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Detecting Moving Objects, Ghosts and Shadows in
Video Streams

Rita Cucchiara, Costantino Grana, Massimo Piccardi , Andrea Prati

Abstract

Background subtraction methods are widely exploited for moving object detection in videos in many applications, such as

traffic monitoring, human motion capture and video surveillance. How to correctly and efficiently model and update the background

model and how to deal with shadows are two of the most distinguishing and challenging aspects of such approaches. This work

proposes a general-purpose method which combines statistical assumptions with the object-level knowledge of moving objects,

apparent objects (ghosts) and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects,

ghosts and shadows are processed differently in order to supply an object-based selective update. The proposed approach exploits

color information for both background subtraction and shadow detection to improve object segmentation and background update.

The approach proves fast, flexible and precise in terms of both pixel accuracy and reactivity to background changes.
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I. I NTRODUCTION

DETECTION of moving objects in video streams is the first relevant step of information extraction in

many computer vision applications, including video surveillance, people tracking, traffic monitoring

and semantic annotation of videos. In these applications, robust tracking of objects in the scene calls for a

reliable and effective moving object detection that should be characterized by some important features: high

precision, with the two meanings of accuracy in shape detection and reactivity to changes in time; flexibility

in different scenarios (indoor, outdoor) or different light conditions; and efficiency, in order for detection to

be provided in real-time. In particular, while the fast execution and flexibility in different scenarios should
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be considered basic requirements to be met, precision is another important goal. In fact, a precise moving

object detection makes tracking more reliable (the same object can be identified more reliably from frame to

frame if its shape and position are accurately detected) and faster (multiple hypotheses on the object’s identity

during time can be pruned more rapidly). In addition, if object classification is required by the application,

precise detection substantially supports correct classification.

In this work, we assume that the models of the target objects and their motion are unknown, so as to achieve

maximum application independence. In the absence of anya priori knowledge about target and environment,

the most widely adopted approach for moving object detection with fixed camera is based onbackground

subtraction[1][2][3][4][5][6][7][8][9]. An estimate of the background (often called abackground model) is

computed and evolved frame by frame: moving objects in the scene are detected by the difference between

the current frame and the current background model. It is well known that background subtraction carries two

problems for the precision of moving object detection. The first problem is that the model should reflect the

real background as accurately as possible, to allow the system accurate shape detection of moving objects.

The detection accuracy can be measured in terms of correctly and incorrectly classified pixels during normal

conditions of the object’s motion (i.e. the “stationary background” case). The second problem is that the

background model should immediately reflect sudden scene changes such as the start or stop of objects, so as

to allow detection of only the actual moving objects with high reactivity (the “transient background” case).

If the background model is neither accurate nor reactive, background subtraction causes the detection of

false objects, often referred to as “ghosts” [1][3]. In addition, moving object segmentation with background

suppression is affected by the problem ofshadows[4][10]. Indeed, we would like the moving object detection

to not classify shadows as belonging to foreground objects, since the appearance and geometrical properties

of the object can be distorted, which in turn affects many subsequent tasks such as object classification and

the assessment of moving object position (normally considered to be the shape centroid). Moreover, the

probability of object undersegmentation (where more than one object is detected as a single object) increases

due to connectivity via shadows between different objects.



Feature Systems
Statistics • Minimum and maximum values [1]

• Median [11][12], *
• Single Gaussian [5][4][13]
• Multiple Gaussians [14][10][3]
• Eigenbackground approximation [15][6]
• Minimization of Gaussian differences [7]

Adaptivity [1][6][5][8][16][2], *
Selectivity [10][2][8][1], *
Shadow [4][10], *
Ghost [1][3], *
High-frequency • Temporal filtering [14][15][6]
illumination changes • Size filtering *
Sudden global [1], *
illumination changes

TABLE I

COMPARED BACKGROUND SUBTRACTION APPROACHES. OUR APPROACH IS REFERRED WITH*.

