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Abstract

Detecting faces with occlusions is a challenging task due

to two main reasons: 1) the absence of large datasets of

masked faces, and 2) the absence of facial cues from the

masked regions. To address these two issues, this paper

first introduces a dataset, denoted as MAFA, with 30, 811
Internet images and 35, 806 masked faces. Faces in the

dataset have various orientations and occlusion degrees,

while at least one part of each face is occluded by mask.

Based on this dataset, we further propose LLE-CNNs for

masked face detection, which consist of three major mod-

ules. The Proposal module first combines two pre-trained

CNNs to extract candidate facial regions from the input im-

age and represent them with high dimensional descriptors.

After that, the Embedding module is incorporated to turn

such descriptors into a similarity-based descriptor by using

locally linear embedding (LLE) algorithm and the dictio-

naries trained on a large pool of synthesized normal faces,

masked faces and non-faces. In this manner, many missing

facial cues can be largely recovered and the influences of

noisy cues introduced by diversified masks can be greatly

alleviated. Finally, the Verification module is incorporated

to identify candidate facial regions and refine their positions

by jointly performing the classification and regression tasks

within a unified CNN. Experimental results on the MAFA

dataset show that the proposed approach remarkably out-

performs 6 state-of-the-arts by at least 15.6%.

1. Introduction

With the rapid development of machine learning meth-

ods, the problem of face detection seems to be well ad-

dressed yet. For example, the face detector proposed in

[17] achieves an average precision of 98.0% on the public

image benchmark AFW [37] by using the cascaded Con-

volutional Neural Networks, while the speed of some face

detectors can reach up to 35 FPS [1] or even 400 FPS [21].

* Corresponding author: Jia Li (email: jiali@buaa.edu.cn).

Figure 1. Masked faces may have diversified orientations, degrees

of occlusion and mask types, making their detection an extremely

challenging task for existing face detectors.

Due to the great success of these face detectors, some of

them have been integrated into applications so as to facil-

itate auto-focusing [10], human computer interaction [12]

and image database management [27].

Beyond the remarkable success achieved by existing

works, there is increasing concern that the development of

better face detectors is now becoming more and more diffi-

cult. In particular, the detection of masked faces, which can

be very helpful for applications like video surveillance and

event analysis, is still a challenging task for many existing

models. As shown in Fig. 1, masked faces may have differ-

ent orientations, degrees of occlusion and diversified types

of masks, which make the accurate detection of masked

faces a really challenging task even for the state-of-the-art

face detectors [25, 4, 36, 19, 35]. Compared with the classic

task of normal face detection, existing models often have a

sharp performance drop in detecting masked faces, which

may be mainly caused by two reasons. First, there lacks a

large dataset with massive masked faces for exploring the

key attributes shared by various masked faces and identify-

ing the models with the state-of-the-art performance. Sec-

ond, facial features from the occluded parts are no longer

available in the detection process, while the existence of

masks inevitably bring in certain kinds of noise. With in-

sufficient training and testing data as well as incomplete and

inaccurate features, masked face detection has been becom-

ing a widely recognized challenging task in the area of face

detection. Although this issue has been tentatively studied
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in some recent works such as [7, 23, 32], it is still neces-

sary to construct large datasets and develop effective and

efficient models for masked face detection.

Toward this end, this paper presents a dataset for masked

face detection, which is denoted as MAFA. The dataset con-

sists of 30, 811 Internet images, in which 35, 806 masked

human faces are manually annotated. In the annotation

process, we ensure that each image contains at least one

face occluded by various types of masks, while the six

main attributes of each masked face, including locations of

faces, eyes and masks, face orientation, occlusion degree

and mask type, are manually annotated and cross-checked

by nine subjects. The dataset will be released soon on the

Internet, which we believe can facilitate the development of

new face detectors in the future.

