
Detecting Man-in-the-Middle Attacks by Precise Timing

Benjamin Aziz

e-Science Centre

STFC Rutherford Appleton Laboratory

Didcot, United Kingdom

Email: benjamin.aziz@stfc.ac.uk

Geoff Hamilton

School of Computing

Dublin City University

Dublin, Ireland

Email: Geoff.Hamilton@computing.dcu.ie

Abstract

Man-in-the-middle attacks are one of the most popular

and fundamental attacks on distributed systems that have

evolved with advances in distributed computing technologies

and have assumed several shapes ranging from simple IP

spoofing to complicated attacks on wireless communica-

tions, which have safety-critical applications such as remote

wireless passport verification. This paper proposes a static

analysis algorithm for the detection of man-in-the-middle

attacks in mobile processes using a solution based on precise

timing.

1. Introduction

Man-in-the-Middle (MiM) attacks are one of the most

popular and challenging threats in computing systems and

there is a large body of research dedicated to the detection

and analysis of different forms of these attacks (examples

include [1], [14], [17], [20], [24]). A MiM attack is defined

as an attack in which the intruder is able to read and

write messages communicated between two parties without

either party being conscious of this fact. The attack appears

in many shapes and forms and the sophistication of these

forms has evolved with the evolution of modern computing

systems. In 2004, Citibank’s Citibusiness service was the

victim of a phishing 1.0 attack (a form of MiM attacks

targeted for Web users) in which a fake web page con-

structed to resemble the original service’s page was used

to trick the users into believing they are communicating

with the authentic service, but in reality, compromising their

account details. In safety-critical systems, the problem of

MiMs becomes even more urgent.

In this paper, we are interested in analysing the abil-

ity of mobile systems, such as wireless sensor networks,

in detecting MiM attacks in a timely fashion. Wireless

sensor networks rely on a class of protocols known as

distance-bounding protocols [6], [11], [16], [22] for es-

timating entity distances. In these protocols, the distance

between two entities, measured using precise timing, is

required in defining some of the security properties of the

protocol. For example, the authenticated entity needs to

be at some distance (not more) from the authenticating

entity. This class of protocols is susceptible to a whole

new class of attacks [8], [12], [23] including MiM attacks

[10], for which some solutions have been proposed in [13],

[19], [21]. An article in recent years by Bruce Schneier

(http://www.schneier.com/blog/archives/

2006/04/rfid_cards_and.html) highlights MiM

threats on RFID-enabled passports in cross-border immigra-

tion controls and suggests precise timing mechanisms as a

means of detecting such attacks.

Distance-bounding protocols have the requirement that a

message arrives at its destination in a timely fashion. For

example, consider the following scenario:

@T1 : Alice
m1−−−−→ @T2 : Carol

@T3 : Carol
m2−−−−→ @T4 : Bob

in which Alice sends a message m1 to Bob at time T1.

The message is intercepted by Carol at time T2, altered to

m2 and then forwarded to Bob at time T3. Finally, Bob

receives m2 at time T4. If Bob is time-sensitive, he would

have two parameters: the first is Texp; the time at which

he expects to receive the message and the second is Diff ;

the maximum difference he is willing to tolerate between

the actual time of receipt and Texp. Therefore, in the above

scenario, one would expect Bob to time-out and reject m2

as inauthentic if |T4 − Texp| > Diff. Otherwise, if Carol

succeeds in modifying m1 in a timely fashion, i.e. such

that |T4 − Texp| ≤ Diff, then Bob is likely to accept the

message as authentic (if all other non-time related criteria

are satisfied).

Our approach in tackling this problem is formal; it is

based on designing a static analysis for capturing name

substitutions in a version of the π-calculus [18] extended

with the notion of timers [5]. This approach follows from

earlier, well-established, works on security analyses for

mobile systems and cryptographic systems (see [3], [4]).

The results of the analysis are used to define a name

integrity property, which itself forms the basis for defining

a MiM attack property. We demonstrate the applicability of

the analysis in a simple example of a distance bounding

protocol.

