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Abstract: Aqua farms will be the most frequently encountered obstacle when autonomous ships
sail along the coastal area of Korea. We used YOLOv5 to create a model that detects aquaculture
buoys. The distances between the buoys and the camera were calculated based on monocular and
stereo vision using the detected image coordinates and compared with those from a laser distance
sensor and radar. A dataset containing 2700 images of aquaculture buoys was divided between
training and testing data in the ratio of 8:2. The trained model had precision, recall, and mAP of
0.936%, 0.903%, and 94.3%, respectively. Monocular vision calculates the distance based on camera
position estimation and water surface coordinates of maritime objects, while stereo vision calculates
the distance by finding corresponding points using SSD, NCC, and ORB and then calculating the
disparity. The stereo vision had small error rates of −3.16% and −14.81% for short (NCC) and long
distances (ORB); however, large errors were detected for objects located at a far distance. Monocular
vision had error rates of 2.86% and −4.00% for short and long distances, respectively. Monocular
vision is more effective than stereo vision for detecting maritime obstacles and can be employed as
auxiliary sailing equipment along with radar.

Keywords: autonomous ship; object detection; YOLOv5; monocular vision; stereo vision

1. Introduction and Background

Various technologies related to developing autonomous ships, such as path search,
collision avoidance, object detection, and electric propulsion, have been extensively re-
searched. Once autonomous ships become commercialized and sail along the coast of
Korea, the most frequently encountered obstacles will be aquaculture farms. The number
of aquaculture licenses and area per licensed aquaculture farm in Korea has increased from
9555 and 14.2 ha in 2008 to 9992 and 16.1 ha in 2017, respectively [1]. As of 2017, South Jeolla
Province accounted for 74.8% of licensed aquaculture areas among 11 cities and provinces,
while the ratio of licensed seaweed farms was 75.4%. Aquaculture farms in Korea are only
permitted to be operated on the water surface, enabling their GPS coordinates to be tracked
in advance. However, licensed farms may deviate from the permitted location due to wind
or tides. Moreover, several aqua farms operate without permission. Though ships are
equipped with radars for detecting objects in the sea, identification can be challenging due
to reflected waves or aquaculture buoys being too small or located too near to secure the
minimum detection distance.

Object detection technologies are widely applied to overcome such limitations. In
recent years, deep learning-based object detection methods that extract the detected object
features through neural networks have been actively researched [2]. Object detectors
are mainly categorized as one-stage or two-stage detectors. One-stage detectors such as
SSD [3], You Only Look Once (YOLO) [4–7], and RefineDet [8] simultaneously perform
classification and localization to indicate the location of objects within an image through
a box. In contrast, two-stage detectors, such as region-based convolution neural network
(R-CNN) [9], Fast R-CNN [10], and Cascade R-CNN [11], sequentially perform localization
and classification. In [12], object detection algorithms were largely divided into CNN and
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YOLO groups for comparative analyses. The YOLO-based object detection algorithms offer
faster and more effective detection and are deemed more appropriate for use in actual
application programs. In [13], YOLO v4 was proposed, which is capable of accurately
identifying moving objects such as a person, motorcycle, or bicycle on congested roads
after being trained. The YOLO-based object detection system proposed in [14] synthesized
LiDAR point cloud and image data from an RGB camera to detect the driving environment
of autonomous vehicles.

The distance to the detected objects must be known for ships to take necessary collision-
avoidance actions. The distance to an object in a camera image can be calculated based on
monocular or stereo vision. In monocular distance perception, Zhang et al. [15] presented
the 3D positions of a target in the camera coordinate frame by measuring the distance
between the feature and principal points based on the calculated area in the image. Yang
and Cao [16] proposed a 6D object localization method based on a monocular vision system
by decomposing the homography matrix and refining the result using the Levenberg–
Marquardt algorithm. Qi et al. [17] proposed an improved distance estimation algorithm
based on the vehicle pose information by updating the rotate matrix considering vehicle
pose information and the vanish line position to eliminate the estimation error caused by
vehicle flutter. Dhall [18] suggested an effective CNN architecture for key point regression,
which can run in real-time with low computation power using prior 3D information about
the object used to match 2D–3D correspondences.

