD) it represents the number of transactions in which the account 

under consideration is a receiver at a particular instant. Most of the mali-

cious activities involve transfer of money to a malicious account. �us, it is 

one of the most important features used to understand the behavior of a mali-

cious account. In Singh (2019), the author found uniqueInDegree (defined as 

unique accounts from which the account under consideration has ever received 

money) to be one of the most critical features for identification of malicious 

accounts. On top, we also use aggregated inDegreeAgg as a feature.

• outDegree (oD) represents the number of transactions in which the account 

under consideration has sent money at a particular instant. In some attacks 

such as Bitpoint Hack (O’Neal 2020), after the attacker has received amount of 

sum from the victims in an alias account, they transferred the received sum to 

another account they hold or to an exchange. Such attacks increase the impor-

tance of outDegree as a potential feature. Similar to the case above, we also use 

aggregated outDegreeAgg as a feature.

• Balance (Bal) our motivation to use it as a feature is based on the fact that 

most malicious activities in a permissionless blockchains are finance based. For 

example, in one of the famous Parity Multisig wallets (Palladino 2020) attack, 

the malicious account drained more than 150k Ethers. �us, the currency held 

by an account as well as its flow are important features. We identify balance 

time series for both in/out case. Besides balance, we identify for each instance, 

max balance for both in and out cases (maxInBalance and maxOutBalance), 

zeroBalanceTransactions (transactions where no money was transferred either 
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to or from an account), totalBalance (final balance held with the account), and 

averagePerInBalance (average of received balance) as features.

• Transaction Fees (TF) In crypto-currency based blockchains, a transaction 

is marked by transaction fees that a sender is willing to spend on a particular 

transaction. In the Ethereum blockchain, TF = Gas × GasPrice where Gas is 

the measure of the amount of computation required to perform the transac-

tion by a miner and GasPrice is the amount of Ethers a user is willing to pay 

per unit Gas. Operations like transferring of Ethers require a fixed sequence 

of instructions i.e. fixed amount of computation so it consumes fixed amount 

of Gas (21000). �erefore, if a high transaction fee is paid, it suggests that the 

user is willingly setting a higher GasPrice, since, for a transaction, unit of Gas is 

a fixed. Several attackers put higher gas price to bribe the miner so that a par-

ticular transaction of interest to them is included in the next block (Cheng et al. 

2019). Nonetheless, in DDos attack (Buterin 2020), an attacker created multiple 

accounts at very low gas price to increase synchronization and processing time. 

�us, it is also a feature.

• Attractiveness (A) mostly, malicious accounts tend to interact with accounts 

that they have not interacted with before. �e probability of interacting with 

the same account that they have interacted before is very low. Attractiveness 

can be understood as the change in the neighborhood of an account over 

time. �is can be modeled using the stability of the neighborhood. Consider 

5 accounts in the blockchain that interact with each other and perform trans-

actions with each other as shown in Fig.  3. From the figure, we can see that 

account ‘A’ received crypto-currency from accounts that change almost in every 

time slot. On the other hand, account ‘B’ only received crypto-currency from 

account ‘C’. �is stability of incoming transactions deem account ‘B’ as more 

stable and less attractive than account ‘A’ which is more unstable and attrac-

tive to other accounts. Consider, N t

i
 to be the neighborhood (accounts from 

whom the account i has received crypto-currency) of account i at time t, 

T = {t, t − 1, · · · , t − θa} , and θa the time window size. Based on this, we define 

attractiveness ( At

i
 ) for account i at time t as shown in Eq. 6. 

Fig. 3 Sample graph depicting the most attractive and least attractive accounts
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 In the Eq. 6, the numerator represents the number of unique accounts that the 

account i has received crypto-currency from that were present in past θa − 1 

blocks/times. While the denominator represents the total number of unique 

accounts from which the account has received crypto-currency from, in the last θa 

blocks. To get the attractiveness value, we subtracted this ratio from 1. Note that 

we specifically considered in-degree and not the degree of the account because we 

were motivated by the fact that most of the malicious activities involve extracting 

crypto-currency from a benign account.

 As the blockchain graph is a temporal graph where interactions are intermit-

tent, an account’s neighborhood is highly dynamic and changes at each epoch. 

�us, the attractiveness also changes with respect to time (as new accounts can 

be added to the neighborhood at the epoch under consideration). �erefore, we 

define attractiveness as a temporal feature.

• Burst (BB) (set Fb|Fb ⊂ F  ) bursty behavior is defined as temporal non-homogene-

ous sequence of events (Karsai et al. 2012) and has been characterized by a fat-tailed 

inter-event time ( �t ) distribution. In one of the bitcoin blockchain attacks (Allin-

vain �eft 2020), a malicious account generated a large number of transactions to 

taint the bitcoin platform. Motivated by this incident, we define four types of bursts 

(temporal, degree, balance and gasPrice) that occur in the network under considera-

tion. As an account can either be a sender or a receiver, the following burst types are 

defined for cases (a) when the account acts as a sender, (b) when the account acts as a 

receiver, and (c) when the account acts as both a sender as well as a receiver.