2009 Third International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-3668-2/09 $25.00 © 2009 IEEE

DOI 10.1109/SECURWARE.2009.20

81



The rest of the paper is structured as follows. In Section

2, we give an overview of a timed process algebra and

its operational semantics. In Section 2.1, we define a non-

standard semantics for the language and show its soundness

with respect to the operational semantics. An approximation

for the semantics is defined in Section 3, over which a

definition of the MiM property is given in Section 4. Finally,

we show the applicability of the analysis in Section 5 and

conclude the paper in Section 6.

2. TPi: A Process Algebra with Timers

The process algebra we use throughout the paper,

called TPi, is defined according to the following syntax of

processes, P,Q ∈ P , inspired from the calculus of [5]:

P,Q ::=
x〈y〉.P | timert(x(y).P, Q) | P | Q | !P | (νx)P | 0

The syntax corresponds to that of the standard synchronous

π-calculus except for the fact that input actions are placed

within a timer, timert(x(y).P,Q), where t ∈ N represents

time. The input action, x(y).P , can synchronise with suit-

able output actions as long as t > 0. Otherwise, when t = 0,

the timer behaves as Q. Names constitute the set N .

The structural operational semantics of TPi are given

in terms of the structural congruence, ≡, and labelled

transition,
µ

−→, relations as shown in Figure 1. The

definition of ≡ is standard, except for rule (6), which deals

with expired timers. The labels, µ ∈ {
x〈y〉
−→,

x(y)
−→,

x(z)
−→,

τ
−→},

express free and bound outputs, inputs and silent actions,

respectively. Again, most of the rules for
µ

−→ are

straightforward and their explanation can be found

elsewhere [2, §3.2.2] except for rule (14), where a time-

stepping function, ð : P → P , expresses the ticking of

activated timers:

ð(P ) =























timert(x(y).P,Q),
if P = timert+1(x(y).P,Q)

ð(Q) | ð(R), if P = Q | R
(νx)ð(Q), if P = (νx)Q
P, otherwise

2.1. A Name-Substitution Semantics

In this section, we define a non-standard semantics

for TPi such that it is possible to express the meaning

of processes in terms of name substitutions resulting

from message passing (note here that we exclude other

substitutions, such as those due to α-conversions or

renaming of bound names). For example, in:

!((νy)x〈y〉.0) | !timert+1(x(u).0,0)

we would like to have a meaning that captures the set of

substitutions, {y1/u1, y2/u2 . . .}, where yi is a labelled copy

of the fresh name, y, and ui is a labelled instance of the input

parameter, u, assuming that t+1 > 0. (Note: other labelling

schemes are also possible as long as they maintain bound

name uniqueness).

First however, we need to introduce the notion of tags

defined as the set, `, `′ ∈ L. The set L is then used to tag

messages of output actions: x〈y〉.P becomes x〈y`〉.P . This

tagging is performed uniquely, i.e. no two messages will

be assigned the same tag even if the two messages have

the same name. This will help distinguish every message in

the non-standard interpretation. Additionally, we define the

following two functions involving tags:

value of : L → N
tags of : P → ℘(L)

where value of(`) = y signifies that ` was assigned to

the message y and tags of(P ) = {`1, . . . , `n} signifies

the set of tags used in P . Naturally, value of is non-

injective and we sometimes write value of({`, `′ . . .}) to

mean {value of(`), value of(`′) . . .}.

Next, we define the environment, φS : N → ℘(L), such

that ` ∈ φS(x) implies that the message tagged with `
replaces the input parameter, x, at runtime. From φS , a

semantic domain, D⊥ : N → ℘(L), is formed with the

following ordering:

∀φS1, φS2 ∈ D⊥ : φS1 vD⊥
φS2 ⇔ ∀x ∈

N : φS1(x) ⊆ φS2(x)

where the bottom element, ⊥, denotes the null environment,

φS0, which maps every name in N to ∅. From the above

definition of D⊥ then, we can assign a meaning to process P
as a function S([P ]) ρ φS ∈ D⊥, defined over the structure

of P as shown in Figure 2.