Stereo vision estimates the 3D coordinates of an object by calculating the disparity
in object positions in two images of the same scene. Most research has focused on stereo
matching, which involves finding corresponding points between two images [19,20]. Stereo
matching methods can be categorized as global or local matching methods. Global matching
involves minimizing the cost of determining the time difference of each pixel for the
entire image region. Frequently used methods include belief propagation [21], dynamic
programming [22], and semi-global matching [23]. Local matching is divided into area-
based and feature-based matching. Area-based matching, such as SSD, SAD, and NCC,
involves finding matching points using pixel information of certain regions [24]. Feature-
based matching, such as SIFT [25], SURF [26], KAZE [27], and ORB [28], extracts feature
points of an image to find matching points corresponding to the entire image. Yang and
Lu [29] proposed a long-distance tsunami prediction system based on binocular stereo
vision with a measuring range of 4–20 km, using a two-step matching method. Zheng
et al. [30] developed an ORB-based detector for inland river ships and measured distances
based on binocular stereo vision with a feature point detection and matching algorithm.

Stereo vision is commonly used in robots and autonomous driving since 3D informa-
tion of an object can be obtained irrespective of specific external conditions. However, the
disadvantages include high computation costs for finding corresponding points between
two images and requiring a stereo setup such as synchronization and stereo calibration. In
contrast, monocular vision entails low computation costs from using a single camera and
fast processing times but requires knowing 3D information for 2D–3D correspondences.
However, all objects in the sea have a contact point with the water surface, which can be
used to find the object coordinates without knowing the 3D information. Therefore, it
is possible to calculate the distance using camera position estimation and water surface
coordinates of an object at sea via monocular vision.

To ensure the safe navigation of autonomous ships in the coast of Korea, a maritime
obstacle detection method is needed. Accordingly, this study uses YOLOv5 [31], having
excellent speed and accuracy, to develop a model for detecting aquaculture buoys found
along the coast of Korea, and proposes the most effective method for detecting maritime
obstacles by comparing the distances measured through monocular and stereo vision based
on image coordinates. The rest of this paper is organized as follows. Section 2 describes
the methods used to detect maritime obstacles and calculate the distance from the camera
by monocular and stereo vision. Sections 3 and 4, respectively, present and discuss the
experimental results and analysis. Finally, the conclusions are outlined in Section 5.
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2. Methods
2.1. YOLOv5

The architecture of YOLOv5, in Figure 1, consists of three parts: backbone for feature
extraction, neck for feature fusion, and head for object detection.
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Figure 1. YOLOv5 architecture.

The CNN-based backbone network extracts feature maps of different sizes from
the input image using multiple convolutions and pooling layers. The convolution with
batch normalization and leaky ReLU (CBL) is used for feature extraction. The cross-stage
partial network performs convolutional computation on certain parts of a feature map and
concatenates with the remaining parts. The computation amount can be reduced since
only certain parts of a feature map are passed through the convolutional layer, and the
gradient flow can be efficiently carried out during backpropagation, thus improving the
performance. The focus layer with a 6 × 6 Conv2d layer was created to reduce layers,
parameters, FLOPS, and CUDA memory, and improve forward and backward speed. The
spatial pyramid pooling (SPP) network pools the features using filters of various sizes
and recombines them, effectively improving the network performance. The neck network
fuses the feature maps of different levels to obtain more contextual information and reduce
information loss. The feature pyramid network (FPN) and path aggregation network (PAN)
are used in the fusion process. The FPN structure conveys strong semantic features from
the higher to the lower feature maps, while the PAN structure conveys strong localization
features from the lower to the higher feature maps. The two structures jointly strengthen
the feature fusion capability of the neck network. Specifically, three feature fusion layers
generate three scales of new feature maps. The smaller the feature map size, the larger the
corresponding image area of each grid unit. The head network performs object detection
and classification from these new feature maps. The leaky ReLU activation function is
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used in middle/hidden layers and the SiLU (Sigmoid-Weighted Linear Units) activation
function is used in the final detection layer.