• Temporal Burst for an account i, non-homogeneous occurrences of events (in 

our case transactions) lead to some transactions occurring where �t is less than 

a threshold, θ it , while for other transactions �t is large. If a transaction happens 

when �t < θ
i
t , we assume that it is a burst. Some burst can be long lived while 

some burst can be short lived, meaning, some event can happen continuously for 

long time intervals before going dormant. As features, we identify number of such 

temporal bursts (numberOfTemporalBursts) and the duration of the longest burst 

(longestBurstDuration) for both in and out transactions separately.

• Degree Burst it has been proven that the degree (also inDegree and outDegree) 

distribution of the aggregated transactions in blockchain such as Ethereum follows 

a power-law (fat tailed) distribution (Chen et  al. 2018a) with α ∈ [−2.8,−2.6] . 

�is suggests that many accounts do not transact often while there are very few 

accounts that act as hubs (for example, exchanges). Nonetheless, when con-

sidering the temporal aspects, we believe such behavior also exists where some 

accounts have a very high degree for some instant while for other instants they 

(6)At
i =
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have a low degree. �us, we define a degree burst when at a given instant of time 

the degree of an account, i, is greater than θ i
d
 . Similar to the temporal case, for 

degree bursts we also identify number of degree bursts (numberOfDegreeBursts) 

that happened for an account over time, number of instances where the degree 

burst happened (numberOfDegreeBurstInstances), and the time at which the larg-

est burst of degree happened (largestBurstAt). Note that these features except for 

numberOfDegreeBurstInstances are defined for both in and out transactions sep-

arately as well.

• Balance Burst in some cases transactions happen from accounts i to account j 

where the involved sum of crypto-currency was very large (more than a threshold 

value θ i
b
 ). For example, some accounts associated to Silk Road (Spagnuolo et  al. 

2014) or involved in money laundering, sometimes transact large sum for illegal 

activities. Bursty behavior of transaction amount could be helpful in identify-

ing potential malicious activities and accounts. Similar to the above cases, for an 

account i, we identify number of unique instances where balance is more than θ i
b
 

(numberOfBalanceBurstyInstances), and number transactions more than θ i
b
 (num-

berOfBalanceBursts). Note that, we define these factors for both in and out cases, 

separately.

• GasPrice Burst: As described before, an attacker can put higher gas price (more 

than a threshold value θ ig ) to bribe the miner so that the transaction is included 

in the block. �is activity although abnormal is useful in understanding account’s 

behavior. Towards this, similar to previous cases, we define numberOfGasPrice-

BurstyInstances as number of instances where the gasPrice was set more than θ ig . 

�is is only defined for senders as gasPrice is only set by the sender.

Note that features such as in/outDegree, burst, attractiveness are some graph-based tem-

poral features. Besides these features, other graph-based properties that we use as fea-

tures include clustering-coefficient (CC) (Watts and Strogatz 1998). For an account i, let 

N
t,in

i
 be the neighborhood of account i at time t from which the account has received the 

crypto-currency, N t,out

i
 be the neighborhood of account i at time t to which the account 

has paid the crypto-currency. �us, the total account degree is deg toti = |N t,in
i | + |N t,out

i | . 

Let N t,↔

i
= N

t,in

i

⋂
N

t,out

i
 and air = 1 if there is a transaction between i and r, otherwise 

0. We similarly define ais , ari , asi , ars , asr . For a directed graph, CC of account i ( CC t

i
 ) at 

time t is defined by Eq. 7 (Fagiolo 2007).

(7)CC t
i =

∑

r

∑

s
(air + ari)(ais + asi)(asr + ars)

2

[

deg toti (deg toti − 1) − 2|N t,↔
i |

] .
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Results and evaluation

We evaluate the effectiveness of our method using Ethereum’s external transactions data 

which is publicly available for download using the Etherscan APIs (Etherscan 2020a). 

Note that the APIs do not provide any information about the account (such as the name 

and the account type). Nonetheless, as the hash of the accounts is available, one can 

check the associated information using the Ethereum Blockchain Explorer (Bitfly Gmbh 

2020). We perform all our evaluations using Python version 3.7. Within the Python 

environment, we use supporting libraries such as TPOT version 0.10.2, tsfresh version 

0.13.0, scikit-learn version 0.21.3, pandas version 0.25.1, and numpy version 1.16.5. All 

the result plots are generated using matplotlib version 3.1.1.