In the rules of this semantics, ρ is a multiset of processes

in parallel with the interpreted process along with the

standard {| − |} : P → ℘(P) and ] : ℘(P)× ℘(P) → ℘(P)
operators over ρ. The meaning of ρ is given in (R0) using

the special union, ∪φS
, defined as:

∀x ∈ N : (φS1 ∪φS
φS2)(x) = φS1(x) ∪ φS2(x)

We discuss next a few interesting rules. Communications

are dealt with in rule, (S2), for input actions. The rule uses

the equivalence of two names,
φS

∼ , parameterised by φS to

determine matching channel names. This is defined for any

two names, x and y as:

x
φS

∼ y ⇔
(value of(φS(x)) ∩ value of(φS(y)) 6= ∅) ∨ (x = y)

82



Rules of the ≡ relation:
(1) (P/ ≡, |,0) is a commutative monoid
(2) (νx)0 ≡ 0

(3) (νx)(νy)P ≡ (νy)(νx)P
(4) !P ≡ P |!P
(5) (νx)(P | Q) ≡ (P | (νx)Q) if x /∈ fn(Q)
(6) timer0(x(z).P, Q) ≡ Q

Rules of the
µ

−→ relation:

(7) x〈y〉.P
x〈y〉
−→ P

(8) timert+1(x(z).P, Q)
x(z)
−→ P

(9) P
x〈y〉
−→ Q ⇒ (νy)P

x(y)
−→ Q if x 6= y

(10) P
x〈y〉
−→ P ′, Q

x(z)
−→ Q′ ⇒ P | Q

τ
−→ P ′ | Q′[y/z]

(11) P
x(y)
−→ P ′, Q

x(z)
−→ Q′ ⇒ P | Q

τ
−→ (νy)(P ′ | Q′[y/z])

(12) P
µ

−→ Q ⇒ (νx)P
µ

−→ (νx)Q if x 6= fn(µ)

(13) P
µ

−→ P ′ ⇒ P | Q
µ

−→ P ′ | Q

(14) P
τ

−→ ð(P )

Figure 1. The structural operational semantics of TPi.

(S1) S([x〈y`〉.P ]) ρ φS = φS

(S2) S([timert+1(x(y).P, Q)]) ρ φS = (
⋃

φS

x′〈z`〉.P ′∈ρ: x
φS
∼ x′

R([(
⊎

R∈ρ

{|ð(R)|}) ] {|P |} ] {[P ′]}]) update(φS , y, `)) ∪φS

R([(
⊎

R∈ρ

{|ð(R)|}) ] {|timert(x(y).P, Q)|}]) φS

(S3) S([timer0(x(y).P, Q)]) ρ φS = R([{|Q|} ] ρ]) φS

(S4) S([P | Q]) ρ φS = R([{|P |} ] {|Q|} ] ρ]) φS

(S5) S([!P ]) ρ φS = snd(fix F(0,⊥))

where, F = λfλ(j, φ).f (if φ = R([(
j⊎

i=0

{|(P )σ|}) ] ρ]) φS then j, φ else (j + 1), (R([(
j⊎

i=0

{|(P )σ|}) ] ρ]) φS))

and σ = [bni(P )/bn(P )][tags ofi(P )/tags of(P )], bni(P ) = {xi | x ∈ bn(P )}, tags ofi(P ) = {`i | ` ∈ tags of(P )}
(S6) S([(νn)P ]) ρ φS = R([{|P |} ] ρ]) φS

(S7) S([0]) ρ φS = φS

(R0) R([ρ]) φS =
⋃

φS

P∈ρ

S([P ]) (ρ\{|P |}) φS

Figure 2. The definition of S([P ]) ρ φS .

For each synchronisation, the value of φS is updated with

the tag of the communicated message using the update

operator defined as:

∀φS ∈ D⊥, y ∈ N , ` ∈ L :
update(φS , y, `) = φS [y 7→ φS(y) ∪ {`}]

Rule (S2) also considers the case where no communications

take place. In either case, all active timers are decremented

some using the time-stepping defined in the previous section.