By inspecting the main characteristics of masked faces

in MAFA, we find that most facial attributes can be lost

in heavily occluded faces (e.g., faces with only eyes un-

occluded by masks), while the highly diversified masks can

bring in various types of noises. Inspired by this fact, we

propose LLE-CNNs for masked face detection by recover-

ing missing facial cues and suppressing non-facial cues in

the feature subspace. The proposed approach consists of a

proposal module, an embedding module and a verification

module. The proposal module first extracts a set of face pro-

posals and characterize each proposal with a 4096d descrip-

tor with a pre-trained VGG-Face model [24]. Considering

that the descriptor of a masked face can be incomplete or

noisy, we further embed it into a feature subspace formed by

two dictionaries that consist of the descriptors from repre-

sentative normal faces and non-faces. Note that such dictio-

naries are learned from a large pool of normal faces, masked

faces and non-faces from previous datasets [14, 32] and the

training set of MAFA. With an approximate locally linear

embedding, a candidate region can be characterized by the

similarity scores to representative normal faces and non-

faces. Finally, such similarity-based descriptor is fed into

the Verification module that consists of a Deep Neural Net-

works with only Fully-Connected (FC) layers so as to iden-

tify the real faces. Experimental results on the proposed

MAFA dataset show that the proposed LLE-CNNs signifi-

cantly outperform 6 state-of-the-arts [18, 20, 37, 22, 7, 35]

in detecting masked faces.

The main contributions of this paper are three folds.

1) We present a dataset of masked faces that can be used

as an additional training source for developing new face de-

tectors; 2) We propose LLE-CNNs for masked face detec-

tion, which outperforms 6 state-of-the-art face detectors in

detecting masked faces; and 3) We conduct a comprehen-

sive analysis on the key challenges in masked face detec-

tion, which may be helpful for developing new face detec-

tors in the future.

2. Related Work

Since the main contributions of this work include a new

dataset and a novel model for masked face detection, we

will first review the most popular datasets in the literature,

followed by a briefly survey the state-of-the-art face detec-

tion models.

2.1. Datasets for Face Detection

In the literature, many datasets have been constructed to

assess face detection models. While early datasets mainly

consist of images collected in the controlled environment,

recent datasets like MALF [30], IJB-A [13],CelebA [32]

and WIDER FACE [31] tend to collect images from In-

ternet. In this manner, these datasets demonstrate better

capability in revealing the actual performances of face de-

tectors in the wild. Moreover, recent face datasets often

provide more annotations than early datasets. For exam-

ple, in FDDB [11] only the position of each face is anno-

tated. In contrast, the latest datasets such as OFD-UCI [7],

MALF [30] and WIDER FACE [31] provide multiple facial

attributes like positions, landmarks, gender, and poses.

In particular, compared with early datasets like

FDDB [11], recent datasets are becoming much larger and

contain much more real-world scenarios. For example,

CelebA [32] is 71 times larger than FDDB in number of

images, while the number of faces in WIDER FACE [31]

is 76 times larger than that in FDDB. The rapidly growing

face datasets constructs a more realistic testing platform for

face detection models so that their application in real-world

applications becomes much easier. Moreover, the presence

of such large-scale datasets enable the usage of deep learn-

ing algorithms [15] that are extremely powerful in learning

effective face representations directly from data.

2.2. Models for Face detection

As stated in [33], existing face detection models can be

roughly grouped into three categories, in which models are

based on boosting, Deformable Part Model (DPM) [6] and

Convolutional Neural Network (CNN) [16], respectively.

1) Boosting-based category. In this category, the Viola-

Jones face detector [28] is the one of the most famous mod-

els which adopted the boosted cascade with simple Haar

features. Inspired by this model, Li et al. [18] proposed a

multi-view face detector that adopted the surf features in the

training and testing processes. In [21], a face detector was

proposed to efficiently detect faces with an ensemble of op-

timized decision trees. By comparing pixel intensities in the

internal nodes, faces can be detected at an extremely high

speed. Recently, Liao et al. [20] proposed a face detector

that utilized the scale invariant and bounded image feature

called Normalized Pixel Difference. A single soft-cascade

classifier was then adopted for efficient face detection. Gen-
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erally speaking, face detectors in the boosting-based cate-

gory are often very efficient.

2) DPM-based category. Beyond boosting-based methods,

some approaches propose to explicitly model the structure

or deformation of faces with DPM. For example, Zhu and

Ramanan [37] proposed a tree structured model for face

detection, which can simultaneously estimate face poses

and localize facial landmarks. Mathias et al. [22] trained

a DPM-based face detector with about 26, 000 faces from

AFLW, which achieved an average precision of 97.14% on

AFW [37]. By observing that aligned face shapes can pro-

vide better features for face classification, Chen et al. [1]

presented a face detector by jointly learning detection and

alignment in a unified framework. In [7], a model was pro-

posed to jointly handle face detection and keypoint local-

ization by using hierarchical DPM. Typically, DPM-based

face detectors achieve impressive accuracy but may suffer

from the high computational cost due to the usage of DPM.