2.2. Monocular Vision

The terminology related to image geometry, representing the relationship between 2D
and 3D coordinates in a camera image, can be defined as shown in Table 1 and Figure 2.

Table 1. Definition of technical terms.

Term Definition

World Coordinate System (WCS) 3D coordinate system used to provide an object’s location—can be arbitrarily set.

Camera Coordinate System (CCS)
3D coordinate system with respect to the camera focus. The center of the camera
lens is the origin, the front direction is the z-axis, the downward direction is the
y-axis, and the right direction is the x-axis.

Image Coordinate System (ICS)
2D coordinate system for an image obtained with a camera. The top-left corner
of the image is the origin, the right direction is the x-axis, and the downward
direction is the y-axis.

Normalized Image Coordinate System (NICS)
2D coordinate system for a virtual image plane. The distance from the camera
focus is 1 and the effects of a camera’s intrinsic parameters are removed. The
center of the plane is the origin.
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2.2.1. Projection Transformation

As shown in Figure 1, a camera projects P = (X, Y, Z) on the WCS onto p = (x, y)
on the ICS to represent an image through projection. In projective geometry, homogeneous
coordinates express an n-dimensional projection space through n + 1 coordinates [32] and
give the relationship between P and p, as shown in Equation (1) [33]:

s

 x
y
1

 =

 fx skewc cx
0 fy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3




X
Y
Z
1


sp = KTpers(1)[R|t ]P

(1)

where s is the scaling factor and is considered as 1 for finding the original coordinates,
fx and fy are the focal length of the camera, cx and cy are the cardinal points, skewc repre-
sents the skewness coefficient of the image sensor, K represents camera intrinsic parameters,
Tpers(1) is the projection matrix which projects 3D coordinates on the CCS onto a nor-
malized image plane with Zc = 1, and R and t are the rotation matrix and translation
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vector, respectively, which convert the WCS to the CCS, and are referred to as a rigid
transformation matrix and camera extrinsic parameters.

2.2.2. Distance Calculation

The water surface coordinates of an aquaculture buoy floating on water, PS, are
projected onto a point p on an image plane using a camera, as shown in Figure 3. A point
projected onto the normalized image plane can be expressed as PW and PC for the WCS and
CCS, respectively.
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According to Equation (1), the relationship between PW and PC is given in Equation (2),
and that between PC = (u, v, 1) and p = (x, y) is given in Equation (3):

PC = RPW + t (2)

x = fxu + cx

y = fyv + cy
(3)

If the intrinsic and extrinsic camera parameters and the coordinates of point p on an
image plane are known, the coordinates of PW can be calculated using Equations (2) and (3).
Furthermore, the CCS coordinates of a camera focal point C are (0, 0, 0), which can be
converted to WCS coordinates using Equation (2), where C, p, PW , and PS on the same line
of projection have the relationship shown in Equation (4):

PS = C + k(PW − C) (4)

where k is an arbitrary constant. Since PS = (X, Y, Z) is the only value that satisfies
the limiting condition (Z = 0) of the water surface coordinates, the PS WCS coordinates
can be calculated. If the WCS reference point is where the camera lens center vertically
intersects the water surface, PS WCS coordinates can calculate the horizontal distance from
the camera (Dm) and relative bearing (θm) using Equation (5):

Dm =
√

X2 + Y2

θm = atan
(

Y
X

) (5)
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2.3. Stereo Vision

Stereo vision involves finding corresponding points by matching two images of the
same object or scene and calculating 3D CCS coordinates using disparity, which is the
position difference between corresponding points. In Figure 4, point P in a 3D space passes
through the center of a stereo camera lens with baseline b, and is then projected onto
p and p′ of each image plane.
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If the camera focal length ( fx, fy) and camera principal point (cx, cy) are known, the
CCS coordinates of point P can be calculated using Equation (6) based on the similarity of
trigonometric ratios [34].