Rule (S5) deals with replicated processes using a fixed-

point calculation of the higher order functional, F . The rule

allows for as many copies of P to be spawned and the

number of each copy is used to subscript its bound names

and tags in order to maintain their uniqueness. As a result,

the interpretation of restricted names in rule (S6) drops the

ν operator in ρ.

The following soundness theorem states that name

substitutions in the structural operational semantics are

captured in the non-standard semantics.

Theorem[Soundness of the non-standard semantics]

∀P,Q, x, y : P
µ

−→
∗

Q[x/y] ⇒ x ∈ value of(φ′
S(y))

where, φ′
S = S([P ]) ρ φS

Proof: The proof is by induction on the rules of

the structural operational semantics in Figure 1. The most

interesting cases are rules (10) and (11), where we need to

show that if a process, P , exhibits a transition, P
x〈y〉
−→P ′, then

this will eventually yield a process, x〈y`〉.P ′′ ∈ ρ during

the non-standard interpretation. The same can be shown for

Q
x(z)
−→Q′ and R

x(y)
−→R′. From rule (S2), we can then show

that P | Q and R | Q will capture substitutions in the φS

environment in each case �

3. An Approximated Semantics

The computation of the non-standard semantics of the

previous section is not guaranteed to terminate due to the

infinite size of D⊥ as a result of the presence of replication

in processes. Therefore, we need to approximate the

meaning of processes by introducing the αk approximation,

which limits the number of copies of fresh names and tags

that can be captured by the semantics.

Definition[The αk-approximation function]

Define αk : (N ∪ L) → (N ] ∪ L]) as follows, where

N ] = N\{xi | i > k} and L] = L\{`i | ` > k}:

83



∀u ∈ (N ∪ L) : αk(u) =

{

uk, if u = ui ∧ i > k
u, otherwise

And we write, αk({u, u′, . . .}), to mean

{αk(u), αk(u′), . . .}. The αk approximation function leads

naturally to the appearance of the abstract environment,

φA : N ] → ℘(L]) and the abstract semantic domain, D]
⊥

with the following ordering:

∀φA1, φA2 ∈ D]
⊥ : φA1 v

D
]
⊥

φA2 ⇔ ∀x ∈

N ] : φA1(x) ⊆ φA2(x)

Based on D]
⊥, we can interpret processes as a new

function, A([P ]) ρ φA ∈ D]
⊥, defined as follows:

A([P ]) ρ φA = let update = updateAαk
in let φS =

φA in S([P ]) ρ φS

which uses the same algorithm for S([P ]) ρ φS defined

in Figure 2 but replacing φS and update with their

abstract siblings. The updateAαk
operator is defined for all

φA ∈ D]
⊥, y ∈ N , ` ∈ L as follows:

updateAαk
(φA, y, `) = φA[αk(y) 7→ φA(αk(y)) ∪ {αk(`)}]

The following termination result can be shown to hold.

Theorem[Termination of the Abstract Semantics]

For any process, P , the computation of A([P ]) {||} ⊥
D

]
⊥

terminates.

Proof: The proof relies on two requirements: First, to

show that D]
⊥ is finite. This is true from the definition of

αk. The second is to show that the abstract meaning of a

process is monotonic with respect to the number of copies

of a replicated process:

R([(
j
⊎

i=0

{|(P )σ|}) ] ρ]) φA v
D

]
⊥

R([(
j+1
⊎

i=0

{|(P )σ|}) ] ρ]) φA

This latter requirement is proved by showing that the extra

copy of P can “only” induce more communications �

4. Man-in-the-Middle Analysis

In our analysis of the MiM attacks, we refer to the usual

finite lattice of security levels, (S,vS ,uS ,tS ,>S ,⊥S),
and based on it define ζ : N → S as a mapping from

names to their security levels. Now, we can define the name

integrity property as follows.

Property[Name integrity]

We say that a name, x, has the integrity

property with respect to a φA environment if

∀n ∈ value of(φA(x)) : ζ(x) v ζ(n) �

The predicate integrity(x, φA) indicates that x upholds

the above property with respect to φA. A MiM attack is

defined as an attack in which the intruder is capable of

breaching the integrity of names of two processes.