3) CNN-based category. Different from the boosting-

based and DPM-based approaches, CNN-based face detec-

tors directly learn face representations from data [34, 5]

and adopt deep learning paradigm [9, 8, 26] to detect the

presence of a face in a scanning window. For example,

Li et al. [17] proposed CascadeCNN, which is a boosted

exemplar-based face detector. In [5], Farfade et al. fine-

tuned the AlexNet [15] to get a multi-view face detector,

which was trained on 200, 000 positive samples and 20 mil-

lion negative samples. Yang et al. [29] proposed a face de-

tector that utilized the feature aggregation framework [3],

while the features were generated via CNN. In [32], the

faceness of a window was assessed with an attribute-aware

CNN, and occlusions were considered as well in generating

face proposals. As a result, this method demonstrates strong

capability in detecting faces with severe occlusion and pose

variation.

More recently, Zhu et al. [36] presented Contextual

Multi-Scale Region-based Convolution Neural Network

(CMS-RCNN) for face detection in unconstrained condi-

tions, while Li et al. [19] presented a method of integrat-

ing CNNs and a 3D face model in an end-to-end multi-

task discriminative learning framework for face detection

in the wild. Opitz et al. [23] proposed a novel grid loss

layer for CNNs to deal with partial occlusion in face de-

tection, which minimized the error rate on sub-blocks of a

convolution layer independently rather than over the whole

feature map. Chen et al. [4] proposed a new cascaded Con-

volutional Neural Network, named Supervised Transformer

Network, to address the challenge of large pose variations

in real-world face detection. In [25], Ranjan et al.presented

Hyperface for simultaneous face detection, landmarks lo-

calization, pose estimation and gender recognition by using

CNNs. It well exploits the synergy among the tasks which

boosts up their individual performances.

To sum up, many datasets and models exist in the litera-

tures, but few of them are especially developed for masked

face detection. Toward this end, we introduce the dataset

MAFA for training and benchmarking masked face detec-

tors, while a new LLE-CNNs model is proposed as a base-

line as well. Details of the proposed dataset and model will

be described in the subsequent two sections.

3. MAFA: A Dataset of Masked Faces

In this section, we will first show the data collected for

annotations in MAFA, and then describe the details of the

annotation process. Finally, we will provide a brief statistic

to show the major characteristics of MAFA.

3.1. Dataset Construction

We first collect a set of facial images from the Internet.

In this process, keywords such as ’face, mask, occlusion

and cover’ are used to retrieve more than 300K images with

faces from social networks like Flickr and the image search

engines like Google and Bing. Note that we only keep the

images with a minimal side length of 80 pixels. After that,

images that contain only faces without occlusion are man-

ually removed. Finally, we obtain 30, 811 images in total,

and each image contains at least one masked face.

On these images, we ask nine subjects to manually anno-

tate all faces, and each image is annotated by two subjects

and cross-validated by the third subject. In the annotation

process, we define six attributes that should be manually an-

notated for each face, including three types of locations and

three types of face characteristics:

1) Location of faces. As in [13, 30], the location of each

face is annotated by a square. Similar to [30], a face will be

labeled as “Ignore” if it is very difficult to be detected due

to blurring, severe deformation and unrecognizable eyes, or

the side length of its bounding box is less than 32 pixels.

Note that faces with the label “Ignore” will not be counted

as true positives or false alarms once being detected.

2) Locations of eyes. For each face, the coordinates of eye

centers are manually marked.

3) Locations of masks. The locations of all masks and/or

glasses in a face are annotated with rectangles.

4) Face orientation. We define 5 orientations, including

left, front, right, left-front and right-front. In the annotation,

the orientation of a face is voted by three subjects.

5) Occlusion degree. To measure the occlusion degree, we

divide a face into four major regions (see Fig. 2), including

eyes, nose, mouth and chin. According to the number of

regions occluded by masks and/or glasses, we define three

occlusion degrees, including Weak Occlusion (one or two

regions), Medium Occlusion (three regions), and Heavy Oc-

clusion (four regions).
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Figure 2. Definition of facial attributes and representative facial images in MAFA.