Dataset

Ethereum as on 20th December 2019 had ≈79M accounts. Out of these accounts, 3362 

accounts were already tagged to be involved in malicious activities. �e tags mainly include 

Phishing (3168 accounts), Gambling (8 accounts), Cryptopia-Hack (6 accounts), Heist (16 

accounts), Suspicious (4), Bitpoint Hack (2 accounts), Compromised (21 accounts), Spam 

(10 accounts), Upbit-Hack (123 accounts), Unsafe (1 account), Scam (1 account) and Bugs 

(2 accounts). Note that to get such ground truth about the accounts, we explicitly browsed 

through all the tags available in Etherscan and marked those accounts as malicious where 

the associated tags had caution warnings. Moreover, we chose the accounts associated 

with the tag Gambling as this type of activity is illegal in most countries. We look for other 

sources such as Cryptoscam.db (MyCrypto Inc 2019) as well to know the ground truth 

about the accounts as only some of the accounts are tagged as malicious. As a result, we find 

329 more malicious accounts with a total of 3691 unique malicious EOAs and SCs. Upon 

further investigation, we find that out of these 3691 EOAs and SCs, 746 never transacted 

and were mostly involved in the token trade until 7th December 2019. We, thus, remove 

them from our malicious accounts dataset. In these remaining set of malicious accounts, 

there are 158 SCs and 2 marked compromised exchanges. Note that for these accounts we 

collect only-but-all external transactions (transactions from EOAs to SCs, and between 

different EOAs). Also note that at the time of this study Etherscan had removed most of 

the malicious tags. But recently Etherscan provided new tags and marked more accounts 

as malicious. As of 27th May 2020, there were 4708 malicious accounts out of which 2019 

were newly tagged accounts. Out of these 2019 accounts only 1252 accounts ever trans-

acted. Out of these 1252 accounts 1029 were created before 7th December 2019 in which 

only 3 are present in our dataset. As the number of malicious accounts is constantly evolv-

ing, we take this opportunity to cross validate accounts that our analysis found malicious.

�ere is a high class imbalance in the dataset as the number of benign accounts is 

large. �us, we perform random under-sampling to uniformly sample 697K benign 

accounts from the 79M Ethereum accounts. In the total ≈700K accounts we have, there 

are 7 exchanges and 23,141 SCs while the remaining accounts are EOAs.

A unique external transaction, Tx, retrieved using Etherscan API contains information 

like blockHash, blockNumber, source, destination, gas, gasPrice, Transaction hash, bal-

ance, and timestamp of the block. A typical Tx is shown in Fig. 4. Here,

• blockNumber is the number associated with a block in which the transaction (rep-

resented by a 32-byte long transaction hash stored in hash) is stored by the miner 
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at index represented by transactionIndex. A block is also uniquely identified by a 

32-byte long hash (i.e. blockHash) . �e timestamp represents the epoch timestamp, 

in seconds, at which the transaction was mined.

• �e from and to fields are both 20-byte long hashes of public keys of sender and 

receiver accounts. �ese accounts can be either EOAs or SCs. In a transaction, if the 

to field is empty, then it represents that the transaction is a contract creation transac-

tion. In this case the input field contains the SC code. However, if to field is a hash of 

a SC, then input field may contain a function call. In other cases, the input field is an 

arbitrary message or Null.

• In a transaction, nonce represents the number of outgoing transactions performed 

by an EOA sender before that particular transaction. �is nonce, in the case of SC, 

represents the number of secondary SCs created by it. Nonce along with the sender’s 

address is used to calculate the address of the SC.

• �e value field represents Ethers transferred (in Wei). 1 Ether is equal to 1018 Wei.

• �e maximum amount of gas provided for the transaction is specified using gas. �e 

gas is the upper limit of computation work that sender allows a miner to perform the 

transaction. Whereas gasUsed is the actual amount of computation performed. �e 

cost per unit of gas that the sender is willing to pay for a transaction is represented 

by gasPrice (in GWei = 109 Wei). An attacker can set a higher gasPrice for better 

chances of his transaction being included in the block.

Note that the Tx data does not include the actual timestamp of when a transaction was 

performed by the account. �e available timestamp is the time when the miner added 

the Tx to the block. �e only time related information, we are able to extract is the infor-

mation about when a block is mined. However, currently we do not use this information. 

We assume a time bin of 1 block for our study. We assign respective blockNumber as a 

timestamp to all the transactions1. Based on this notion of timestamp, we also segment 

Fig. 4 A sample Ethereum transaction

1 �e block numbers are monotonically increasing thus giving a notion of timestamp.
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the data into several SDs of different Tg and study the behavior of the accounts. We 

describe in the Sect.  1 the different Tg s we consider. For statistical purposes, we have 

1,531 Day SDs, 219 Week SDs, 52 Month SDs, 18 Quarter SDs, 9 HalfYearly SDs, 5 Year 

SDs, and the entire dataset. A total of 1835 datasets.

For our study we assign: (i) θt = 2 so that continuous burst of smallest size are also 

captured, (ii) for an account i, θ i
d
 = 0.8 × (max(d)) where d is the in/outdegree of an 

account in the considered SD, (iii) θ i
b

= 0.8 × (max(b)) where b is the transaction bal-

ance for either in or out case, (iv) θ ia is set to be equal to the duration of the SD to keep 

the entire history of neighbors that a particular account transacted with in the past in 

the given sub-dataset, and (v)) θ ig = 0.8 × (max(gasPrice)) where gasPrice is the the gas 

price for transactions associated with account i. We then analyse different time series 

based features to identify there characteristics as potential features.

