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This paper provides a methodology for detecting management fraud using basic financial data. The method-
ology is based on support vector machines. An important aspect therein is a kernel that increases the power

of the learning machine by allowing an implicit and generally nonlinear mapping of points, usually into a
higher dimensional feature space. A kernel specific to the domain of finance is developed. This financial kernel
constructs features shown in prior research to be helpful in detecting management fraud. A large empirical
data set was collected, which included quantitative financial attributes for fraudulent and nonfraudulent public
companies. Support vector machines using the financial kernel correctly labeled 80% of the fraudulent cases
and 90.6% of the nonfraudulent cases on a holdout set. Furthermore, we replicate other leading fraud research
studies using our data and find that our method has the highest accuracy on fraudulent cases and compet-
itive accuracy on nonfraudulent cases. The results validate the financial kernel together with support vector
machines as a useful method for discriminating between fraudulent and nonfraudulent companies using only
publicly available quantitative financial attributes. The results also show that the methodology has predictive
value because, using only historical data, it was able to distinguish fraudulent from nonfraudulent companies
in subsequent years.
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1. Introduction and Motivation
Statement on Auditing Standards (SAS) 99, “Consid-
eration of Fraud in a Financial Statement Audit”
(AICPA 2002), establishes external auditors’ responsi-
bility to plan and perform audits to provide a reason-
able assurance that the audited financial statements
are free of material fraud. Recent events highlight
that failing to detect fraudulent financial reporting
not only exposes the audit firm to adverse legal
consequences, but also exposes the audit profession
to increased public and governmental scrutiny. This
has led to fundamental changes in the structure of
the public accounting industry and government over-
sight of the accounting profession (e.g., consider the
Sarbanes-Oxley Act of 2002, the creation of the Public
Company Accounting Oversight Board in 2002, and
subsequent actions of the New York Stock Exchange
(2003)). Research that helps auditors better assess the
risk of material misstatement during their planning
phase may help reduce instances of fraudulent report-
ing. Such research is of interest to academicians, stan-
dard setters, regulators, audit firms, and investors.
Current research in accounting has examined meth-

ods to assess the risk of fraudulent financial reporting.

The methodologies are varied and sometimes com-
bine behavioral and quantitative factors. For exam-
ple, Loebbecke et al. (1989) compiled an extensive list
of company characteristics associated with fraudulent
reporting (“red flags”). Hansen et al. (1996) and Bell
and Carcello (2000) utilized red flag data to develop
qualitative response and logistic regression models,
respectively. These studies rely on information that
can only be gathered via close personal contact, such
as interviews. Other methods rely only on publicly-
available data, including quantitative financial vari-
ables and indicator variables, such as auditor tenure
(Green and Choi 1997, Summers and Sweeney 1998,
Beneish 1999, Dechow et al. 2009).
This paper proposes a methodology to aid in

detecting fraudulent financial reporting by utilizing
only basic and publicly available financial data. Our
approach combines aspects of the fraud assessment
research in accounting with computational methods
and theory used in machine learning/datamining.
We gather a sample of 205 fraudulent companies
using accounting and auditing enforcement releases
(AAERs). We match our fraud sample with 6,427
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nonfraudulent companies. Using these data, we val-
idate our approach. We also replicate the results of
other leading fraud detection studies using our data
and compare the outcomes. Furthermore, we discuss
which variables were important in the resulting out-
put to gather new insights for auditors from our pro-
posed methodology. The resulting decision aid has
the potential to complement the unaided auditor risk
assessments envisioned in SAS 99.
Machine learning uses computational techniques to

automate the discovery of patterns that may be diffi-
cult to find otherwise. Machine learning methodolo-
gies have been used to determine financial statement
validity and the likelihood of bankruptcy and credit
worthiness (for example, Green and Choi 1997, Tam
and Kiang 1992). There are many models commonly
used in machine learning such as neural networks
(NNs) (Haykin 1998), linear discriminant functions
(Fisher 1936), logit functions (Agresti 1990), and deci-
sion trees (Quinlan 1996). Attempts have been made
to recognize patterns in fraudulent companies using
neural networks (Fanning et al. 1995, Green and Choi
1997), probit functions (Beneish 1999), logit functions
(Summers and Sweeney 1998, Bell and Carcello 2000,
Dechow et al. 2009), and expert systems (Ragothaman
et al. 1995). These studies utilized publicly available
quantitative data from financial statements and, in
some cases, surveys from auditors.
What distinguishes our proposed approach from

prior attempts to understand and aid fraud-risk
assessments is our use of recent advances in machine
learning theory, both through statistical learning the-
ory that addresses generalization errors (Vapnik 1995)
and by utilizing methods that facilitate incorporat-
ing domain knowledge (with a nonlinear mapping
called a kernel) while the learning task is undertaken.
The kernel we construct (which we call the finan-
cial kernel (FK)) is crafted to map observable finan-
cial attributes to nonlinear features shown effective in
prior research. We then use our financial kernel with
a powerful machine learning technique, called sup-
port vector machines (SVMs), that implements statis-
tical learning theory. The methodology we create can
be generalized to other accounting issues, such as the
early detection of bankruptcy, prediction of restate-
ments, early detection of increased market value, and
general industry stability. For this study, we focus on
the management fraud problem.
In the following section we review fraud detection

literature and summarize key concepts and results.
Section 3 briefly reviews support vector machines
and statistical learning theory. Section 4 builds on
§3, explaining the concept of a kernel, the mecha-
nism used to incorporate domain-specific knowledge
in support vector machines. In §5, we develop our

financial kernel. In §6, we explain the data gather-
ing process, the testing methodology, and prediction
results of the FK with SVM on an empirical data set
that includes data on fraudulent and nonfraudulent
companies (we will often abbreviate the term fraud-
ulent with “fraud” and nonfraudulent with “non-
fraud”). An analysis of the results is given as well.
Section 7 concludes this paper and gives directions
for future research.

2. Fraud Detection Literature
A common thread in previous related literature is an
attempt to find indicators of potential fraud, some-
times called red flags. This literature is generally tar-
geted at the auditing profession because most red
flag studies (Loebbecke et al. 1989, Pincus 1989, Asare
and Wright 2004) focus on information that can only
be determined at close contact. A key result was
given by Loebbecke et al. (1989). They partitioned a
large set of indicators into three main components:
conditions, motivation, and attitude. They found in
86% of the fraud cases that at least one factor from
each component was present, indicating that it is
extremely rare for fraud to exist without all three com-
ponents existing simultaneously. Hackenbrack (1993)
found that the relative influence of such red flags on
auditor fraud-risk assessments varies systematically
with auditor experience. This subjectivity affects the
red flag decision and ultimately the assessed risk of
fraud. Pincus (1989) and Asare and Wright (2004) find
that auditors using a standardized red flag program
are less successful at correctly identifying fraud risk.
These experimental studies show that there are some
problems with the red flag checklist as a fraud detec-
tion mechanism.
Bell and Carcello (2000) developed a logistic regres-

sion model to estimate the likelihood of fraudulent
financial reporting using the red flag data from the
Loebbecke et al. (1989) study. The model scored higher
than auditing professionals using their own judgment
for the detection of fraud and was able to achieve
81% accuracy predicting fraud. The effectiveness of
this method is limited because inside information is
needed to create the red flag checklist and subjective
evaluations of the resulting information are needed.
Hansen et al. (1996) developed a generalized quali-

tative-response model to analyze management fraud.
Over 20 trials they achieved an 89.3% predictive accu-
racy when the costs were assumed to be symmet-
ric between fraudulent and nonfraudulent companies.
After adjusting the model to allow for asymmetric
costs, the overall accuracy dropped to 85.5%; how-
ever, the per-class error for fraudulent companies
decreased markedly. The accuracy of this method val-
idates the qualitative response model as a mechanism
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for detecting fraud. As in Bell and Carcello (2000)
and Loebbecke et al. (1989), the red flag checklist of
inside information is the source of the variables. This
research elucidated the importance of per-class accu-
racy in fraud detection research. Minimizing the error
on the fraudulent class makes the model less likely
to miss an actual fraudulent company, possibly at
the expense of falsely labeling a nonfraudulent com-
pany as fraudulent. Given the high cost of missing
a true fraudulent company, asymmetric costs may be
preferable.
Algorithmic approaches tend to focus on the detec-