6) Mask type. We define four categories of masks that can

be frequently found in Internet images, including: Simple

Mask (man-made objects with pure color), Complex Mask

(man-made objects with complex textures or logos), Human

Body (face covered by hand, hair, etc.) and Hybrid Mask

(combinations of at least two of the aforementioned mask

types, or one of the aforementioned mask type with eyes

occluded by glasses).

Figure 3 shows an example of the annotated face. We can

see that our annotations actually consist of three locations

(face, eyes and masks) and three face characteristics (ori-

entation, occlusion degree and mask type). With these an-

notations, we can well describe the main characteristics of

faces, masks as well as their correlations. Considering the 5

face orientations, 3 occlusion degrees and 4 mask types, the

MAFA dataset covers 60 cases of masked faces in our daily

scenarios. In this manner, MAFA can be used to provide a

comprehensive benchmark of face detectors on all kinds of

masked faces.

3.2. Dataset Statistics

After the annotation, we obtain 35, 806 masked faces

with a minimum size of 32 × 32. The distribution of face

sizes is shown in Fig. 4(a), and we find that a face in MAFA

covers 143 × 143 pixels on average and spreads across a

large variety of sizes. Figure 4(b)-(d) illustrate the statistics

of face attributes, including face poses, occlusion degrees

and mask types. We can see that most faces in MAFA are

front faces, while few faces are purely left or right. In this

manner, face detectors that rely on the accurate localization

of eyes can be tested as well, while the challenging cases

such as left-front and right-front faces can be used to fur-

ther assess their robustness. In addition, most faces have

medium occlusion, which are also the most common cases

Figure 3. Examples of annotated faces in MAFA.

we may encounter in cold weather and poor air condition.

Furthermore, MAFA contains multiple types of masks (e.g.,

simple, complex and human body). These masks, which

may bring in diversified ‘noise’ when constructing face de-

scriptors, may provide us an opportunity to test the robust-

ness of face detectors. To sum up, all these characteris-

tics discussed above indicate that MAFA is a challenging

dataset for face detection, and such a dataset can provide

fair comparisons in benchmarking different face detectors

4. LLE-CNNs for Masked Face Detection

By inspecting the representative examples in MAFA, we

find that two key challenges in masked face detection are the

incomplete facial cues and inaccurate features from mask

regions. For example, in a left-frontal face with the mouth,

chin and nose occluded by a mask, most facial landmarks

are invisible and the feature descriptor of the face will con-
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Figure 4. Statistics of the masked faces in MAFA.

tain a lot of noises generated from the mask regions. In this

case, it is necessary to explore external cues beyond the face

regions so as to recover the lost facial cues and alleviate the

noisy mask features.

Toward this end, we propose KNN-CNNs for masked

face detection, which consist of three major modules (as

shown in Fig. 5), including: 1) the Proposal module ex-

tracts face proposals and describe them with noisy descrip-

tors, 2) the KNN module refines such descriptor with re-

spect to its nearest neighbors retrieved from a large pool

of synthesized faces and non-faces, and 3) the Verification

module jointly performs classification and regression tasks

with a unified CNN to identify candidate facial regions and

adjust their accurate positions. Details of the three modules

are described as follows.

Proposal Module. The proposal module extracts and char-

acterizes face candidates by cascading two CNNs for pro-

posal generation and feature extraction, respectively. The

proposal generation CNNs are built on the first four layers

adopted in the P-Net of [35], which consists of three Con-

volutional layers and a softmax layer. Considering masked

faces are very difficult to directly localize, we set a low

threshold in the last layer to generate massive candidate

proposals with such shallow CNNs. After that, we de-

liver each candidate region Fi into the pre-trained VGG-

Face networks [24] to extract a 4096d descriptor from the

FC7 layer, which is then normalized to a vector xi. Since

VGG-Face is trained on a large-scale face dataset, the ex-

tracted high-dimensional descriptor encodes both valuable

facial cues as well as the noisy features from mask regions.

Embedding Module. The embedding module recovers the

missing facial cues in xi and suppresses the noisy features

incorporated by mask regions. Toward this end, a feasi-

ble solution is to find the most similar faces or non-faces

from an external database and use them to refine xi. To-

ward this end, we propose to embed a candidate region into

a feature subspace formed by the most representative nor-

mal face and non-faces. Let D+ and D− be two dictionaries

consist of the descriptors of representative normal faces and

non-faces, we can derive a new representation vi from the

noisy features of a candidate region through locally linear

embedding,

vi = argmin
v

‖xi − Div‖
2
2, s.t. v � 0. (1)

where is Di is a sub-dictionary that consists of the descrip-

tors from the nearest neighbors of xi in the columns of Di.