Xc =
b(xL − cx)

(xL − xR)
, Yc =

b fx(xL − cx)

fy(xL − xR)
, Zc =

b fx

(xL − xR)
(6)

2.3.1. Distance Calculation

The distance calculation in monocular vision involves finding the distance from the
WCS reference point, where the camera lens center vertically intersects the water surface
C′, to the horizontal distance from an object and relative bearing. The distance for the same
scene needs to be computed for comparison. Figure 5 illustrates the stereo vision distance
perception for the water surface coordinates, PS, of aquaculture buoys.

Xc, Yc, and Zc are calculated using Equation (6). The horizontal distance, Ds, and rel-
ative bearing, θs, according to the camera tilt angle θ, can be calculated using Equation (7):

Ds =
Zccosθ−Ycsinθ

sin(atan( Zccosθ−Ycsinθ
Xz ))

θs = atan( Xz
Zccosθ−Ycsinθ )

(7)
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2.3.2. Epipolar Geometry

Epipolar geometry examines the geometric relationship between corresponding points
in stereo vision. In Figure 6, point P in a 3D space is projected onto p in image A and p′ in
image B. The corresponding points e and e′, where the line connecting the camera origins
and image planes intersect, are called epipoles. The straight lines l and l′ connecting the
epipole and projection point are called epilines. If the distance from the camera to P is
not known, p′ corresponding to p cannot be uniquely determined. However, the straight
line l′ through which p′ passes can be uniquely determined and is called the epipolar
constraint. However, extensive time and computation resources are required to compare
all points and find corresponding points between two images in stereo vision. Therefore,
the corresponding points are found using the epipolar constraint by comparing the points
on the same line in images after a rectification process so that the epilines are parallel.
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2.3.3. Area-Based Matching

Area-based matching is an algorithm for continuously comparing the regions of
a window, which is a set unit of neighboring pixels of a certain size. Of the different
area-based matching methods, this study employed SSD and NCC, which demonstrate a
relatively higher accuracy.
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1. SSD

The SSD method involves calculating the similarity between images by summing the
square of the brightness differences between pixels within a square window (W) in the
reference I1 and target I2 images [35], as follows:

∑
(i, j)∈W

(I1(i, j)− I2(x + i, y + j))2 (8)

2. NCC

The NCC method involves calculating the similarity between images using Equation (9)
for pixels within a square window (W) in reference I1 and target I2 images [35].

∑(i, j)∈W I1(i, j)× I2(x + i, y + j)√
∑(i,j)∈W I1(i, j)2 ×∑(i,j)∈W I2(x + i, y + j)2

(9)

2.3.4. Feature-Based Matching

Feature-based matching involves finding distinctive feature points such as corners or
junctions in images and generating a descriptor that enables feature points to be compared
by describing corresponding regional characteristics. We used the ORB algorithm consider-
ing ORB’s fast speed, accuracy, and robustness to size changes and rotations [28]. ORB uses
the advantages of two algorithms, feature from accelerated segment test (FAST) [36] as a
detector and binary robust independent elementary features (BRIEF) [37] as a descriptor.
The feature points that were not properly matched were excluded using the brute force
hamming matcher. When one plane is projected onto another plane, as in Figure 7, the
transformation relationship in Equation (1) is established, called a homography matrix
(H). The RANSAC [38] algorithm arbitrarily selects four pairs of corresponding points and
selects the homography matrix with maximum matched corresponding points.

pi = Hp′ixi
yi
1

 =

h1 h2 h3
h4 h5 h6
h7 h8 h9

xi′
yi′
1

 (10)
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3. Experiment Results
3.1. Detecting Model
3.1.1. Introduction of Dataset

Training data, such as in Figure 8, are needed for custom training of YOLOv5. Buoys 1 and 2
are aquaculture buoys commonly found in the coastal regions of Korea. The training data include
the locations of bounding boxes encompassing the objects in images and the classes of the objects
through the Labellmg program. The images of buoys 1 and 2 were captured from a ship sailing
between aqua farms. Since the captured images had a resolution of 4032× 3024 or higher, the
parts necessary for training were cut to 256× 256. The training dataset comprised 2700 images,
and the ratio of training to testing was set to 8:2. The number of data corresponding to each class
is shown in Table 2.
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Table 2. The information of dataset.