tion of fraud based on a mathematical function that
includes attributes determined to be salient. Because
there are no formal theoretical indicators of fraud
(Green and Choi 1997), the attributes are usually cho-
sen with some expert judgment, but on an ad hoc
basis. Green and Choi (1997) used NNs to identify
fraud using publicly available data. They trained the
network on five ratios that were previously identi-
fied in auditor risk assessments for the revenue col-
lection cycle. The model predicted fraud with 74.03%
accuracy on a holdout sample. Although the results
showed promise, the sample size was small (46 fraud,
49 nonfraud). Also, the neural network has a major
limitation as a black box approach because examin-
ing the function that determines the cutoff between
fraudulent and nonfraudulent cases is nontrivial.
Summers and Sweeney (1998) developed a cas-

caded logit model that considers financial variables
together with variables that indicate insider trading
of company shares. The insider trading cues are used
to help discriminate fraudulent from nonfraudulent
firms. The authors developed a matched sample of
51 fraudulent firms and 51 nonfraudulent firms, and
achieved 72% accuracy in predicting fraud cases. The
main weakness was the lack of a holdout sample. The
results given are for the training set only. It is impos-
sible to predict how well this model would generalize
without some out-of-sample validation.
Another thread in the literature is to use statisti-

cal methods, such as probit or logistic regression, to
predict fraud using publicly available data in a sam-
ple that closely mimics the relative sizes of the two
classes of companies. Beneish (1999) developed a pro-
bit model and a weighted exogenous sampling max-
imum likelihood (WESML) model using eight quan-
titative financial variables to predict fraud. Five of
the eight variables involved year-over-year changes
(an important component of the financial kernel
explained in §5). The study attempted to approxi-
mate the relative sizes of the two classes of compa-
nies with a skewed data set consisting of 50 fraudu-
lent companies and 1,758 nonfraudulent companies.
The probit model achieved 76% accuracy on manip-
ulators in the estimation sample and 56.1% accuracy

in the holdout sample. Beneish (1999) developed a
method of model validation, showing how the pro-
bit and WESML models would compare to a naïve
strategy. We follow this method of validation in §6.3.
Dechow et al. (2009) created an extensive database

of fraud firms (680) based on AAERs spanning from
1982 to 2005. This study examines the characteristics of
firms that manipulate financial results and compares
them to nonmanipulating firms. Several dimensions
of publicly available data are considered, including
financial variables, market-related variables, and off-
balance sheet and other nonfinancial variables. The
characteristics that tend to best distinguish between
fraud and nonfraud firms are accrual quality measures
and firm performance measures, operating leases,
abnormal changes in employees, order backlog, prior
stock price performance, the earnings-to-price ratio,
and the amount of new financing. The variables were
then used in a logit model to test prediction accuracy.
The highest accuracy achieved on a sample of 29,159
firms (133 manipulators) was 71.53% overall. The best
Type I error1 for the prediction models of Dechow
et al. (2009) was 35.48%. We take the variables that
are used in Dechow et al. (2009) along with variables
from Beneish (1999), Summers and Sweeney (1998),
and Green and Choi (1997) and apply our methodol-
ogy with them. The goal of our research is to create
the best overall prediction while at the same time con-
trolling for Type I error.
Methods of determining generalization ability are

lacking in some fraud detection research (e.g., in
Summers and Sweeney 1998). It is one thing to show
that a model is accurate when tested on the same set
it is trained on, but this is seldom indicative of per-
formance on out-of-sample cases. Tsai and Koehler
(1993) tested the robustness of the results of several
papers that used inductive learning and warned that
the true accuracy of concepts learned by induction
may not be revealed in studies of small sample size.
There is a trade-off between the number of variables
that are used for a model and the model’s ability to
correctly predict in the future. This concern is one that
is often leveled against induction methods. In the next
section we provide an overview of statistical learning
theory and support vector machines and show how
this methodology deals with this generalization issue.

3. Statistical Learning Theory and
Support Vector Machines

Most machine learning/datamining methods use a
training set of data having known positive and

1 The Type I error as defined in this paper is (number of fraud firms
classified as nonfraud firms)/(total fraud firms). The Type II error is
defined as (number of nonfraud firms classified as fraud firms)/(total
nonfraud firms). This definition was also used in Beneish (1999).
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negative examples of the concept to be learned. This
is called supervised learning. For example, if we are
trying to learn how to discriminate between compa-
nies likely to default on loans from those unlikely
to default, we would collect past cases of default-
ing and nondefaulting companies as done in studies
such as Abbot et al. (2004) and Messier and Hansen
(1988). Such a training set consists of � observations
and a classification for each; that is, the training set
S = ��u1�y1�� � � � � �u�� y���, where ui ∈ X ⊆ �n repre-
sent the ith observation with each having n attributes
(the independent variables), X is the instance space
of all possible companies, and yi ∈ �−1�+1� is the
label representing negative and positive examples of
the concept, respectively. (For the concept “companies
likely to default on loans,” a label of +1 means the
company instance is a company likely to default on
loans.) Unless otherwise stated, a vector is denoted by
a bold, lowercase letter. The superscript on the vector
denotes the instance. An unbolded, subscripted, low-
ercase letter refers to the components of the vector. The
subscript represents the index of the component. The
inner product of two vectors, x and y, is represented
by �x�y�. In §5 we add a second subscript for the year
(or period). Finally, x′ is the transpose of vector x.
Typical supervised learning approaches using, for

example, neural networks or logit, start with a train-
ing set and best fit the training data given the con-
cept structure chosen (a neural network or a logit
function, respectively). This goal is known as empir-
ical risk minimization—it focuses solely on reducing
the error over the training set. As is well known,
empirical risk minimization often results in overfit-
ting (Eisenbeis 1987); that is, for small sample sizes, a
small empirical risk does not guarantee a small over-
all risk of error over all possible cases in the instance
space X. To ameliorate this, the data set is often bro-
ken into two (or more) sets where part of the cases
are used for training to fit a function and the remain-
ing part, the holdout, to test its ability to predict on
a data set not used for fitting. These approaches help
detect overfitting but do not eliminate it.

3.1. Statistical Learning Theory
Statistical learning theory (Vapnik 1995) addresses
the overfitting problem formally and directly. Vapnik
shows that learning a function from examples can be
formulated as minimizing the overall risk functional.
This risk functional is the expected loss over all the
instance space when using a given induced function.
The expected loss involves an unknown sampling dis-
tribution. Vapnik (1995) handled this by first develop-
ing a bound on the expectation that is tight for some
distributions, but valid for all. Second, he proposed

the structural risk minimization principle for induc-
tion that focuses on minimizing this bound. Minimiz-
ing this bound has the practical effect of trading off
empirical risk with generalization ability.
Support vector machines are a methodology that

employs this process. In the next section we briefly
touch on the more salient features of SVM methodol-
ogy. A nice coverage can be found in Cristianini and
Shawe-Taylor (2000).