Property[Man-in-the-Middle Attack]

A context, C (a process with a hole) succeeds in launching

a MiM attack on two processes, P and Q, if the result of

the abstract interpretation, A([C(P | Q)]) {||} ⊥
D

]
⊥

= φA

proves that, ∃x ∈ bn(P ), y ∈ bn(Q) : ¬(integrity(x, φA) ∨
integrity(y, φA)) �

5. Example: Distance-bounding Protocols

We discuss here the application of our analysis to a

simplified model of the RFID distance-bounding protocol

defined in [11]. The one-way authentication protocol

consists of the following steps between a verifier, Vr, and a

prover, Pr, starting at time, T0:

@T0 : Vr → Pr : NVr

for(i = 1; i ≤ n; inc(i)) {
@Ti : Vr → Pr : Ci

@(Ti + δ) : Pr → Vr : RCi

i }

where n > 0, Ti, δ ∈ N are natural numbers such that Ti

is a point in time and δ is a very short time gap (ideally

Ti+δ < Ti+1). Also, inc : N → N is the increment function,

NVr is a fresh nonce and Ci, RCi

i are challenge values and

their corresponding responses. For the sake of brevity, we

refer the reader for a full description of the protocol to [11,

§3.1]. Here, we give in Figure 3 a non-cryptographic TPi-

based specification of the protocol for the specific case of

n = 3. The specification allows Vr to send a fresh nonce NVr

to Pr. Vr then uses the internal channel x to simulate time

waitings of T1, T2 and T3 since no inputs can be performed

over x and these will time-out. However, their continuations

will output challenges Ci to Pr. Pr itself waits on these

challenges and then replies with the expected responses Ri.
During this protocol, the intruder I is capable of interfering

with all communications over c, since it knows the name

of this channel. The protocol itself is defined as the parallel

composition of the three processes.

Applying the abstract interpretation, A([Prot]) {||} ⊥
D

]
⊥

,

with k = 1, we obtain the following substitutions for

i = 1 . . . n:

Ci′ ∈ value of(φA(ui)) and Ri′ ∈ value of(φA(ri))

Now, assuming that the intruder’s challenges and responses

have lower security levels than the prover’s and verifier’s

input parameters, i.e. ζ(Ci′) v ζ(ui) and ζ(Ri′) v ζ(ri),
then it can be seen that I achieves the MiM property

84



Vr
def
= (ν NVr)(ν x) (c〈NVr〉.timer

T1(x(d1).0, c〈C1〉.
timerδ(c(r1).timerT2(x(d2).0, c〈C2〉.
timerδ(c(r2).timerT3(x(d3).0, c〈C3〉.
timerδ(c(r3).0,0) ),0) ),0) ) )

Pr
def
= timer∞(c(n).timer∞(c(u1).c〈R1〉.timer∞(c(u2).c〈R2〉.

timer∞(c(u3).c〈R3〉.0,0),0),0),0)

I
def
= (ν NI) (timer∞(c(n′).c〈NI〉.

timer∞(c(u1′).c〈C1′〉.timer∞(c(r1′).c〈R1′〉.
timer∞(c(u2′).c〈C2′〉.timer∞(c(r2′).c〈R2′〉.
timer∞(c(u3′).c〈C3′〉.timer∞(c(r3′).c〈R3′〉.0,0),0),0),0),0))

Prot
def
= I | (Vr | Pr)

Figure 3. The definition of the RFID protocol in TPi.

above with respect to ui and ri. This is due mainly to the

promptness with which I sends its challenges and responses

to both the prover and the verifier processes.

5.1. A Note on Modelling the Intruder

One of the benefits of modelling the intruder as any other

process in the specification of the system, rather than for

example hardcoding its behaviour directly into the semantics

of the language, is that it is possible to capture any class of

intruders ranging from the most passive (modelled as the

process 0) to the most general as envisioned by the Dolev-

Yao model [9], [7].

In the previous example, we defined the process I
in a manner sufficient to demonstrate the MiM attack.