Class Instances Percentage

buoy 1 22,422 89.1%
buoy 2 2744 10.9%

3.1.2. Mosaic Augmentation

Mosaic augmentation was used to train the model because the sizes of buoys in
the training data are relatively small, making them difficult to detect. The main idea is
to crop four images randomly and then concatenate them into one image, as shown in
Figure 9. This enriched the image background and increased the number of small-sized
objects. Moreover, mosaic augmentation allows the model to learn how to identify objects
on a small scale and reduces the need for large mini-batch sizes during training. This
significantly improved model robustness and performance when recognizing small targets.
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3.1.3. Training Results

YOLOv5 is written using the Python language. The training using the YOLOv5x model
was run under the Windows 11 operating system, CUDA 11.6, Pytorch 1.12.1, Python 3.9,
and a Nvidia GeForce RTX 3070i GPU. The input image size was 256 × 256. The networks
were trained for 300 epochs using the stochastic gradient descent optimizer with a learning
rate of 0.01 and batch size of 32. After training, the weight file of the model with the highest
accuracy was saved, and the validation set was used to evaluate the performance. The
performance of the trained model is presented in Table 3.

Table 3. Detection results on dataset.

Class Precision Recall AP mAP FPS

Buoy 1 0.938 0.902 94.0%
94.3% 39.1

Buoy 2 0.934 0.904 94.6%

The number of frames per second (FPS) was used to evaluate the detection speed. The
mean average precision (mAP) was adopted to evaluate the accuracy, as follows:

P(Precision) =
TP

TP + FP
(11)

R(Recall) =
TP

TP + FN
(12)

APi =
∫ 1

0
P(R)d(R) (13)

mAP =
1
N

N

∑
i=1

APi (14)

where precision (P) represents the ratio of true positive values (TP) to the total positive
values classified by the model, recall (R) represents the ratio of TP to the actual true values,
FP indicates false positive, and FN is false negative. APi is the average accuracy of category
i and mAP is the average AP across all N categories.
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3.2. Distance Calculation
3.2.1. Experimental Environment and Equipment

A ZED (Stereolabs, San Francisco, CA, USA) stereo camera, which provides high-
resolution images of up to 2208 × 1242, was used for the experiments. The camera specifi-
cations are presented in Table 4.

Table 4. Technical specifications of the ZED stereo camera.

Parameter Information

Sensor type 1/3′ ′ 4MP CMOS

Output resolution

2 × (2208 × 1242) @ 15 fps
2 × (1920 × 1080) @ 30 fps
2 × (1280 × 720) @ 60 fps
2 × (672 × 376) @ 100 fps

Field of view Max. 90◦ (H) × 60◦ (V) × 100◦ (D)

Focal length 2.8 mm

Baseline 120 mm

The experiments were conducted in a laboratory and on the deck of a passenger ship
sailing between Nohwado, Soando, and Bogildo in Wando County, South Jeolla Province,
Korea. The passenger ship sails between the islands where aqua farms are located, as
shown in Figure 10a. For the camera to maintain a constant angle under external influences,
a tripod and a Hohem iSteady Multi 3-axis gimbal were installed along with the ZED in
the laboratory and on the passenger ship deck, as shown in Figure 10b.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

  
(a) (b) 

Figure 10. Experimental site (a) and equipment (b). 

Aquaculture buoys were placed in the laboratory to compare the distance calcula-

tion performance of monocular and stereo vision using the installed equipment, as 

shown in Figure 11a. The ZED captures images of the buoys, recognizes them through 

the trained detection model, and extracts image coordinates from the bottom center of the 

bounding box. The extracted image coordinates were used to calculate the distance based 

on monocular and stereo vision. The distance was compared with the distance measured 

using Bosch GLM 50-23G laser distance measuring equipment (Experiment A). 