3.2. Support Vector Machines
Support vector machines determine a hyperplane
�x	 �w�x� + b = 0� in the feature space that best sep-
arates positive from negative examples. A feature
space results from mapping the observable attributes
to properties (i.e., features) that might better relate to
the problem at hand. For example, given attributes
price and earnings, the price-to-earnings (PE) ratio
feature is easily constructed. For cases where the con-
cepts are not linear, attributes can be easily mapped
to nonlinear features using a kernel (we discuss this
in more detail in §4).
Vapnik (1995) has shown that his structural risk

minimization principle can be attained by SVMs. The
following is the primal formulation (without a kernel)
for a two-norm version of SVMs:

min

i≥0

1
2�w�w�+

�∑
i=1

Cyi

i s.t. yi��w�ui�+b�≥1−
i�

i = 1� � � � � ��

The first term of the objective gives a measure of the
complexity of the classification function, whereas
the second term measures the empirical error over
the training set. Vapnik’s (1995) bound is a sum
of these two terms. Here 
i is the ith slack vari-
able, which allows for a classification error for the
ith sample, thus allowing misclassifications on the
training set; �w�w� is the squared two-norm of w;
parameters C+1 and C−1 are trade-offs between empir-
ical errors 
i and generalization �w�w� appearing in
Vapnick’s bound; and the constraints try to put posi-
tive cases at a positive distance from the hyperplane
and negative cases on the other side. When the data
are linearly separable, the inclusion of the 
 slack
variables is unnecessary. Because this two-norm prob-
lem is a convex quadratic program, SVM learning is
theoretically guaranteed to find an optimal solution.
Neural networks, decision trees, etc., do not carry
this guarantee and have local optima leading to a
plethora of heuristic approaches to find acceptable
results. SVMs also scale up to very large data sets (Yu
et al. 2003) and have been applied to problems involv-
ing text data (Joachims 1998), pictures (Shawe-Taylor
and Cristianini 2004), etc.
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This problem has a useful dual formulation. The
dual formulation is

max
0≤�i≤Cyi

�∑
i=1

�i − 1
2

�∑
i� j=1

yiyj�i�j�ui�uj�

s.t.
�∑

i=1

yi�i = 0�

(1)

where �i are the dual variables (Cristianini and Shawe-
Taylor 2000). The dual solution is useful because the
explicit usage of the data points is collapsed into a
matrix of inner products, thus hiding the size of these
vectors. When nonlinear mappings to features using
kernels are employed, it is not uncommon for there
to be an infinite number of features. The dual “hides”
these infinities. The dual also allows for a generaliza-
tion to kernel mappings, as we will discuss.

4. Kernel Methods
A kernel is an implicit mapping � of an input
attribute space X onto a (usually higher dimen-
sional) feature space F . The kernel often improves
the computational power of the learning machine by
implicitly allowing combinations and functions of the
original input attributes forming features, hence cre-
ating a nonlinear decision surface. Kernels provide
a mechanism that helps to unravel spaces not lin-
early separable to ones that are potentially linearly
separable. For example, if only price and earnings
are inputs, a PE ratio would not be explicitly consid-
ered by a linear learning mechanism. A kernel, prop-
erly chosen, would allow many different relationships
between variables to be simultaneously examined,
presumably including price divided by earnings. The
PE measure is a “feature” of the input variables. There
are many powerful, generic kernels (Cristianini and
Shawe-Taylor 2000, Genton 2001), but kernels can
also be constructed to represent domain knowledge
about a specific application area. Research suggests
that kernels that are constructed with the help of
application-specific information tend to have better
results (Cristianini and Shawe-Taylor 2000). In line
with this, we develop a financial kernel that allows for
features usually observed in finance-related learning
tasks. One type of feature incorporates ratios of input
variables. Another common type of financial feature
includes changes in ratios over time.
The kernel matrix is a matrix with entries Kij =

���ui����uj ��, where � is a mapping �	 X → �m, and
ui�uj ∈ X. Often the dimension of the feature space,
m, is much larger than the attribute space, and may
even be infinite. The objective of the dual formula-
tion expressed in the objective of Equation (1) can be
generalized to allow the usage of kernels as follows:

max
�∑

i� j=1

yiyj�i�jK�ui�uj �� (2)

The kernel function is an inner product between fea-
ture vectors and is denoted as K�u�v� = ���u����v��,
where u�v ∈ X. The feature vectors do not need
to be explicitly calculated because the kernel func-
tion creates a mapping implicitly. The SVM formu-
lation requires that a kernel function be symmetric
(i.e., K�u�v� = K�v�u�), be positive semidefinite, and
satisfy the Cauchy–Schwarz inequality (Cristianini
and Shawe-Taylor 2000).
There are many generic kernels in existence, and

the list is ever growing (Cristianini et al. 2002,
Joachims 1998, Rüping 2001). The polynomial kernel
can be used to illustrate the nature and expressive
power of these functions. The polynomial kernel is
defined as �K�u�v� = �K�u�v� + R�d, where K�u�v� is
the normal inner product �u�v� kernel, d is a pos-
itive integer, and R is fixed. Consider two obser-
vations u = �u1�u2�u3�u4�

′ and v = �v1�v2�v3�v4�
′

with d = 1 and R = 0. Then K�u�v� = u1v1 + u2v2 +
u3v3 + u4v4 and, with R = 0 and d = 2, �K�u�v� =
�u1v1 + u2v2 + u3v3 + u4v4�

2. The kernel K�u�v� has
four features and �K�u�v� has 10 features, u2

1, u2
2, u2

3,
u2
4, u1u2, u1u3, u1u4, u2u3, u2u4, and u3u4. An alterna-

tive to using a kernel is to explicitly create all features
as direct input to the SVM. For example, to emulate
�K�u�v�, one would compute all 10 features for every
observation and use these as input.
A compelling property of kernel methods is the

ability to form new kernels from existing kernels.
Cristianini and Shawe-Taylor (2000) show that the set
of kernel functions are closed under addition, multi-
plication, and scaling by a positive constant. In the
next section we use such operators to create our finan-
cial kernel (while relegating a majority of the technical
details to the appendix).

5. The Financial Kernel
Defining a domain-specific kernel for financial appli-
cations entails looking to the finance and account-
ing literature to see which attributes and features
are often utilized for classification. Most such anal-
yses look at ratios of items on the financial state-
ments. Models for earnings quality in accounting
utilize ratios (e.g., Francis et al. 2005). Loebbecke et al.
(1989) used financial ratios as part of their manage-
ment fraud model as well. All of the studies detailed
in §2 used financial ratios.
Also, changes in ratios over time are important fea-

tures found in this domain. McNichols and Wilson
(1988) used year-over-year changes in key account
values to help determine earnings management.
Francis et al. (2005) utilized year-over-year changes
extensively in their study on earnings quality. Beneish
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Table 1 Two Hypothetical Firms

A1 A2 L1 L2

Firm 1 10 11 12 13
Firm 2 4 6 8 10

(1999) utilized year-over-year changes to help deter-
mine management fraud. Year-over-year changes in
ratios are captured by the function

�ui2/uj2 − ui1/uj1�

ui2/uj2
= 1− ui1uj2

uj1ui2
�

where i� j = 1� � � � �n are the attribute numbers with
i < j . The second subscript represents the year (1 or 2).
Note, the feature of relevance is ui1uj2/uj1ui2 because
the constants and signs will be collapsed into the
intercept of the linear discriminant function that SVM
will induce. We denote the financial kernel as KF �u�v�
and give its detailed development in the appendix.
Briefly, it computes all ratios of input attributes as
well as year-over-year ratios.
The FK produces 3n�n − 1� features starting with n

attributes. The features can be broken down into six
feature types. These six are shown below and repre-
sent intrayear ratios as well as year-over-year changes
in ratios:

��u� =
(

ui1

uj1
�

uj1

ui1
�

uj2

ui2
�

ui2

uj2
�

ui1uj2

uj1ui2
�

uj1ui2

ui1uj2

)′
�

i� j = 1� � � � �n� i < j�

A simple example illustrates this. Assume we have
two financial attributes, accounts receivable �A� and
current liabilities �L�, observed over two years. We can
represent an observation using two attributes over two
years, A1, A2, L1, and L2, respectively. Assume now
that we have the following data for two firms.
Attribute vectors are u′ = �10�11�12�13� and v′ =

�4�6�8�10� corresponding to each firm. Our kernel
implicitly computes the following mapping for each
firm:

��u� =
(

a1

l1
�

l1
a1

�
l2
a2

�
a2

l2
�

a1l2
a2l1

�
l1a2

l2a1

)′
�

where the lowercase letters mean the value observed.
Consequently, Table 1 gets mapped to the features
shown in Table 2.