Considering that it is somehow difficult to determine the

optimal size of the sub-dictionary Di, we adopt a fast ap-

proximation of the LLE process by solving

v̂i = argmin
v

‖xi − Dv‖22, s.t. v � 0. (2)

where D = [D+ D−] is a large dictionary that consists of

both representative faces and non-faces, and the fixed dic-

tionary D makes the quadratic optimization objects very

easy to resolve. Thus the only question is, how to construct

D+ and D−?

To construct the dictionaries D+ and D−, we refer to two

previous datasets of normal faces [14, 32] and the training

set of MAFA 25, 876 images. The same proposal module

is applied to these images so as to obtain proposals, which

are classified into four subsets, including normal faces F+
N

and non-faces F
−
N from images in [14, 32], and masked

faces F
+
M and non-faces F

−
M from images the training set

of MAFA. Considering that proposals can be very inaccu-

rate due to the exitance of masks, we further extend each

proposal in F
+
N and F

+
M by progressively crop rectangular

windows that contain the top 25%, 50% and 75% area. In

this manner, the sets of normal faces and masked faces can

be extended to four times larger. After that, the descriptor

of each face proposal is extracted by using the VGG-Face

model as well.

Given these two sets, we assume that the columns of D+

and D− consist of the descriptors from F
+
N and F

−
N , respec-

tively. In particular, D+ has the minimum error in sparsely

encoding the masked faces in F
+
M and the maximum error

in encoding the non-faces in F
−
M , and vice versa for D−. In

other words, D+ can be derived by solving

min
D+

1

|F+
M |

∑

F1∈F
+

M

‖x1 − D+α1‖
2
2

−
1

|F−
M |

∑

F2∈F
−

M

‖x2 − D+α2‖
2
2

s.t. ‖α1‖0 = ‖α2‖0 = 1, α1 � 0, α2 � 0,

D+
i ∈ {x0|F0 ∈ F

+
N}

(3)

where x0, x1 and x2 are the 4096d descriptors of F0, F1

and F2, respectively. D+
i is the ith column of D+. α1
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Figure 5. System framework of the proposed LLE-CNNs, which consists of three modules. The proposal module extracts face proposals

and characterize them with noisy descriptors. After that, the embedding module transfers the noisy descriptors into similarity-based vectors

by embedding the proposals into the feature subspace formed by representative normal faces and non-faces. Finally, the verification module

jointly perform regression and classification tasks so as to refine the location and scale of a proposal and identify whether it is a real face.

and α2 are sparse coefficient vectors in encoding x1 and

x2 with D+. With the constraints ‖α1‖0 = ‖α2‖0 = 1 and

α1 � 0, α2 � 0, the sparse coding process is equivalent to

finding the nearest neighbor D+. Note that this optimization

problem is different from the classic sparse coding scheme

due to the constraint D+
i ∈ {x0|F0 ∈ F

+
N}, making the

problem difficult to resolve with classic optimization algo-

rithms. Therefore, we propose a greedy algorithm to effi-

ciently construct D+ from {x0|F0 ∈ F
+
N}.

In the proposed algorithm, we first compute the total cost

of each proposal F0 ∈ F
+
N if it is solely used in encoding

all masked faces and non-faces in F
+
M and F

−
M :

ℓ(F0) =min
{ρ1}

∑

F1∈F
+

M

‖x1 − ρ1 · x0‖
2
2

−min
{ρ2}

∑

F2∈F
−

M

‖x2 − ρ2 · x0‖
2
2,

s.t. ρ1 ≥ 0, ρ2 ≥ 0,

(4)