 

  
(a) (b) 

Figure 11. Aquaculture buoy: (a) Experiment A and (b) Experiment B. 

The equipment was placed on the passenger ship deck, and the aqua farms were 

captured, as shown in Figure 11b, to extract image coordinates as in Experiment A. The 

distance was calculated based on monocular and stereo vision and then compared with 

the radar image of the ship (Experiment B). 

3.2.2. Camera Calibration 

The intrinsic and extrinsic camera parameters are required to identify the relation-

ship between the 3D coordinate system and the projection point on a 2D image plane. 

The process of estimating such values is called camera calibration. The ZED is calibrated 

by the manufacturer, and the relevant parameter information is provided in Table 5. This 

information was used when calculating the distance based on stereo vision. 

  

Figure 10. Experimental site (a) and equipment (b).

Aquaculture buoys were placed in the laboratory to compare the distance calculation
performance of monocular and stereo vision using the installed equipment, as shown
in Figure 11a. The ZED captures images of the buoys, recognizes them through the
trained detection model, and extracts image coordinates from the bottom center of the
bounding box. The extracted image coordinates were used to calculate the distance based
on monocular and stereo vision. The distance was compared with the distance measured
using Bosch GLM 50-23G laser distance measuring equipment (Experiment A).
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Figure 11. Aquaculture buoy: (a) Experiment A and (b) Experiment B.

The equipment was placed on the passenger ship deck, and the aqua farms were
captured, as shown in Figure 11b, to extract image coordinates as in Experiment A. The
distance was calculated based on monocular and stereo vision and then compared with the
radar image of the ship (Experiment B).

3.2.2. Camera Calibration

The intrinsic and extrinsic camera parameters are required to identify the relationship
between the 3D coordinate system and the projection point on a 2D image plane. The
process of estimating such values is called camera calibration. The ZED is calibrated by
the manufacturer, and the relevant parameter information is provided in Table 5. This
information was used when calculating the distance based on stereo vision.

Table 5. Camera parameter information.

Parameter Left Camera Right Camera

Internal parameter matrix

1398.43 0 1078.26
0 1398.57 665.981
0 0 1

 1397.56 0 1075.45
0 1397.51 630.608
0 0 1


Extrinsic parameter matrix R =

 1 −0.0006 0.0069
0.0006 1 −0.003
−0.0069 0.003 1

 T =

−119.909
−0.171
−0.1046


Distortion coefficient matrix

Left
[
−1.75× 10−1 2.80× 10−2 2.21× 10−4 −2.84× 10−4 −4.58× 10−11]

Right
[
−1.74× 10−1 2.70× 10−2 3.07× 10−4 1.67× 10−4 −2.14× 10−11]

The distance calculated based on monocular vision used the left-eye camera of the
ZED. The rotation matrix (R) and translation vector (T) in Table 5 represent the conversion
of position and direction of the left-eye and right-eye cameras. A checkerboard was used in
monocular vision because R and T between WCS and CCS are needed. Each checkerboard
corner was found using the findchessboardcorners function of OpenCV, as shown in
Figure 12. The corresponding 3D coordinates were input to estimate the camera position,
resembling a PnP problem. POSIT [39] is widely used for solving the PnP problem [40].
In this study, R and T were estimated for the point where the center of the camera lens
vertically intersects the water surface. They become the WCS reference, based on 2D and
3D coordinates of each corner found using the solvePnP function of OpenCV, to which
POSIT [39] is applied, as shown in Table 6. The values in Table 6 were used for Experiment
A. In Experiment B, however, the distance from the sea to the experimental equipment was
measured using a laser distance measuring device and applied to the 3D z-axis coordinates
of each checkerboard corner. R and T were re-estimated for the point where the camera lens
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center vertically intersects the water surface and becomes the reference of WCS. Figure 13
shows the summary of all the processing steps of the experiments.
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Table 6. Camera extrinsic parameter information by solvePnP.