Table 2 Feature Values Induced by the Financial Kernel

a1/l1 l1/a1 l2/a2 a2/l2 a1l2/�a2l1� l1a2/�l2a1�

Firm 1 10/12 12/10 13/11 11/13 [(10)(13)]/ [(11)(12)]/
[(11)(12)] [(10)(13)]

Firm 2 4/8 8/4 10/6 6/10 [(4)(10)]/ [(6)(8)]/
[(6)(8)] [(4)(10)]

In general, for each year we get all ratios of the
form A/L and L/A and year-over-year changes of the
form A1L2/L1A2 and A2L1/L2A1. Using this kernel, we
do not need to create this explicit mapping (i.e., the
data in Table 2). This is accomplished by replacing
�ui�uj� in Equation (1) with KF �ui�uj �, or replacing
K�ui�uj � in Equation (2) with KF �ui�uj �.
In the next section we use the SVM with our finan-

cial kernel and apply it to a data set containing fraud-
ulent companies.

6. Data, Testing Methodology, and
Results

6.1. Data and Attribute Selection
Fraudulent firms were found using the Securities and
Exchange Commission’s (SEC’s) AAERs (SEC 1995).
The first AAER available was #1,190 (issued Octo-
ber 28, 1999) and the last was #2,459 (issued July
11, 2006). There were a total of 1,157 AAERs in the
initial sample. Companies merely making mistakes
or errors were removed from the data set (fraud
requires intention). The SEC rules that apply to fraud
are Rule 17(a) from the Securities Exchange Act of
1933, and Rules 13(b)(5), 13b2-1, and 10b-5 from the
Securities Exchange Act of 1934. Each of the above
statutes relate to fraud as can be ascertained by
their descriptions.2 Eight hundred and ninety-four
AAERs included a breach of at least one of the afore-
mentioned SEC rules. Each AAER is for a single
company-fraud instance. Conversely, each company-
fraud instance can include many AAERs. For each of
these, we extracted the company name and the years
in which the fraud occurred. We limited our data set
to fraud that affected the annual financial statements
(10-K). Cases that could not be found in Compus-
tat were dropped. Cases that do not show up on a
financial statement via restatement were also dropped
(these include such cases as bribery of a foreign offi-
cial or fraud on a registration statement). We verified
that our data set included only companies that had
fraudulent financial statements by making sure that
there was a restatement for each fraud company-year.
Our final data set included a total of 122 fraudu-

lent firms. Fraud can span a number of years, so we
treated each year of fraud as a company-year, ending
up with a data set of 205 fraud company-years span-
ning the years of 1991–2003. We gathered two years of
data for each company-year: one for the year of fraud
and one for the year prior to fraud.
One-to-one matches (of fraudulent and nonfraud-

ulent firms) are common in the prediction literature
(Green and Choi 1997, Summers and Sweeney 1998).

2 Descriptions can be found at http://www.sec.gov/about/laws/
sa33.pdf and http://www.sec.gov/about/laws/sea34.pdf
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However, given that fraud occurs less than 1% of the
time (Beneish 1999), a one-to-one match is far from
mirroring reality. We set out to create a data set that is
as close to the observed relative frequencies as possi-
ble. Therefore, we only limit our matching criteria by
four-digit Standard Industrial Classification (SIC) code
and year, allowing there to be many “nonfraud” firms
to each fraud firm. We removed any company-year
from the nonfraud data set that later restated (includ-
ing firms that made an error or mistake). The non-
fraud data set included a total of 6,427 nonfraudulent
company-years. The ratio of fraud to nonfraud firms
in our sample is approximately 1:31, or about 3%.3

There are no theoretically accepted fraud attributes
(Green and Choi 1997). The difficulty in finding fraud
attributes is based on the fact that fraud perpetrators
are trying to conceal their moves and have a wide
variety of financial attributes to work with. Thus, it
is difficult to point to a simple set of attributes that
encapsulate fraudulent behavior. However, the liter-
ature is rich with attempts to use publicly available
data to detect fraud. These works generally focus
on determining the types of attributes that are cor-
related with fraud. These attributes can be simple
figures from a financial statement or complex combi-
nations of figures, including temporal changes. Uti-
lizing the work of Beneish (1999), Dechow et al.
(2009), Summers and Sweeney (1998), and Green and
Choi (1997), we gathered a set of 40 attributes that
have been used previously in leading publications or
in current working papers aimed at fraud detection.
These attributes are shown in Table 3 together with
their Compustat number (Standard and Poor’s 2005)
and the paper(s) from which they were referenced.
Every company that the SEC determines to have

a financial statement fraud must restate. We gath-
ered the restatement data for the 205 fraud company-
years. Table 4 describes our data. Specifically, we
report the mean, median, maximum, and minimum
values of restatement for the major financial statement
accounts. The column labeled “# of firms” shows
the number of fraudulent firm-years that restated
each account. The restated value for each account
represents the firm’s adjustment made to correct its
accounts. Sales were restated in over half of the fraud
cases (106/205). Earnings per Share (99/205), Retained
Earnings (121/205), Stockholders Equity (97/205), and
Net Income (95/205) were also frequently restated.
The median restatement value for all accounts was
zero. The largest mean among the restated values
belonged to Long-Term Debt ($1,068,460). Some mean
values fall in an unexpected direction, such as Inter-
est Expense ($ − 72�960), Working Capital ($127,090)

3 During preprocessing, firms are lost because of missing values.
The final sample numbers are reported in §6.2.

Table 3 List of Variables (Attributes)

Variable Reference

Cash and Short-Term Investments
(DATA1)

Beneish (1999), Dechow et al. (2009)

Receivables, Total (DATA2) Beneish (1999), Dechow et al. (2009)
Inventories, Total (DATA3) Dechow et al. (2009)
Current Assets, Total ∗ (DATA4) Beneish (1999), Dechow et al. (2009)
Current Liabilities, Total ∗ (DATA5) Beneish (1999), Dechow et al. (2009)
Assets, Total (DATA6) Summers and Sweeney (1998),

Dechow et al. (2009)
Property, Plant, and Equipment ∗

(DATA7)
Beneish (1999)

Long-Term Debt, Total (DATA9) Beneish (1999), Dechow et al. (2009)
Sales (DATA12) Summers and Sweeney (1998),

Dechow et al. (2009)
Depreciation and Amortization

(DATA14)
Beneish (1999), Dechow et al. (2009)

Interest Expense ∗ (DATA15) Summer and Sweeney (1998)
Income Taxes (DATA16) Summers and Sweeney (1998)
Income Before Extraordinary Items

(DATA18)
Dechow et al. (2009)

Price, Calendar Year, Close (DATA24) Summers and Sweeney (1998)
Common Shares Outstanding

(DATA25)
Dechow et al. (2009)

Investments and Advances, Other
(DATA32)

Dechow et al. (2009)

Debt in Current Liabilities (DATA34) Beneish (1999), Dechow et al. (2009)
Retained Earnings (DATA36) Summers and Sweeney (1998)
Cost of Goods Sold (DATA41) Beneish (1999), Dechow et al. (2009)
Net Income (DATA172) (added as a normalizing factor

because we use ratios and
year-over-year changes in ratios)

Common Equity, Total (DATA60) Dechow et al. (2009)
Interest Income ∗ (DATA62) Summers and Sweeney (1998)
Receivables, Estimated Doubtful ∗

(DATA67)
Green and Choi (1997)

Income Taxes Payable ∗ (DATA71) Beneish (1999)
Rental Commitments, Min,

1st year ∗ (DATA96)
Dechow et al. (2009)

Order Backlog ∗ (DATA98) Dechow et al. (2009)
Depreciation Expense (DATA103) Beneish (1999)
Preferred Stock, Carrying Value

(DATA130)
Dechow et al. (2009)

Rental Commitments, Min,
2nd year ∗ (DATA164)

Dechow et al. (2009)

Rental Commitments, Min,
3rd year ∗ (DATA165)

Dechow et al. (2009)

Rental Commitments, Min,
4th year ∗ (DATA166)

Dechow et al. (2009)

Rental Commitments, Min,
5th year ∗ (DATA167)

Dechow et al. (2009)

Deferred Taxes (Income Account)∗

(DATA50)
Dechow et al. (2009)

Liabilities, Total (DATA181) Summers and Sweeney (1998)
Selling, General and Admin.