Results

In this subsection, we present results obtained after analysing the dataset and using dif-

ferent ML techniques. Here, we also present results obtained after performing behavio-

ral analysis.

Fig. 5 Degree distribution of accounts
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Data analysis

For the entire dataset, we first study inDegree and outDegree distribution for both 

malicious and benign accounts to validate the fat-tailed behavior of the degree dis-

tribution. From Fig.  5, we identify that power-law distribution (Alstott et  al. 2014) 

with xmin = 2.3 , α ∈ [2.37, 2.54] and α ∈ [2.23, 2.33] fits inDegree and outDegree dis-

tribution, respectively, for both malicious and benign accounts. Here α and xmin are 

the powerlaw exponent and minimum x from where the powerlaw distribution is 

observed, respectively.

�e fat-tailed nature of degree is evident because some accounts interact with more 

number of accounts at a certain instant, thereby inducing a bursty behavior. We study 

the distribution of inDegree for all individual accounts to understand if such behavior 

is shown by all the accounts. Figure 6a presents distribution of inDegree for different 

accounts. We identify that the inDegree of very few accounts is high (> 100) for very 

few time instances while most of the time it is low suggesting the existence of bursts. 

We observe a similar behavior for outDegree as well (see Fig. 6b).

Next, we validate the existence of temporal bursts. For this we study the distribu-

tion of inter-event time ( �t ) for all accounts. We find that it follows power law with 

xmin = 3 and α = 1.25 and α = 1.76 for benign and malicious cases, respectively (see 

Fig. 6 Temporal degree distribution of individual accounts
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Fig.  7a). Nonetheless, we also observe a truncation at 1.5 × 10
6 blocks. �e trunca-

tion reflects that some accounts are inactive or did not perform any transactions 

for long period of time. When looking at the individual level, we observe that only 

few accounts have very large inter-event time ( > 1 × 10
6 ) where the probability of 

Fig. 7 Distribution of �t

Fig. 8 Attractiveness
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occurrence of such events is very low. Most of the activity happens where the inter-

event time is very small (see Fig. 7b).

�e attractiveness behavior of malicious and benign accounts differ significantly 

(see Fig. 8). Most malicious accounts have high attractiveness value while most of the 

benign accounts have low attractiveness value. �is justifies our assumption that most 

malicious accounts target those accounts that they have not previously interacted 

with. Some attacks (Upbit Hack - Fake_Phishing1431: ‘0xdf9191889649c442836ef55de-

5036a7b694115b6’) uses multiple accounts to evade detection while transferring money 

to exchanges. �ey use multiple accounts as buffer between account and exchange. 

�is is the reason for relatively high probability ( p(A = 0) > 0.2 ) for the low values 

of attractiveness ( A = 0 ) for malicious accounts. Similarly, for some benign accounts 

p(A = 1) = 0.1 because such accounts only have 1 incoming transaction in whole life-

time portraying that the account interacted only with new accounts.

Feature extraction

For the entire dataset, after applying tsfresh, for every temporal feature F
j
t ∈ Ft we get a 

set of features ( F̂
j
t ) that describes F

j
t . tsfresh in most of the cases reported more than 400 

features. But, due to computational resource constraints, we were not able to use all the 

features from F̂
j
t . �erefore, we choose only the top three features identified using Gini 

as the scoring method. Here, we have selected 3 features because for most of the F
j
t ∈ Ft , 

top 3 features turned out to be equally important. After this process, we get a total of 

59 features. Appendix 2 provides extracted feature vector of a sample account. For the 

entire dataset, using pearson correlation, we remove highly correlated features and find 

36 important features. We also perform PCA to identify 28 features that cover >98.2% 

variance to further reduce the feature space in the entire dataset.

Approach using supervised learning

For the analysis purposes, besides performing PCA to identify 28 features and before 

running the AutoML tool (TPOT) to identify the best supervised learning algorithm, 

we segment the entire dataset into six dataset configurations. Note that these six data-

set configurations are different from the temporal SDs. �ree out of these six dataset 

configurations use all types of accounts (EOA and SC) and have 59, 36, and 28 features, 

respectively. While for the remaining three, we separate EOAs from SCs and use only 

EOAs. �ese three configurations again have 59, 36, and 28 features, respectively. We 

configure TPOT with all the supervised ML algorithms used in the state of the art stud-

ies along with other supervised ML algorithms to identify the algorithm that gives best 

balanced accuracy.

As mentioned in the Sect.  3, from a given set of ML pipelines, TPOT reports the 

ML pipeline that produces the best results, in our case the best balanced accuracy. 