Parameter Value

Rotation matrix R =

0.0158 −0.2614 0.9651
0.9999 0.0027 −0.0156
0.0015 0.9652 0.2614


Translation vector T =

0.0153
6.6996
1.8602
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3.2.3. Experiment A

When the results of Figure 11a were input into the detection model, all buoys were
detected, as shown in Figure 14. The results of applying stereo matching to the ZED
right camera image by the SSD and NCC methods, using the bounding box of buoys as a
window, are shown in Figure 15a,b, respectively. Feature points could not be sufficiently
extracted from the images of the buoys within the bounding box. Hence, feature points
were found using ORB from the ZED left camera image and matched with the ZED right
camera image, as shown in Figure 16. The homography matrix was then extracted, and
stereo matching was performed by applying a perspective transformation to the bounding
box, as shown in Figure 17.
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Figure 17. Feature-based stereo matching results (Experiment A).

The distance from the buoys to the camera based on the monocular vision was calcu-
lated by extracting the bottom center point of the bounding box from the ZED left camera
image. The distance from the buoys to the camera based on stereo vision was calculated
using the disparity, which is the image coordinates’ difference of the bottom center point
of the bounding box between the ZED left and right camera image results from stereo
matching. The results were compared with the distance between buoys and the camera
measured using a laser distance measuring device, as shown in Table 7.

Table 7. Comparison of distance calculation with distance measurement (Experiment A).

Buoy Laser (mm) Dm (mm) Error Rate
Ds (mm)

SSD Error Rate NCC Error Rate ORB Error Rate

A 2254 2245 −0.40% 2157 −4.50% 2185 −3.16% 2157 −4.50%
B 2037 2001 −1.80% 1997 −2.00% 1971 −3.35% 2010 −1.34%
C 2378 2448 2.86% 2335 −1.84% 2356 −0.93% 2436 2.38%

The matching using the NCC demonstrated the best performance of those based on
stereo vision. However, the measured distance based on monocular vision demonstrated
higher accuracy than stereo vision.
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3.2.4. Experiment B

When the results of Figure 11b were input into the detection model, only 30 buoys
were detected, as shown in Figure 18a. Therefore, the input image size was changed from
640 to the original size of 2208, and 149 buoys (buoy 1: black, buoy 2: red) were detected,
as shown in Figure 18b. The results of applying stereo matching to the ZED right camera
image using the SSD and NCC methods, with the bounding box of buoys as a window,
are shown in Figure 19a,b, respectively. Owing to the small window size, 73 (49.0%) and
51 (34.3%) of the 149 buoys were incorrectly matched with the SSD and NCC methods,
respectively. Similar to Experiment A, the feature points were extracted using ORB from
the entire image and then matched with the ZED right camera image, as shown in Figure 20.
The homography matrix was then extracted, and perspective transformation was applied
to the bounding box, as shown in Figure 21. As a result, all buoys were correctly matched.
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Figure 22 shows the radar screen when capturing the aqua farms. Figure 11b is an
image captured from the ship’s starboard side, corresponding to the camera sector in
Figure 22. When calculating the distance from the buoys to the camera based on monocular
vision and then visualizing using the same scale as a radar, small objects were more
accurately detected than the radar, as shown in Figure 23. After measuring and visualizing
the distance from the camera, the buoys were correctly matched when using SSD, NCC,
and ORB, as shown in Figure 24a–c, respectively. A difference in the calculated distances
was observed between the stereo and monocular vision, as shown in Figure 25. From 20 m,
the difference in the calculation results increased with the increasing distance from the
camera. The result of comparing the distance of the buoy in the closest red bounding box in
Figure 11b, calculated based on monocular and stereo vision with the radar measurement
result, is summarized in Table 8.
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Table 8. Comparison of distance calculation with distance measurement (Experiment B).