Expenses (DATA189)
Beneish (1999)

Short-Term Investments (DATA193) Dechow et al. (2009)
Price, Fiscal Year, Close (DATA199) Dechow et al. (2009)
Financing Activities, Net CF ∗

(DATA313)
Dechow et al. (2009)

Pension Plans, Anticipated LT
ROR on PA∗ (DATA336)

Dechow et al. (2009)

Employees (DATA29)∗ Dechow et al. (2009)

Note. CF, Cash Flow; LT, Long-Term; ROR, Rate of Return; PA, Plan Assets.
∗Deleted from final sample because of >25% missing values.

and Total Assets ($108,780). The mean restated value
of Interest Expense would have been positive, if not
for Fannie Mae’s huge credit to interest expense. A
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Table 4 Restatement Values by Account

# of
Maximum Minimum Mean Median firms

Income statement (in 000s)
Sales 2�896�91 −38�978�00 −457�00 0�00 106
Cost of Goods Sold 400�00 −9�504�60 −58�08 0�00 83
Selling, General, and 248�83 −626�00 −2�05 0�00 66

Administrative
Expenses

Depreciation and 296�00 −787�00 −0�07 0�00 59
Amortization

Interest Expense 1�181�26 −7�789 −72�96 0�00 42
Income Taxes 25�88 −799�00 −14�38 0�00 75
EPS (basic, including 3�67 −446�48 −4�02 0�00 99

extraordinary items)
Net Income 176�00 −6�116�50 −66�83 0�00 95

Balance sheet (in 000s)
Minority Interest 2�24 −3�219�00 −53�69 0�00 22
Working Capital 18�555�01 −613�80 127�09 0�00 77
Capital Expenses 5�305�80 −61�61 41�06 0�00 51
Property, Plant, 4�970�90 −949�86 25�77 0�00 41

and Equipment
Total Assets 17�508�98 −1�369�38 108�78 0�00 94
Long-Term Debt 139�079 −532�80 1�068�46 0�00 41
Retained Earnings 4�459�00 −10�289�38 −55�32 0�00 121
Stockholders Equity 15�611�00 3�088�68 27�69 0�00 97

Note. EPS, Earnings per Share.

large portion of the positive Working Capital mean was
based on Adelphia’s restatement.4 Without Adelphia
and Fannie Mae, the mean Total Asset restatement
would have been negative. The anomalies encoun-
tered in this analysis of fraud firms underscore the
complexity of the fraud detection task.
Preprocessing included three steps: (i) transforma-

tion of attributes with a zero value, (ii) removing
attributes with a large number of missing values, and
(iii) removing firms with missing values. Quantita-
tive attributes with a value of zero are a problem
because the FK’s mapping will result in division by
zero. To avoid this problem, zero values are replaced
with 0.0001. We remove firms with missing values
as is done in the overwhelming majority of empiri-
cal accounting research papers. Two recent examples
are Khan and Watts (2009) and Callen et al. (2009).
In the case of fraud detection, all of the papers that
we compare to (in §6.3 below) that use publicly avail-
able data delete firms with missing values. Attributes
with greater than 25% missing values were removed,
yielding 23 final attributes. The 17 deleted attributes
are marked with asterisks in Table 3.

4 The fact that Working Capital is restated positively on fraud cases
is intuitive as much of fraud is reporting nonexistent sales. The
reversal of these sales often entails putting inventory back onto the
balance sheet, thus raising Working Capital. The sign of Cost of Goods
Sold indicates a drop upon restatement. This is no surprise either
because Cost of Goods Sold is tied directly to sales, so a drop in sales
is a drop in Cost of Goods Sold.

Table 5 SVM-FK Results on the Test Set

C+1� C−1 weightings Fraud recall Nonfraud recall
(fraud:nonfraud) (Type I error) (%) (Type II error) (%) AUC

1:1 0.00 (100) 100 (0) 0�816
5:1 20�0 (80) 93�4 (6.6) 0�726
10:1 32�0 (68) 87�2 (12.8) 0�739
15:1 44�0 (56) 86�2 (13.8) 0�774
20:1 56�0 (44) 86�3 (13.7) 0�810
50:1 80�0 (20) 90�6 (9.4) 0�878
100:1 72�0 (28) 89�1 (10.9) 0�877
150:1 80�0 (20) 84�7 (15.3) 0�878
200:1 80�0 (20) 84�4 (15.6) 0�880

In the next section we report the results of our
experiments.

6.2. Testing and Results
We validate the SVM-FK methodology by training
on the early years of the data set and testing on
future years. By training on early years and test-
ing on future years, we are matching the situation
faced by an investor or auditor who needs to make
judgments on new, unseen data with only prior data
for support. Our training sample includes data from
1991 to 2000, and our test data set includes data
from 2001 to 2003. The training sample, after pre-
processing, includes 107 fraud company-years and
2,205 nonfraud company-years. The holdout sample
includes 25 fraud company-years and 982 nonfraud
company-years.
After deleting attributes with greater than 25%

missing values, we have 23 attributes from prior
research to use, resulting in 1,518 FK features. We add
a numerical value for the year as a control. In Table 5
we report the results of our test sample. The results
show the recall for both classes (along with Type I
and Type II errors) for different C+1	C−1 weightings
(fraud:nonfraud) in the SVM objective. It is likely that
a user of this type of model would weight the risk of
a Type I error much higher than the risk of a Type II
error. Beneish (1999) conjectures that the right cost
ratio for investors is between 20:1 and 30:1. We also
report the area under curve (AUC) corresponding to
our results. The AUC is the area under the receiver
operating characteristic (ROC) curve5 (Fawcett 2006).
Table 5 shows that the SVM-FK is able to achieve

80% recall on fraud while achieving 90.6% recall on
nonfraud at the 50:1 cost ratio. As the cost ratio
increases above 50:1, the fraud results stay the same
but nonfraud recall gradually deteriorates. The AUC
is 0.878 (an ROC curve comparing our results with

5 AUC offers information as to the appropriateness of a model.
AUC is based on the rate at which true positives are found com-
pared to the rate of false positives during the prediction process
(i.e., creating an ROC curve requires ranking the predictions and
picking the highest ranked prediction first).
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Table 6 Comparison of Results with Previous Fraud Detection Methods

Recall: Percentage
correct— Results on training

Author(s) Method (sample size) or test set Type of data

Loebbecke et al. (1989) Assessment model 86—Fraud (77) Training Nonpublic data
Hansen et al. (1996) Qualitative response model 56—Fraud (77) Test Nonpublic data

90—Nonfraud (305)
Bell and Carcello (2000) Logistic regression 81—Fraud (77) Test Nonpublic data

86—Nonfraud (305)
Beneish (1999) Probit 56—Fraud (74) Test Publicly available data

90.2—Nonfraud (2,332)
Summers and Sweeney (1998) Logistic regression 67—Fraud (51) Training Publicly available data

?— Nonfraud (51)
Green and Choi (1997) Neural network 74—Fraud (46) Test Publicly available data

68.4—Nonfraud (49)
Dechow et al. (2009) Logistic regression 64.5—Fraud (293) Test Publicly available data

66.35—Nonfraud (79,358)
This paper SVM-FK 80.0—Fraud (132) Test Publicly available data

90.6—Nonfraud (3,187)

the results of other studies on these data is shown
in the next section). The novelty of our research is
the nonlinear mapping of the attributes by the finan-
cial kernel into relevant features combined with the
structural risk minimization offered by the SVM. In
the following section we compare our results to other
leading fraud detection research.