�is results in the evaluation of multiple ML models that are even beyond those that 

are reported by the related works. We, thus, decided to limit ourselves from reporting 

results of all the models and instead report the model for which the best balanced accu-

racy was achieved.Table 2 lists different dataset configurations we have used along with 

the algorithm that provided the best balanced accuracy along with precision, recall, and 

f1-score for each class and reports Mathews Correlation Coefficient (MCC).For each 
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dataset configuration and the algorithm that provided the best balanced accuracy, we 

only provide values of those hyperparameters for which the values are different from the 

default case. We identify that ExtraTreesClassifier provides overall best balanced accu-

racy for all the dataset configurations. Among the different dataset configurations we 

have, the dataset with 59 features and containing both EOAs and SCs shows the best 

balanced accuracy. �e difference in balanced accuracy score between the dataset con-

figurations when 36 and 59 features are used is only 0.5% for both when we consider 

only EOAs and all the accounts, respectively. Given such results, we show that correlated 

features do not provide much gain and can be removed without the loss of accuracy. 

Fig. 9 Cosine similarity between malicious accounts identified on different dates

Table 2 Balanced accuracy, Precision, and  Recall, and  F1 score for  both  malicious 

(Mal) and  benign (Ben) accounts with  best identi�ed ML algorithm for  supervised case 

when using di�erent dataset con�gurations

Here, we also report the Matthews Correlation Coe�cient (MCC) score

28 (PCA) EOA ExtraTreesClassi�er(class_weight = ‘balanced’, max_features = 0.4, max_samples = 0.3, min_samples_leaf = 

11, min_samples_split = 19, n_estimators = 600)

28 (PCA) EOA and SC ExtraTreesClassi�er(class_weight = ‘balanced’, criterion = ’entropy’, max_features = 0.25, max_samples 

= 0.15, min_samples_leaf = 13, min_samples_split = 4, n_estimators = 800, n_jobs = 20, random_state = 100)

36 EOA ExtraTreesClassi�er(bootstrap = true, class_weight = ‘balanced’, max_features = 0.15, max_samples = 0.7, min_

samples_leaf = 8, min_samples_split = 18, n_estimators = 200, n_jobs = 10, random_state = 100)

36 EOA and SC ExtraTreesClassi�er(class_weight = ‘balanced’, criterion = ’entropy’, max_features = 0.45, max_samples = 

0.75, min_samples_leaf = 18, min_samples_split = 6, n_estimators = 200)

59 EOA ExtraTreesClassi�er(class_weight = ‘balanced’, max_features = 0.2, max_samples = 0.75, min_samples_leaf = 13, 

min_samples_split = 19)

59 EOA and SC ExtraTreesClassi�er(class_weight = ‘balanced’, criterion = ’entropy’, max_features = 0.3, max_samples = 0.3, 

min_samples_leaf = 14, min_samples_split = 20, n_estimators = 200)

Features Data segment Best classi�er Accuracy 
balanced

Precision Recall F1 score MCC score

Mal Ben Mal Ben Mal Ben

28 Only EOA ExtraTrees 0.872 0.38 1.00 0.75 0.99 0.50 1.00 0.510

(PCA) EOA and SC 0.873 0.22 1.00 0.76 0.99 0.34 0.99 0.421

36 Only EOA 0.876 0.11 1.00 0.78 0.97 0.19 0.99 0.254

EOA and SC 0.882 0.24 1.00 0.78 0.99 0.37 0.99 0.429

59 Only EOA 0.881 0.26 1.00 0.77 0.99 0.38 0.99 0.425

EOA and SC 0.887 0.29 1.00 0.78 0.99 0.42 1.00 0.473



Page 22 of 30Agarwal et al. Appl Netw Sci             (2021) 6:9 

Further, for completeness, the Table  3 shows balanced accuracy, precision, recall, and 

MCC score for the ML algorithms and their hyperparameters that the state of the art 

algorithms use. Here, we specifically focus on the Ethereum based state of the art algo-

rithms for which the hyperparameters were reported. From the Table 3, we can see that 

the best balanced accuracy achieved was 85% while using our approach, we were able 

to achieve > 88.7% balanced accuracy. However, when comparing MCC scores, we note 

that although XGBoost has a high MCC score, it has relatively low Recall on malicious 

account. Having a low Recall would mean that algorithm is deeming a large number of 

malicious accounts as benign. �is is not desired as there could be an adversarial attack. 

�ough for our case the MCC score is low, recall is high. �erefore, our model is more 

robust towards adversarial attack.

To validate our results, we test ExtraTreesClassifier with identified hyperparameters 

on newly identified set of 1252 malicious accounts. �e classifier achieves 50% bal-

anced accuracy. However, when we train the classifier with identified hyperparameters 

on the total dataset (dataset consisting of previously used 700k accounts and new 1252 

accounts), we were able to achieve ≈ 92% balanced accuracy. �is makes us wonder if the 

new malicious nodes have different characteristics. We check cosine similarity between 

the old 2946 malicious accounts and the new 1252 malicious accounts (see Fig. 9). We 

find that most of the newly added malicious accounts had low similarity score. Only one 

new malicious account had similarity score > 0.985 with only one old malicious account. 