However, similar results could have been obtained by a

more general, Dolev-Yao, intruder. This general intruder

could be specified as follows, where
∏

denotes the parallel

composition of multiple processes.:

I
def
= (ν i) (i〈κinit〉 | ! timer∞(i(κ).(

∏

∀x,y∈κ

x〈y〉.i〈κ〉 |
∏

∀x∈κ

timer∞(x(z).i〈κ ∪ {z}〉,0) | (ν net)i〈κ ∪ {net}〉),0)

In this specification, κ denotes a set of names repre-

senting the knowledge of the intruder, (ν net) allows for

the intruder to create fresh data at any time, and i is a

channel used for the intruder’s internal communications.

The initial subprocess, i〈κinit〉, outputs the set of names,

κinit, representing an instantiation of the intruder’s initial

knowledge (in general, κinit = fn(P ), for the analysed

process, P ). The specification then allows the intruder to

build its knowledge, κ, by repeatedly inputting over names

in its knowledge. The inputted name is then passed as part of

the new knowledge to the next instance of the intruder. The

intruder can also perform output actions. These are either

free output actions sending messages over channels already

in κ, or bound output actions that create a copy of the name

net and send it over the internal channel i. This allows the

intruder to learn net without the need to output it first to

external processes. The learning behaviour is interpreted as

the standard union, ∪, over κ.

6. Conclusion and Future Work

We have presented in this paper a static analysis for

detecting MiM attacks in real-time systems using precise

timing. The analysis, designed for a stochastic process alge-

braic language, captures name substitutions occurring among

processes as a result of their communications. The results of

the analysis are then used to define a name integrity property

and a notion of MiM attacks.

There are several directions for expanding this work.

For example, other security properties of protocols with

some notion of time could be investigated, such as the

minimum/maximum speed at which authentication can be

achieved in a real-time system. Also, time denotes cost,

therefore, a slow protocol could be exploited by an intruder

to mount a denial of resources attack [15].

7. Acknowledgements

This work is funded by the EU Framework 7 Project

FP7-214859 CONSEQUENCE (Context-aware Data-centric

Information Sharing) and the EU Framework 7 Integrated

Project FP7-216917 MASTER (Managing Assurance, Secu-

rity and Trust for sERvices).

References

[1] N. Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-in-the-
Middle in Tunnelled Authentication Protocols. In Bruce
Christianson, Bruno Crispo, James A. Malcolm, and Michael
Roe, editors, Security Protocols Workshop, volume 3364 of
Lecture Notes in Computer Science, pages 28–41. Springer,
2003.

[2] B. Aziz. A Static Analysis Framework for Security Properties
in Mobile and Cryptographic Systems. PhD thesis, School of
Computing, Dublin City University, Dublin, Ireland, 2003.

85



[3] Benjamin Aziz and Geoff Hamilton. A privacy analysis for
the π-calculus: The denotational approach. In Proceedings
of the 2nd Workshop on the Specification, Analysis and
Validation for Emerging Technologies, number 94 in Data-
logiske Skrifter, Copenhagen, Denmark, July 2002. Roskilde
University.

[4] Benjamin Aziz, Geoff Hamilton, and David Gray. A static
analysis of cryptographic processes: The denotational ap-
proach. Journal of Logic and Algebraic Programming,
64(2):285–320, August 2005.

[5] Martin Berger and Kohei Honda. The two-phase commitment
protocol in an extended pi-calculus. Electronic Notes in
Theoretical Comp. Science, 39(1), 2000.

[6] Stefan Brands and David Chaum. Distance-bounding pro-
tocols. In Tor Helleseth, editor, Proceedings of EURO-
CRYPT’93, Workshop on the Theory and Application of of
Cryptographic Techniques, volume 765 of Lecture Notes in
Computer Science, pages 344–359, Lofthus, Norway, May
1993. Springer.

[7] Iliano Cervesato. The dolev-yao intruder is the most powerful
attacker. In J. Halpern, editor, Proceedings of the 16th Annual
Symposium on Logic in Computer Science, pages 246–265,
Boston, MA, U.S.A., June 2001. IEEE Computer Society
Press.