6.3. Comparison with Prior Research Methods
For comparison purposes, the prediction results of
other leading fraud research is shown below in
Table 6, together with the size of the data sets (the
larger, more comprehensive data sets indicate a higher
likelihood of generalization to the population) and
the type of data used (nonpublic or publicly avail-
able). Nonpublic data is much more costly and time
consuming to acquire. Also, it is impossible to collect
unless one has a relationship with the firm.
When compared against other research using pub-

licly available data, we report the highest accuracy
on fraud cases, and we have the second-largest data
set. The highest overall results on fraud cases are
found in the seminal work by Loebbecke et al. (1989).
However, the authors do not test their model on
nonfraud cases (therefore, there is no possibility of
Type II errors). The comparison in Table 6 is meant
to frame our research with respect to the current
fraud detection research stream. Because the data sets
are not shared, the comparisons between the meth-
ods are necessarily qualitative. Some important dif-
ferences are readily noted including testing method,
sample size, and skew of fraud and nonfraud data.
We briefly discuss the testing methods of the other
papers to aid in the comparison. In Loebbecke et al.
(1989), the assessment model is created, modified, and
tested on the same data. There are no nonfraud exam-
ples, so the assessment model is not tested for Type II
errors. Bell and Carcello (2000), using private data,

estimate a logistic regression model hundreds of times
on random training samples, looking ahead at the test
results to determine the best model. Summers and
Sweeney (1998) use a cascaded logit model with fraud
as the dependent variable. The results they report
are based on a single sample, with no holdout set.
Therefore, it is not possible to determine whether
their model has predictive power. Green and Choi
(1997) have a limited sample size. Hansen et al. (1996),
Beneish (1999), Bell and Carcello (2000), Dechow et al.
(2009), and our paper use similar testing method-
ologies. All five have training and holdout sets and
report the results for both fraud and nonfraud. Only
our paper, Dechow et al. (2009), and Beneish (1999)
test the models on future data (using estimation data
from prior years).
To directly compare the efficacies of the research

methods (which include the methodologies and the
attributes), we replicate the studies that use pub-
licly available data using our data set. These studies
include Green and Choi (1997), Beneish (1999), and
Dechow et al. (2009).6 We make every attempt to faith-
fully replicate their testing methodologies by gather-
ing the same financial data they used for their studies
and tuning their models exactly as their papers sug-
gested. The details of each replication are explained
below.

6.3.1. Green and Choi (1997). All variables were
Winsorized at the 1st and 99th percentiles. All vari-
ables were transformed via a simple percentage

6 Summers and Sweeney (1998) used variables (insider trading
statistics) that were key to their study. These insider trading vari-
ables were received from the SEC at the time of their study but are
no longer available.
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change (SPC)7 and scaled by a linear scaling method.
Details of the SPC and the scaling method can
be found in Green and Choi (1997). The NN was
set up with the following parameters to match the
authors work: The network is a back propagation
network with eight input nodes, four hidden nodes,
and either one or two output nodes.8 The learning
rate and momentum were both set to 0.1, and the
learning epochs were limited to 10,000. The Green
and Choi (1997) variables are as follows: Allowance
for Doubtful Accounts/Net Sales, Allowance for Doubtful
Accounts/Accounts Receivable, Net Sales/Accounts Receiv-
able, Gross Margin/Net Sales, Accounts Receivable/Total
Assets, Net Sales, Accounts Receivable, Allowance for
Doubtful Accounts.

6.3.2. Dechow et al. (2009). All variables were
Winsorized at the 1st and 99th percentiles. We used
SAS Proc Logistic to develop the logistic regression
model. We also used SAS Proc Logistic to test the
model on the test set. Starting with the predicted
value from the logistic regression function, Dechow
et al. (2009) utilized the following transformations to
achieve binary classification:

Probability= e�PredictedValue�

�1+ e�PredictedValue��

UnconditionalProbability

= TotalFraudFirms/(TotalFraudFirms

+TotalNonfraudFirms)

F -Score= Probability/UnconditionalProbability�

An F -score of 1.00 means that the firm has the same
probability of fraud as unconditional expectation
(Dechow et al. 2009). The threshold becomes 1.00 (fol-
lowing Dechow et al. 2009) such that F > 1 labels the
firm fraudulent and F ≤ 1 labels the firms nonfraud-
ulent. We summarize the Dechow et al. (2009) vari-
ables as follows: RSST Accruals, Change in Receivables,
Change in Inventory, Change in Cash Sales, Change in
Earnings, Actual Issuance, Abnormal Change in Employ-
ees, Existence of Operating Leases, Book to Market, Lagged
Market-Adjusted Stock Return.
A detailed explanation of these variables can be

found in Dechow et al. (2009).

7 This was one of three transformations in Green and Choi (1997).
We chose this one because it was used to achieve the highest accu-
racy on their test set.
8 Green and Choi (1997) use one output node and make the thresh-
old between fraud and nonfraud 0.5 (nonfraud is labeled 1 and
fraud is labeled 0). We develop our NN in Weka using this method
as well as setting up two output nodes, one for fraud and one
for nonfraud, using a nominal class variable. Our results are not
affected by these design choices. We optimize the NN threshold for
performance after the fact in an attempt to improve results.

Table 7 Comparative Results Using the Same Data Set

Final sample size
(after excluding

firms with Percentage
Author(s) Method missing values) correct AUC

Beneish (1999) Probit 149 Fraud 54.2 Fraud 0.492
3,389 Nonfraud 45.5 Nonfraud

Green and Choi Neural 192 Fraud 100.0 Fraud 0.472
(1997) network 3,173 Nonfraud 7.1 Nonfraud

Dechow et al. Logistic 57 Fraud 70.0 Fraud 0.762
(2009) regression 1,244 Nonfraud 84.9 Nonfraud

This paper SVM-FK 132 Fraud 80.0 Fraud 0.878
3,187 Nonfraud 90.6 Nonfraud

6.3.3. Beneish (1999). All variables were Win-
sorized at the 1st and 99th percentiles. We used
SAS Proc Logistic (link = probit) to develop the pro-
bit model on the training set. We also used SAS
Proc Logistic to test the trained model on the hold-
out sample. We used the Beneish (1999) method of
picking the best threshold by choosing the one that
gives the lowest expected cost of misclassification
(ECM), where ECM is defined as ECM = P�M�PICI +
1 − P�M��PIICII, where P�M� is the prior probabil-
ity of encountering manipulators, PI and PII are the
conditional probabilities of Type I and Type II errors,
respectively, and CI and CII are the cost of Type I
and Type II errors, respectively. The ratio of the num-
ber of fraud cases to the number of cases in the
entire sample is denoted by P�M�. We summarize
the Beneish (1999) variables as follows: Change in
Receivables (deflated by sales), Change in Gross Mar-
gin (deflated by sales), Ratio of Noncurrent Assets (less
Property, Plant, and Equipment) to Total Assets, Change
in Sales, Change in Depreciation, Change in Selling, Gen-
eral and Administrative Expenses (deflated by sales),
Change in Liabilities (deflated by Total Assets), and Total
Accruals as a percentage of Total Assets.
A detailed explanation of these variables can be

found in Beneish (1999).
The results of our replications are shown in Table 7

below. Beneish (1999) was able to get both fraud and
nonfraud correct about 50% of the time while opti-
mizing the training threshold (as is done in his study)
at the 30:1 cost ratio.9 The Green and Choi (1997)
method labels everything as nonfraud. To check if this
is a threshold problem, we use Beneish’s (1999) func-
tion (ECM) to optimize the threshold (looking ahead).
The tabulated results report the best cost ratio as 100%
accuracy on fraud and 7.1% accuracy on nonfraud

9 When moving to the 40:1 cost ratio, the fraud recall improves
to 87.5% but the nonfraud recall drops to 20.2%. At the 20:1 cost
ratio, the fraud recall drops to 45.8%, whereas the nonfraud recall
becomes 56.1%.
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Figure 1 ROC Curve Comparing Research Methodologies
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Beneish - 0.4923

SVM - 0.8781

Green and Choi - 0.4718

Dechow - 0.7623

using a 30:1 cost ratio.10 The Dechow et al. (2009)
model was able to classify 70.0% of fraud firms cor-
rectly and was also able to classify 84.9% of nonfraud
firms correctly. The SVM-FK was able to classify 80%
of fraud firms correctly and 90.6% of nonfraud firms
correctly. The SVM-FK was superior in both types of
recall.
We also report the AUC in Table 7 and the com-

parative ROC curve in Figure 1. The Beneish (1999)
and Green and Choi (1997) models have similar AUCs
(0.492 and 0.472, respectively). The Dechow et al.
(2009) model has a much higher AUC at 0.762. The
highest AUC is achieved by the SVM-FK at 0.878.
Based on the curves seen in Figure 1, it is clear that the
Dechow et al. (2009) model and SVM-FK are better at
predicting and recalling fraud cases than the Beneish
(1999) and Green and Choi (1997) models. Given a
set of companies, the SVM-FK picks 80% of the fraud
cases while making few mistakes. The SVM-FK ROC
curve dominates that of Dechow et al. (2009). This
suggests that if a sample of companies is to be picked
for auditing using these models, the SVM-FK is more
likely to select more of the true fraud cases com-
pared to competing methods. This behavior is quite
valuable for budget- and time-constrained auditors or
regulators, whose job it is to pick likely fraud cases
for further investigation with minimal false positives.
Auditors may be liable for missing fraud cases, mak-
ing true positives extremely important. However, eco-
nomic constraints limit further investigation, because
false positives are costly. In the case of a regulatory
body, false positives waste scarce investigative labor,
raising the probability that a true positive will go
uninvestigated.