In many cases the similarity score even reached < −0.89 showing that the accounts are 

not similar and there are some new aspects used by new malicious accounts. Note that 

to identify cosine similarity we do not use features such as transactedlast and transact-

edFirst because many of the accounts were created after 7th Dec 2019. �is shows mali-

cious actors also evolve the ways they use to misuse crypto-currency platforms for their 

fraudulent activities.

Approach using unsupervised learning

We next test unsupervised learning algorithms such as K-Means, DBSCAN, HDBSCAN, 

and oneClassSVM to identify suspect accounts in the entire dataset. We find that for 

the six dataset configurations (mentioned above and not the SDs) and different values of 

k ∈ [3, 24] , K-Means provide the best silhouette score (score = 0.365) when k = 10 clus-

ters and when we use all the features but only EOAs (‘59 - EOA’) (see Fig. 10). Among 

Table 3 Balanced accuracy, Precision, and  Recall, and  F1 score for  both  malicious (Mal) 

and  benign (Ben) accounts for  supervised learning algorithms used in  state of  the  art 

approaches where hyperparameters were reported

Here, we use 59 features and both EOA and SC dataset con�guration. Here, we also report the Matthews Correlation 

Coe�cient (MCC) score

*Did not converge as the dataset was large

Reference Classi�er Accuracy 
balanced

Precision Recall F1 score MCC

Mal Ben Mal Ben Mal Ben Score

Ostapowicz and 
Zbikowski (2019)

RandomForest 0.64 0.98 1.00 0.29 1.00 0.44 1.00 0.52

SVM* – – – – – – – –

XGBoost 0.85 0.97 1.00 0.7 1.00 0.91 1.00 0.81

Singh (2019) KNN 0.73 0.89 0.99 0.48 0.99 0.62 0.99 0.64
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Fig. 10 Silhouette scores of clusters identified by K-Means where k ∈ [3, 24] for different dataset 

configurations

Fig. 11 Clusters with number of malicious accounts for a when only EOAs are considered, b when both 

EOAs and SCs are considered

Fig. 12 Cosine similarity between malicious accounts and benign accounts in the cluster with best 

Silhouette score
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these 10 clusters, for one initial condition, one cluster had the most number of already 

known malicious EOAs ( ≈ 73.9% (2062/2788) ) (see Fig. 11). We then identify the simi-

larity between all the accounts in the identified cluster. We identify 554 benign accounts 

whose behavior (cosine similarity) (see Fig. 12) is within 1 − ǫ where ǫ → 0 to that of 

malicious accounts. For our analysis we use ǫ = 10
−7 . We cross validate the transactions 

performed by these 554 benign accounts and find that (a) most of the EOAs have small 

transactedLast value, meaning, those accounts never transacted in recent past (in past 

6 months 494 EOAs never interacted), (b) atleast 38 EOAs only have incoming transac-

tions and are not exchanges, and (c) totalBalance ∈ [0.0, 150.0] Ethers with a median of 

0.001 Ethers.

When considering both EOAs and SCs, we obtain the best silhouette score (score = 

0.356) for k = 9 clusters but for the case when we use all the 59 features (‘59 - EOA 

and SC’) (see Fig. 10). In this case, for one initial condition, there was one cluster with a 

maximum number of already tagged malicious EOAs ( ≈ 64.3% (1793/2788) ) and mali-

cious SCs ( ≈ 62.6% (99/158) ). We identify 293 potential suspects EOAs and no suspect 

SCs within this cluster using our previous method. Out of these 293 accounts, 160 EOAs 

were also detected in the set of 554 accounts. We further tested if the accounts we identi-

fied as suspects are present in the list of newly tagged malicious accounts. We found that 

none of the 3 new malicious tagged accounts that transacted during our analysis period 

were not in our list of suspects. �is is possible as the accounts must have changed their 

behavior and become malicious after our collection period. We do not reveal the account 

hash for the sake of privacy and not maligning benign accounts in interacting with any of 

these 554 or 293 suspects until they are officially tagged malicious. Other unsupervised 

ML algorithms did not perform better than K-Means. �e range of silhouette scores for 

HDBSCAN was ∈ [−0.06,−0.022] while oneClassSVM did not converge.

Given such results, we advocate the use of the approach using unsupervised learning. 

Approach using supervised learning failed to classify correctly new malicious accounts. 

Moreover, for the unsupervised case, even in the initial dataset, our approach was able 

to identify more accounts as suspects. �ereby aligning with our motivation of detecting 

suspects in the blockchain. Keeping, such results in mind, we used unsupervised learn-

ing approach to detect behavior changes before deeming any account as malicious.