By computing {ℓ(F0)|F0 ∈ F
+
N}, we obtain a ranked list

of normal face proposals with ascending cost, in which the

top-ranked proposals have the best capability in encoding

masked faces and the worst capability in describing non-

faces. As a result, we can construct D+ by iteratively move

the top K proposals (we empirically set K = 100) from the

ranked proposal list to a pool of selected proposals P whose

descriptors are columns of D+. Let the initial P(0) =, we

update P
(t) in the tth iteration by combining the newly se-

lected top K proposals with P
(t−1). After that, the descrip-

tors from proposals in P
(t) are used to update D+, which are

then used to compute the objective score in (3). Note that

the nth proposal in P
(t) will be removed if its descriptor is

not used in the sparse encoding process. That is,

∑

F1∈F
+

M

α1n +
∑

F2∈F
−

M

α2n = 0 (5)

where α1n and α2n are the nth component of α1 and α2, re-

spectively. By iteratively incorporating new proposals, en-

coding masked faces and non-faces and discarding unused

ones, we can efficiently construct a dictionary that gradually

minimize the lost in encoding masked faces and non-faces.

The iteration will be stopped if such objective scores stop

decreasing or reaches a predefined times T (we empirically

set T = 50). After that, the dictionary D+ can be con-

structed with representative normal faces, and D− can be

obtained in a similar way.

Verification Module. The verification module classifies

face candidates from the refined facial cues and refines their

positions as well as scales. Given the dictionaries D+ and

D−, the noisy descriptor of a candidate proposal can be

converted into a similarity-based vector by using (2). Af-

ter that, we deliver the vector into Deep Neural Networks

that simultaneously perform the regression and classifica-

tion tasks. The networks contain only fully convolutional

layers, in which the regression branch output the refined lo-

cation and scale of a proposal, and the classification branch

identify the networks to be real face or not.
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5. Experiments

In this Section, we conduct a comprehensive benchmark

of our approach and 6 state-of-the-art face detectors on

MAFA. The main objective of this benchmark is to find out

how these face detectors perform in detecting masked faces

and in which cases they will probably succeed and fail. By

analyzing the experimental results of these face detectors,

we then conduct a comprehensive discussion on how to de-

velop face detectors with the capability of handling faces

occluded by various kinds of masks.

5.1. Experimental Settings

As stated in Sect. 2, existing face detection models

can be roughly grouped into three major categories (i.e.,

boosting-based, DPM-based and CNN-based). From these

three categories, we select six state-of-the-art face detectors

for benchmarking, including two from the boosting-based

category (SURF [18] and NPD [20]), three from the DPM-

based category (ZR [37], HH [22] and HPM [7]), and one

CNN-based detector (MT [35]).

In the benchmarking process, we split the MAFA into

two subsets, including a training set and a testing set.

The training set consists of 25, 876 images with 29, 452
masked faces that are randomly selected from MAFA, while

the testing set contains the rest 4, 935 images with 6, 354
masked faces. In this study, we only report the perfor-

mances of our approach and the six face detectors on the

testing set, while such results can be directly used to facili-

tate their comparisons with new models trained on the same

training set of MAFA in the future. The average precision

(AP) scores of these face detectors are reported in Tab. 1,

while some representative results are shown in Fig. 6.

5.2. Comparisons with State­of­the­Art Models

From Tab. 1, we can see that our approach significantly

outperform the other six models in masked face detection.

While our AP reaches up to 76.4% over the testing set of

MAFA, the second best model, MT, only reaches an AP

of 60.8%. Moreover, our approach outperforms the other

six models in detecting masked faces under all the 12 con-

ditions in face orientation, degree of occlusion and mask

type. These results validates how effective our approach

is and how difficult the task of masked face detection is.

In particular, it further proves the necessity of constructing

such a dataset with diversified masked faces, which can be

not only used for model benchmarking but also used as an

additional training source in developing new face detectors.

By analyzing the performance of all seven models in

handling faces with different attributes, we find that the per-

formances of all face detectors decrease sharply on faces

with strong occlusions. Although our approach performs

the best, its AP only reaches 22.5% when heavy occlusion

Table 1. Average Precision (%) on the Testing Set of MAFA

Attributes
SURF NPD ZR HH HPM MT OUR

Min ↑
[18] [20] [37] [22] [7] [35]