10 When moving to a 20:1 cost ratio, the fraud recall becomes 21.9%
and nonfraud recall becomes 88.2%.

Why does the SVM-FK detect fraud better? The
answer likely lies in the fact that the SVM-FK com-
bines domain knowledge (via the kernel) with a
machine learning method that addresses generaliza-
tion directly. The NN solution of Green and Choi
(1997) was focused on introducing NNs to the fraud
detection problem, thus highlighting the novelty of
the methodology. Beneish (1999) and Dechow et al.
(2009) showcased human expertise by developing
ratios based on the continually evolving understand-
ing of financial statement accounts that are commonly
manipulated. Both of these papers move forward the
human expertise in variable selection.
Our method utilizes the expert knowledge from

these studies by incorporating their financial attri-
butes and ratios. Unlike those methods where ratios
are developed and tested manually, the kernel allows
us to create and inject ratios and others (i.e., fea-
tures) into the learning algorithm without having to
develop and test them manually. The SVM, then,
determines the weights associated with these ratios.
The SVM includes nonlinear capabilities (via the
kernel), whereas NNs attain these through network
structure and activation functions. However, unlike
NNs the resulting SVM function is transparent, mak-
ing it amenable to analysis, as in logit or probit. Also,
the SVM is designed to ameliorate overfitting by trad-
ing off generalization ability with training error. Logit,
probit, and NN models do not perform such trade-
offs. Therefore, they are more likely to overfit as the
number of features increase.
Furthermore, our method makes very few assump-

tions compared to the other methods. We start with
the raw data, pull out variables with many missing
values, leave out firms with missing values (as virtu-
ally all the studies do), replace 0 values with 0.0001
values, and then run the data through the FK. Our
only look-ahead bias comes from training with vari-
ous cost-sensitive weights. Beneish (1999) Winsorizes
the raw data, develops a probit function with a sep-
arate thresholding cutoff for each weight in the esti-
mation sample, and determines the best results based
on a postprocessing function (ECM) that uses the
weights and the errors on the training sample. ECM
incorporates the skew of the data sample to find a
cutoff based on the sample parameters. Dechow et al.
(2009) Winsorize the raw data and use the F -score as a
postprocessing transformation after logit. The F -score
is a method (like ECM) of incorporating the proba-
bility of fraud based on the skew in the sample size.
Green and Choi (1997) use two data transformations
before processing through the NN.

6.4. Additional Analyses
To study what features might be important in this
data set, we ranked the features from largest to small-
est based on �wjf̄j �, where wj is the jth component of
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Table 8 Top Five Features of SVM-FK

Weight
(absolute Correlation

Feature value) Ratio Year with fraud

1 0�403 Sales/Preferred Stock,
Carrying Value

t − 1 Positive

2 0�384 Selling, General, and
Administrative
Expenses/Investments and
Advances, Other

t Negative

3 0�275 Total Assets/Investments and
Advances, Other

t − 1 Positive

4 0�273 Sales/Investments and
Advances, Other

t − 1 Negative

5 0�245 Total Assets/Short-Term
Investments

t Positive

the SVM w vector and f̄j is the average of the jth fea-
ture resulting from the FK. The top five features are
shown in Table 8.
In each of the top five features, the denominator is

a part of RSST accruals. RSST accruals are utilized in
the Dechow et al. (2009) study as indicators of fraud-
ulent behavior. Using these components as deflators
has not been attempted in previous research. The tra-
ditional deflators are total assets and sales. Durtschi
and Easton (2005) find that the detection of earnings
management can be affected by choice of deflator. We
are not limited by this assumption because we make
no a priori assumption about how each variable can
best be used. As Sales in year 1 deflated by Preferred
Stock in year 1 increases, so does the chance of fraud.
Ratio 4 shows that as Sales in year 1 (deflated by Other
Investments and Advances) increase, the chance of fraud
decreases. This suggests the commonly assumed fact
that fraud firms are under increased economic pres-
sure because poorer performance (in this case, lower
sales). Furthermore, a fraud firm is likely to have
lower Preferred Stock and higher Other Investment and
Advances than a nonfraud firm in the year prior to
fraud. Ratio 3 also has Other Investments and Advances
in year 1 as a denominator. With Total Assets as a
numerator, one would expect this to be negatively
correlated with fraud. However, this is not the case.
Total Assets in year 2 is also a numerator in Ratio 5
and is skewed to fraud. This goes against the common
intuition that fraud companies are smaller (as size is
often judged by Total Assets). Our sample includes
some very important large fraud companies, includ-
ing Enron and WorldCom. However, it is not Total
Assets by itself that is associated with fraud but the
relationship between Total Assets and Other Invest-
ments and Advances and Short-Term Investments. These
relationships would be difficult to predict, even by
fraud experts.
Notice that the numerators in all cases are very

basic financial statement items. The denominators are

more detailed financial information. The top five fea-
tures are but a small part of the total function (which
includes 1,518 features), so placing too much impor-
tance on these five is likely ill advised. These features
alone do not explain the power of the method. The
power comes from the combination of all the features.
With the SVM-FK, the researcher benefits from getting
many features (some of which are likely unknown a
priori). Furthermore, unlike NNs, the researcher can
analyze the important features after the fact.
Those who commit fraud try to hide it by gam-

ing the system. Most professionals engaged in fraud
know what auditors look for when they suspect
fraud. To this end we point to a few interesting facts.
The top features we find are quite different than those
of earlier researchers such as Beneish et al. (1999)
and Green and Choi (1997), whose data spanned from
1982 to 1992 and from 1982 to 1990, respectively.
In addition, we showed that their approach does not
lead to satisfactory results in this data set, whereas
the approach of Dechow et al. (2009), which also uses
RSST related variables, worked very well. We think
that the discrepancies in results are due more to fea-
tures used rather than specific induction technique
that was used. We also believe that this difference, at
least partially, can be explained by changes in fraud
tactics over the years. Therefore, a method that uti-
lizes exhaustive combinations of potential fraud vari-
ables has a better chance of catching fraud effectively
than methods that restrict themselves to a few pos-
sible constructs. SVM is theoretically able to handle
an infinite number of features. FK is a mapping that
allows for an exhaustive combination of ratios and
year-over-year changes. For a complex, moving target
like fraud, this combination may be what’s necessary
for effective prediction.
To use this as a support tool in a professional set-

ting one must not only consider the recall (as was
done above) but also the precision. Precision is the
number of frauds divided by the total number of
firms counted as fraud. In a real-world case with
a skewed data set, the fraud precision is necessar-
ily small (because there are so many fewer fraud
cases, even if one gets a high percentage of nonfrauds
correct, the nonfraud errors will greatly outnumber
the correct fraud cases). An effective predictor will
pick the frauds without labeling many nonfrauds as
frauds. From the perspective of a professional, each
nonfraud labeled as fraud carries a cost. As an audi-
tor or regulator it takes time and effort to investigate
the firms that are flagged as potentially fraudulent.
Investment professionals risk losing out on poten-
tially high return investments if they are erroneously
flagged as fraudulent. The Dechow et al. (2009) model
results in a 2.25% fraud precision. This means that
for every fraud company that is correctly labeled as a
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fraud company, approximately 44 nonfraud firms are
erroneously labeled as fraudulent. The SVM-FK has
a 17.86% fraud precision. This means that for every
fraud company that is correctly labeled as a fraud
company, approximately six nonfraud firms are erro-
neously labeled as fraudulent.