Behavior analysis

To further understand the temporal behavior changes before classifying the accounts 

as malicious, we use temporal sub-datasets (SDs) created at different temporal granu-

larities ( Tg , see Sect. 1). Consider a Tg ∈ TG of several SDs. Let this set be SD(Tg ) where 

SD(Tg ) = {SD(Tg )1, SD(Tg )2, · · · , SD(Tg )j , · · · , SD(Tg )n} . Further, consider an account 

i. We first analyse all the time-series based features in each SD(Tg )j and characterise 

them. We employ a similar approach as before where we identify F̂ i
t using tsfresh for a 

F
i
t ∈ F  in a given SD(Tg )j and use three features in F̂ i

t with the highest gini scores.

We then use K-Means with previously identified hyperparameter ( k = 9 ) and per-

form clustering. As before, we tag accounts in each SD(Tg )j as malicious and benign 

after identifying cosine similarity. �is results in a vector (M) for each account of size 

ni where each element ( Mj ) in M is either 0 or 1 and ni is the number of SDs in a Tg 

in which the account appears. Here 0 represents not identified as malicious. Let this 
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set of SDs be SD(Tg ) = {SD(Tg )
i
1
, SD(Tg )

i
2
, · · · , SD(Tg )

i
j , · · · , SD(Tg )

i
n} . M depicts 

the behavior of an account i where a change in behavior is captured if Mj  = Mj+1 . 

We note that only one benign account, as per our analysis, has changed its behaviour 

most number of times (591) in the Tg = Day . Figure 13 shows probability distribution 

of the number of behavioral changes observed in an accounts. �e figure only consid-

ers those accounts where the change happened at least once. For the daily case, as the 

data was significant we identify that lognormal-positive distribution with parameters 

xmin = 1 , µ = 1.25 , and σ = 2.36 best fits the data. Further, across all Tg s there were 

9254 unique benign accounts that showed unstable behavior.

From M, the probability of a particular account i to be malicious in a given Tg is 

given by pim =

∑
j∈SD(Tg )i

Mj

ni
 . Number of accounts with certain probability for being 

benign at different Tg s is shown in Fig. 14. Intuitively, a benign account should have 

pim = 0 while a malicious account should have pim = 1 . If a known benign account 

has a high probability then it cannot be trusted. Using such approach, we identify 814 

unique accounts across different Tg s as suspects that have pim = 0 . Further, as seen 

from the figure, most of the accounts were identified as benign.

In summary, capturing account’s behavior changes advocates if the account should 

be considered as malicious or benign at the time of performing a transaction with 

it. It is possible that, in past, an account might have evaded detection as malicious. 

Fig. 13 Probability distribution of number of changes in behavior of accounts with certain probability for 

being benign at different Tgs

Fig. 14 Number of accounts with certain probability for being benign at different Tg s on a semi-log scale
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Knowledge of such changes in the behavior provides an understanding on whether an 

account is trusted and is not involved in any illegal activity. Our approach provides 

one solution to know beforehand and predict if an account would behave maliciously.

Conclusion

Blockchains technology and concept has found its implementation not only in the 

financial sector such as crypto-currency market, hedge-fund, and insurance but also 

in sectors such as governance, education, healthcare, and law enforcement. Although 

blockchains are privacy-preserving, with an increase in its adoption, security threats are 

inevitable. �e misuse will be more diverse and deployed using novel techniques. It is 

essential to have secure transactions. Motivated by the fact that there is limited work in 

identifying accounts involved in potential malicious activities and those available do not 

target temporal aspects of blockchains, in this work, we present a way to detect mali-

cious accounts considering the temporal nature of the blockchains.

In this work, we present graph-based temporal features (such as burst and attractive-

ness) that are inspired by the existing attacks in the blockchain on top of existing features 

used to identify malicious accounts. To do so, we first conduct a systematic study of the 

temporal behavior of the blockchain graph on a collected transaction data in one of the 

blockchains called Ethereum. Our results show that ExtraTreesClassifier performs best 

under the supervised setting and achieves balanced accuracy in the range [87.2, 88.7] for 

different dataset configurations. Moreover, under the unsupervised settings, K-Means 

was able to cluster max 73.9% known malicious accounts together and identify 554 more 

suspects that had similar behavior to that of malicious accounts. When considering 

behavioral changes over time and studying them over different temporal granularities, 

we are able to detect the probability of an account being malicious at a particular tempo-

ral granularity.

Given such results, we expect that benign accounts would be more careful while trans-

acting with suspects and safe-guard themselves from any fraud and security threats. 

However, the current technique is only applicable to permissionless blockchain. We 

would like to investigate the applicability of our method to blockchains where features 

such as Transaction Fees and Balance are missing. Despite whether a particular block-

chain is permissionless or permissioned, there are many other centrality measures such 

as closeness, betweenness and page-rank that are applicable in a blockchain graph. 