[8] Jolyon Clulow, Gerhard P. Hancke, Markus G. Kuhn, and
Tyler Moore. So near and yet so far: Distance-bounding
attacks in wireless networks. In Levente Buttyán, Virgil D.
Gligor, and Dirk Westhoff, editors, ESAS, volume 4357 of
Lecture Notes in Computer Science, pages 83–97. Springer,
2006.

[9] Danny Dolev and A. Yao. On the security of public key
protocols. In Proceedings of the 22nd Annual Symposium on
Foundations of Computer Science, pages 350–357, October
1981.

[10] Ratan K. Guha, Zeeshan Furqan, and Shahabuddin Muham-
mad. Discovering man-in-the-middle attacks in authentication
protocols. Military Communications Conference, 2007. MIL-
COM 2007. IEEE, pages 1–7, Oct. 2007.

[11] Gerhard P. Hancke and Markus G. Kuhn. An RFID distance
bounding protocol. In Proceedings of the First International
Conference on Security and Privacy for Emerging Areas in
Communications Networks, pages 67–73, Athens, Greece,
September 2005. ACM Press.

[12] Gerhard P. Hancke and Markus G. Kuhn. Attacks on time-of-
flight distance bounding channels. In WiSec ’08: Proceedings
of the first ACM conference on Wireless network security,
pages 194–202, New York, NY, USA, 2008. ACM.

[13] Chong Hee Kim, Gildas Avoine, Franois Koeune, François-
Xavier Standaert, and Olivier Pereira. The Swiss-Knife
RFID Distance Bounding Protocol. In The 11th International
Conference on Information Security and Cryptology - ICISC
2008, pages 98–115. Springer-Verlag, 2008.

[14] Dennis Kügler. ”Man in the Middle” Attacks on Bluetooth. In
Rebecca N. Wright, editor, Financial Cryptography, volume
2742 of Lecture Notes in Computer Science, pages 149–161.
Springer, 2003.

[15] Catherine Meadows. A cost-based framework for analysis of
denial of service networks. Journal of Computer Security,
9(1/2):143–164, 2001.

[16] Catherine Meadows, Radha Poovendran, Dusko Pavlovic,
LiWu Chang, and Paul Syverson. Distance bounding pro-
tocols: Authentication logic analysis and collusion attacks.
Advances in Information Security: Secure Localization and
Time Synchronization for Wireless Sensor and Ad Hoc Net-
works, 30, 2006.

[17] Ulrike Meyer and Susanne Wetzel. A man-in-the-middle
attack on UMTS. In WiSe ’04: Proceedings of the 3rd ACM
workshop on Wireless security, pages 90–97, New York, NY,
USA, 2004. ACM.

[18] Robin Milner, Joachim Parrow, and David Walker. A cal-
culus of mobile processes (parts I & II). Information and
Computation, 100(1):1–77, September 1992.

[19] Ventzislav Nikov and Marc Vauclair. Yet another secure
distance-bounding protocol. Cryptology ePrint Archive, Re-
port 2008/319, 2008. http://eprint.iacr.org/.

[20] Dimitrios N. Serpanos and Richard J. Lipton. Defense against
man-in-the-middle attack in client-server systems. In ISCC,
pages 9–14. IEEE Computer Society, 2001.

[21] Vitaly Shmatikov and Ming-Hsiu Wang. Secure verification
of location claims with simultaneous distance modification.
In Iliano Cervesato, editor, ASIAN, volume 4846 of Lecture
Notes in Computer Science, pages 181–195. Springer, 2007.

[22] Dave Singelée and Bart Preneel. Location verification using
secure distance bounding protocols. In Proceedings of the
2005 IEEE International Workshop on Wireless and Sensor
Networks Security, pages 834–840, Washington DC, USA,
November 2005. IEEE Computer Society.

[23] Yu-Ju Tu and Selwyn Piramuthu. RFID Distance Bounding
Protocols. In First International EURASIP Workshop on
RFID Technology, Vienna, Austria, September 2007.

[24] Haidong Xia and José Carlos Brustoloni. Hardening web
browsers against man-in-the-middle and eavesdropping at-
tacks. In WWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 489–498, New York,
NY, USA, 2005. ACM.

86