Left 0.02 1.01 5.02 7.91 1.29 6.89 17.2 9.29

Left-Fr. 2.17 4.37 29.3 28.5 26.6 31.9 61.7 29.8

Front 19.7 16.9 45.5 51.6 64.4 62.2 79.6 15.2

Right-Fr. 1.93 2.34 13.8 20.4 18.9 20.2 54.5 34.1

Right 0.02 0.23 1.34 5.43 0.93 1.94 14.3 8.87

Weak 18.1 5.87 37.1 47.7 58.5 56.2 75.8 17.3

Medium 12.7 17.0 13.9 46.4 34.8 45.6 67.9 22.3

Heavy 0.05 0.52 7.12 5.59 5.31 5.24 22.5 15.4

Simple 10.7 12.8 39.3 45.3 54.7 51.6 74.3 19.6

Complex 11.8 8.52 33.3 42.1 46.1 48.2 71.6 23.4

Body 12.3 4.12 21.4 34.7 23.4 30.4 62.0 27.3

Hybrid 0.17 0.63 7.64 7.58 6.00 6.48 24.2 16.6

All 16.1 19.6 41.6 50.9 60.0 60.8 76.4 15.6

occurs. Moreover, side faces will degrade the performance

as well, especially the purely left or right faces. On such

faces, the AP scores of our model only reaches 17.2% and

14.3%, respectively. Furthermore, even the very simple

masks have strong impact to the face detectors. To sum up,

all these results imply that MAFA is a challenging dataset

even for the state-of-the-art face detectors.

To further investigate the performance of these models,

we refer to the representative results shown in Fig. 6 and

focus on the failures produced by the seven models. From

these results, we find that the feature robustness might be a

major cause of the impressive performance of our approach.

By refining the noisy face descriptors extracted via VGG-

Face within the embedding module, the inherent character-

istics of faces, even occluded by masks, can be captured by

referring to the most representative normal faces (and non-

faces). In this manner, the reference faces (and non-faces)

provide us valuable cues in recognizing a real face and re-

fining its location and scale. By contrast, the boosting-based

approaches often rely on the heuristic local features directly

extracted from the masked face regions, which are less ro-

bust when heavy occlusion occurs. As a result, the perfor-

mances of the two boosting-based face detectors are very

low since the local features extracted from masks other than

the facial regions are used for face detection.

Actually, feature robustness is with the highest impor-

tance in detecting masked faces. For example, NPD [20]

uses a scale invariant features called normalized pixel dif-

ference and achieves an average precision of 19.6% since

such simple features are often not reliable in masked fa-

cial regions. On the contrary, all the three DPM-based ap-

proaches, including ZR, HH and HPM, adopt the local

HoG (Histogram of Oriented Gradients) descriptor [2]. As

their DPM-based frameworks can well capture the robust

topological information of facial regions from a global per-

spective, their performances are much better than NPD even
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Figure 6. Representative detection results of our approach and 6 state-of-the-art face detectors on MAFA (Red: ground-truth, Green:

detection results). We see that most face detectors have difficulties to accurately locate the side faces that are heavily occluded by masks.

in heavy occlusions and complex masks (see Fig. 6). Last

but not least, the features in MT are learned from data. Even

though such features are especially designed for masked

faces, the overall performance of MT is still very impres-

sive compared with the boosting-based and DPM-based ap-

proaches. To sum up, robust features play an important role

in detecting masked faces, especially when most facial re-

gions are occluded by masks. Compared with the heuristic

features that are sensitive to masks and occlusions, robust

topological feature or features learned from data are more

robust in detecting faces. These results may point out a fu-

ture direction of developing robust and effective face de-

scriptors with the assistance of the MAFA dataset.

6. Conclusion

The problem of face detection in the wild have been ex-

plored in many existing researches, and the corresponding

face detectors have been tested on datasets of normal faces.

On these datasets, some face detectors have achieved ex-

tremely high performances and it seems to be somehow dif-

ficult to further improve them. However, the ‘real wild’ sce-

narios are much more challenging than expected for con-

taining faces captured at unexpected resolution, illumina-

tion and occlusion. In particular, the detection of masked

faces is an important task that needs to be addressed so as

to facilitate applications such as video surveillance.

In this paper, we introduce the dataset MAFA and LLE-

CNNs for masked face detection. We find that MAFA is

very challenging for existing face detectors, while the pro-

posed model achieves the best performance in all settings.

This may imply that the data-driven framework may be a

feasible solution in finding robust and effective features for

masked face detection. We believe this dataset can facili-

tate the development of face detectors that can effectively

detect faces with occlusions. In addition, predicting facial

attributes of MAFA like mask type and occlusion degree

also has practical meaning in many real-world applications,

which will be one of our future research directions.
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