Another future research direction is to incorporate these measures as features and study 

the behavior of the accounts before tagging them as malicious or benign. Nonetheless, 

in this work, we detected suspects using supervised learning and unsupervised learning 

algorithms. Reinforcement learning is another type of ML that can be applied and stud-

ied to detect malicious activity. As our validations failed on the newly tagged malicious 

accounts one perspective is to study new features and new methods that the new mali-

cious accounts are using and deploying to perform illegal activities. In this work, we con-

sidered all the malicious activities under one class. In the future, we would also like to 

investigate which features are more important for a particular activity and study based 

on the malicious activity type.
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Appendix 1: Proof of work

Proof-of-Work (PoW) is a type of consensus algorithm typically used in a Blockchain. 

Using consensus algorithms, distributed systems can achieve agreement on a single data 

value. In a lot of crypto-currencies, miners solve a computationally expensive and time 

consuming problem to add a block to the ledger. Miners use a costly highly specialized 

computer hardware (ASIC) for mining. �ey are awarded Ethers as mining reward when 

their block get confirmed in the ledger. Ethereum uses a Ethash PoW algorithm which is 

prominently designed to be ASIC resistant and supports GPU-based mining. It uses a 

memory intensive approach rather than a CPU intensive computation.

Nonetheless, PoW consensus algorithms partially provide defense from Sybil attacks 

because such attacks are computationally expensive and require a lot of computational 

resources. �erefore, although, an attack is possible, it is computationally very expensive.

Appendix 2: List of features

�e Table  4 below list all the features used for our analysis. Note that the values are 

scaled values. Here, # Features represent the features present in the different data 

configurations.
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Table 4 Sample feature data

tsfresh 
identi�ed

Feature names (as used in code) # 
Features

Value

59 36

indegreeTimeInv ✓ ✓ − 0.0086

outdegreeTimeInv ✓ − 0.0178

degreeTimeInv ✓ − 0.0128

numberOfburstTemporalInOut ✓ − 0.0045

longestBurstTemporalInOut ✓ − 0.1089

numberOfburstTemporalIn ✓ ✓ − 0.0035

longestBurstTemporalIn ✓ ✓ − 0.0375

numberOfburstTemporalOut ✓ ✓ − 0.0079

longestBurstTemporalOut ✓ ✓ − 0.1289

numberOfburstDegreeInOut ✓ − 0.0077

longestBurstDegreeInOutAtTime ✓ − 0.0728

numberOfburstDegreeIn ✓ ✓ − 0.0062

longestBurstDegreeInAtTime ✓ ✓ − 0.047

numberOfburstDegreeOut ✓ ✓ − 0.0074

longestBurstDegreeOutAtTime ✓ ✓ − 0.0569

zeroTransactions ✓ ✓ 0.0

totalBal ✓ ✓ − 8.6e−5

transactedFirst ✓ ✓ − 0.1942

transactedLast ✓ ✓ − 0.8879

activeDuration ✓ − 0.3908

averagePerInBal ✓ − 0.0222

uniqueIn ✓ ✓ − 0.0061

lastActiveSince ✓ ✓ 0.0

✓ indegree__index_mass_quantile__q_0.1 ✓ ✓ 0.3977

✓ indegree__energy_ratio_by_chunks_num_segments_10__segment_
focus_0

✓ − 0.3957

✓ indegree__linear_trend__attr_“pvalue” ✓ ✓ 1.1364

✓ ittime__quantile__q_0.7 ✓ ✓ − 0.2804

✓ ittime__fft_coefficient__coeff_0__attr_“real” ✓ ✓ − 0.3908

✓ ittime__median ✓ − 0.2861

✓ outdegree__energy_ratio_by_chunks__num_segments_10__segment_
focus_0

✓ ✓ − 0.4218

✓ outdegree__enegy_ratio_by_chunks__num_segments_10__segment_
focus_1

✓ ✓ 0.9724

✓ outdegree__fft_coefficient__coeff_0__attr_“real” ✓ ✓ − 0.0178

✓ gasPrice__quantile__q_0.2 ✓ − 0.3171

✓ gasPrice__quantile__q_0.1 ✓ ✓ − 0.3036

✓ gasPrice__cwt_coefficients__widths_(2, 5,10, 20)__coeff_0__w_20 ✓ ✓ − 0.0015

✓ attractiveness__median ✓ ✓ 0.7886

✓ attractiveness__quantile__q_0.4 ✓ 0.6248

✓ attractiveness__mean ✓ 0.9815

✓ balanceOut__quantile__q_0.1 ✓ ✓ − 0.0098

✓ balanceOut__quantile__q_0.3 ✓ − 0.0118

✓ balanceOut__cwt_coefficients__widths_(2, 5,10, 20)__coeff_0__w_2 ✓ − 0.0128

✓ balanceIn__quantile__q_0.4 ✓ ✓ − 0.0189

✓ balanceIn__cwt_coefficients__widths_(2, 5,10, 20)__coeff_0__w_20 ✓ ✓ − 0.0231

✓ balanceIn__quantile__q_0.3 ✓ − 0.0183

✓ maxInPayment__quantile__q_0.3 ✓ − 0.0188
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