7. Conclusion and Future Research
This paper developed a methodology for detecting
management fraud. A domain-specific kernel, the
financial kernel, was created that implicitly maps rel-
evant financial attributes to ratios and year-over-year
changes of the ratios. Careful consideration was given
in constructing the features necessary to detect man-
agement fraud. The kernel is used as a component in
the SVM.
A data set of fraudulent companies was gathered

using accounting and auditing enforcement releases.
The fraud firms were matched with nonfraud firms
based on a four-digit SIC code and year. To reflect real-
ity, the data set was skewed allowing for many non-
fraud firm-years for each fraud firm-year. The result-
ing data set included 137 fraudulent firm years and
3,187 nonfraudulent firm years. The attributes used
for mapping into FK were taken from the leading pre-
vious fraud detection research, putting emphasis on
the model for discriminating between fraud and non-
fraud cases in a higher dimensional feature space. The
estimation set was created using fraud and nonfraud
firm years from 1991 to 2000, and the holdout set was
created using fraud and nonfraud firms from 2001 to
2003. Training on early years with a later year hold-
out set enabled us to test the prediction ability of the
model. The results show that the SVM-FK correctly
labels 80.0% of the fraud cases on a holdout set while
also correctly labeling 90.6% of the nonfraud cases
with the same model. The result is an improvement
on prior research using only publicly available data
and is competitive with the best research using non-
public data (as shown in Tables 6 and 7). This method-
ology has the potential to assist regulators, auditors
and investors as a tool for determining which firms
are at higher risk for fraud. No machine learning tool
can be relied upon solely, but the SVM-FK can be uti-
lized in conjunction with expert analysis and judg-
ment to shorten the search for the right candidates for
investigation for regulatory agencies. An audit firm
could use the methodology to support its decisions on
“gray area” firms, which may need further testing for
fraud and other irregularities. An investor can use the
methodology to find the firms to avoid and lower the
risk of encountering the major drop in share price that
accompanies the findings of fraud.
Much of fraud research has focused on finding

the variables that are highly associated with fraud
and analyzing those variables for insight. This paper

develops a methodology that can be used with the
variables from extant literature to develop models
that create novel combinations of these variables to
aid in the prediction of fraud. We believe that future
studies should take into account the fact that fraud-
sters will change their tactics to hide fraud. An induc-
tive principle that anticipates this strategic behavior
might be more suitable to get ahead in this arms
race, one in which the fraudsters are currently a step
ahead.
A natural extension of this work would be the

development of a trading rule based on the results
of the SVM-FK. Beneish (1997) supplies the frame-
work for such an extension. This research can also
be extended by improving the methodology to incor-
porate nonfinancial information that is germane to
the domain of fraud detection. More generally, the
methodology can be combined with extant research
from other domains to predict different phenomena
in accounting, such as bankruptcy, corporate restate-
ments, abnormal returns, and firms likely to be sub-
ject (object) of mergers and acquisitions to name a few.
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Appendix

FK Construction
The financial kernel is constructed using a graph kernel
(Takimoto and Warmuth 2003) on the financial attributes
followed by a normalization kernel (Graf and Borer 2001)
applied to the resulting features plus the Year value. The
normalization kernel merely normalizes the features result-
ing from the graph kernel (for further information on
the normalization kernel, see Graf and Borer 2001). This
sequence results in a proper kernel. The application of the
graph kernel is further explained below.

Consider a graph G�A�E� with nodes a and edges e
(see Figure A.1). All edges e in this graph are base kernels
(for example, a polynomial kernel on a component of the
attribute space). To differentiate base kernels from general
kernels, the base kernels are denoted as K�ui�v�, where the

Figure A.1 Graph Kernel
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Figure A.2 Financial Kernel
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unbolded ui and vi are scalars. For this example, each edge
e has a kernel of the following form: K�ui�vi� = �ui�vi�. Any
path from s to t yields a feature. The feature is arrived at via
the product of all edges in the path between s and t. If s = a1
and t = a2, then there would be a single feature, u1. If s = a1
and t = a3, there would also be a single feature, u1u2, but
the feature would be the product of the two base kernels
on the path p = �a1a2a3�. Three paths converge at node a5,
specifically, p1 = �a1a2a3a5�, p2 = �a1a2a5�, and p3 = �a1a2a4a5�.
Node a5 can be seen as a kernel that sums the products of
the base kernels on each path. If Node a5 were t, the output
would be the sum of all paths into node a5, p1 + p2 + p3 or
u1u2u5 + u1u4 + u1u3u6. In general, at each node a (except
s), all paths from s to a are summed. The contribution of a
path to the kernel is based on the product of its edges. In
general, all paths from s to t create features. This allows the
researcher to create her own kernel by choosing the struc-
ture of the graph.

Formally, the graph kernel is a directed graph G with a
source vertex s of in-degree 0 and a sink vertex t of out
degree 0. A directed graph is one where the flow on each
edge is in a single direction. Each edge is labeled with a
base kernel. It is assumed that this is a simple graph, mean-
ing that there are no directed loops. In general, loops are
allowed, but that makes it difficult to prove that the result-
ing mapping is, indeed, a kernel. Takimoto and Warmuth
(2003) proved that a directed, acyclical graph with base ker-
nels on the edges is indeed a kernel.

Shawe-Taylor and Cristianini (2004) describe the graph
kernel as follows: Let Pst be the set of directed paths
from s to t where a path p = �a0a1 · · ·ad�. The product of
the kernels associated with the edges of p is Kp�u�v� =∏d

i=1 K�ai−1→a��u�v�, where ai−1 → ai represents the i-1st edge
on path p.

The graph kernel is the aggregation of all KP �u�v� and
can be seen as follows:

KG�u�v� = ∑
p∈Pst

KP �u�v� = ∑
p∈Pst

d∏
i=1

K�ai−1→ai�
�u�v��

Using these ideas, we now construct the financial ker-
nel, KF �u�v�, which is a directed graph G ∈ �A�E� with base
kernels on all edges e and K�u�v� on a. The financial ker-
nel has as input n attributes per year for two years. The
attributes vector is u = �u11� � � � �un1�u12� � � � �un2�

′. See Fig-
ures A.2 and A.3 for illustrations of the financial domain
kernel. Figure A.2 illustrates one of the n − 1 graphs that
make up the financial kernel. Each of the n − 1 graphs has
a source node si and a sink node ti. The graphs decrease in
size with n. The reason is that each graph carries informa-
tion for attributes i through n. Each path from source to sink
is a feature. The number of features is equal to the num-
ber of paths. All n − 1 graphs from Figure A.2 are brought
together by the graph in Figure A.3. The paths from s to t
make up all of the features in KF �u�v�.

We can have as many different kernels as there are edges.
For the creation of a financial kernel, we limited the base
kernels to two forms. The first one is the standard inner
product kernel of K�ui�vi� = �ui�vi�, and the second one
is �K�ui�vi� = 1/uivi. According to Takimoto and Warmuth
(2003), to prove that KF �u�v� is a kernel, we need only have
a directed graph without cycles and show that each edge e
is a valid kernel. Examination of Figures A.2 and A.3 clearly
shows that the graph is directed and free of cycles. We

Figure A.3 Financial Kernel Aggregation

G1

G2

Gn–1

Sn–1

S2

S1

S

t1

t2

t

tn–1

… … …



Cecchini et al.: Detecting Management Fraud in Public Companies
1160 Management Science 56(7), pp. 1146–1160, © 2010 INFORMS

need to show that both K�ui�vi� and �K�ui�vi� are kernels;
K�ui�vi� is simply the standard inner product kernel, and
�K�ui�vi� can be shown to be a kernel as follows. Let f �ui� =
u−1

i , i = 1 · · ·n, and let f �vi� = v−1
i , i = 1 · · ·n. By Cristianini

and Shawe-Taylor (2000, p. 42), �K�ui�vi� = f �ui�f �vi� is a
kernel.
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