Radar (mm) Dm (mm) Error Rate
Ds (mm)

SSD Error Rate NCC Error Rate ORB Error Rate

25,093 24,129 −4.00% 18,214 −37.77% 18,214 −37.77% 21,857 −14.81%

When the distance was calculated based on stereo vision, the ORB method had the
lowest error. However, the distance calculated based on monocular vision was closer to the
radar measurement than that based on stereo vision.
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(b) NCC, and (c) ORB.
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4. Discussion

Autonomous ship technology is gaining increasing attention worldwide for develop-
ing safe, reliable, efficient, and environmentally friendly ships. Numerous studies have
been conducted on the self-induced collision-avoidance actions of ships with other ships.
However, there are other obstacles at sea, and there is an urgent need to develop a tech-
nology that can detect obstacles from the surrounding environment of ships. Appropriate
collision-avoidance strategies can only be developed if the distance and bearing of an obsta-
cle from a ship are accurately identified. This study, therefore, created a model for detecting
aquaculture buoys commonly observed in the coastal region of Korea. The distance from
the detected buoys to the ship was calculated based on monocular vision and stereo vision
for comparison. In previous studies, monocular vision needed prior 3D information about
the object used to match 2D–3D correspondences. Therefore, we proposed a method for
calculating the distance based on camera position estimation and water surface coordinates
of maritime objects with monocular vision without knowing the 3D information.

The experiments revealed that stereo vision resulted in greater errors during distance
calculation as the objects are smaller and far apart. This result is reasonable considering
that the depth range of the ZED is 0.5–25 m. Therefore, a different camera lens must
be used, or the baseline needs to be adjusted to calculate longer distances using stereo
vision; however, the calculation region can become extremely limited, or a short distance
can become invisible. In addition, stereo vision requires extensive computation for stereo
matching after applying rectification to left and right camera images. In contrast, monocular
vision requires far less computation since the distance is calculated through camera position
estimation and water surface coordinates of maritime objects. Moreover, monocular vision
demonstrated higher accuracy than stereo vision in calculating short distances and detecting
small objects more accurately than radar. Therefore, monocular vision is more effective
than stereo vision for detecting maritime obstacles and can be employed as auxiliary sailing
equipment with radar for the safe navigation of autonomous ships in the coast of Korea.

The detection model proposed in this study can only detect aquaculture buoys among
numerous maritime obstacles, and the performance in limited visibility environments such
as rain, fog, and nighttime is unknown. Monocular vision used in this study was affected
by camera position estimation. Therefore, a three-axis gimbal was used to eliminate hull
motion caused by wind and waves; however, errors due to heave were not considered. In
view of these limitations, further research will be performed in the next work.

5. Conclusions

In this study, we proposed a model that detects aquaculture buoys based on YOLOv5
and the most effective method for detecting maritime obstacles by comparing the distances
measured through monocular and stereo vision based on image coordinates. This paper
is mainly divided into two parts: object recognition and distance calculation. In the
object recognition stage, for designing the detection model, 2700 images of aqua farms
(buoy 1: 22,422, buoy 2: 2744) were used to create the training data and were divided in the
ratio of 8:2 between training and testing. Mosaic augmentation was applied when training
the model with YOLOv5 to accurately identify small objects and increase the batch size
during training. Model training resulted in a precision of 0.936, recall of 0.903, mAP of
94.3%, and FPS of 39.1. In the distance calculation stage, monocular vision calculates the
distance based on camera position estimation and water surface coordinates of maritime
objects, while stereo vision calculates the distance by finding corresponding points using
SSD, NCC, and ORB and then calculating the disparity. Stereo vision had small error
rates of −3.16% and −14.81% for short (NCC) and long distances (ORB); however, stereo
vision resulted in greater errors during distance calculation as the objects were smaller
and far apart. Monocular vision had error rates of 2.86% and −4.00% for short and long
distances, respectively, and was more capable of detecting small objects than radar. The
monocular vision proposed in this paper improved the ship’s ability to recognize its external
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environment and the safety of coastal navigation. Furthermore, it has important research
significance for the development of autonomous ships in the future.
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