Many works have been proposed in the literature as a solution to an efficient and reliable background

subtraction. Table I is a classification of the most relevant papers based on the features used. Most of the

approaches use a statistical combination of frames to compute the background model (see Table I). Some of

these approaches propose to combine the current frame and previous models with recursive filtering (adaptiv-

ity in Table I) to update the background model. Moreover, many authors propose to use pixel selectivity by

excluding from the background update process those pixels detected as in motion. Finally, problems carried

by shadows have been addressed [4][10][17]. In this paper we propose a novel simple method that exploits

all these features, combining them so as to efficiently provide detection of moving objects, ghosts and shad-

ows. The main contribution of this proposal is the integration of knowledge of detected objects, shadows

and ghosts in the segmentation process to enhance both object segmentation and background update. The

resulting method proves to be accurate and reactive, and at the same time fast and flexible in the applications.

II. D ETECTING MOVING OBJECTS, GHOSTS AND SHADOWS

The first aim of our proposal is to detect real moving objects with high accuracy, limiting false negatives

(object’s pixels that are not detected) as much as possible. The second aim is to extract pixels of moving



objects with the maximum responsiveness possible, avoiding detection of transient spurious objects, such as

cast shadows, static objects or noise.

To accomplish these aims, we propose a taxonomy of the objects of interest in the scene, using the following

definitions (see also Fig. 1):

• Moving visual object(MVO): set of connected points belonging to object characterized by non-null mo-

tion.

• Uncovered Background: the set of visible scene points currently not in motion.

• Background(B): is the computed model of the background.

• Ghost(G): a set of connected points detected as in motion by means of background subtraction, but not

corresponding to any real moving object.

• Shadow: a set of connected background points modified by a shadow cast over them by a moving object.

Shadows can be further classified asMVO shadow(MVOSH), that is, a shadow connected with an MVO and

hence sharing its motion, andghost shadow(GSH), being a shadow not connected with any real MVO.

Static cast shadows are neither detected nor considered since they do not affect moving object segmentation

if background subtraction is used: in fact, static shadows are included in the background model. A ghost

shadow can be a shadow cast either by a ghost or an MVO: the shape and/or position of the MVO with

respect to the light source can lead to the shadow not being connected to the object that generates it.

Our proposal makes use of the the explicit knowledge of all the above five categories for a precise segmen-

tation and an effective background model update. We call our approachSakbot(Statistical And Knowledge-

Based ObjecT detection) since it exploits statistics and knowledge of the segmented objects to improve both

background modeling and moving object detection. Sakbot is depicted in Fig. 1, reporting the aforementioned

taxonomy. Sakbot’s processing is the first step for different further processes, such as object classification,

tracking, video annotation and so on.

Let us callp a point of the video frame at time t (It). It(p) is the value of pointp in the color space. Since

images are acquired by standard color cameras or decompressed from videos with standard formats, the basic



Fig. 1. Sakbot architecture

color space is RGB. ThusIt(p)1 is a vector withR,G,B components. The goal is to compute, at each time t,

both the setKOt of known objects and the background modelBt; in accordance with the taxonomy,KOt is

defined as:

KOt = {MVOt} ∪ {MVOt
SH} ∪ {Gt} ∪ {Gt

SH} (1)

Bt is the background model at time t and is defined for each point of the image. Ifp is a point of the

uncovered background thenBt(p) should correspond to its value in the current frame; however, ifp is a

point of a known object (i.e. that has been segmented and classified),Bt(p) is an estimation of the value of

background covered by the object itself.

If point p does not belong to any known object, the background value inp is predicted using only statistical

information (Bt+∆t
s (p)) on the following setS of elements:

S = {It(p), It−∆t(p), ..., It−n∆t(p)} ∪ wb{Bt(p)} (2)

As it is possible to note from Eq. 2, in order to improve the stability of the model we exploitedadaptivity

too. We include an adaptive factor by combining then sampled frame values and the background past values

(with an adequate weightwb). Then frames are sub-sampled from the original sequence at a rate of one
1We use a bold notation to represent the vectors (like images) and a non-bold notation to indicate the single vector element.



every∆t (typically one every ten). Then, the statistical background model is computed by using the median

function (as in [11][12]) as follows:

Bt+∆t
s (p) = arg min

i=1 ,...,k

k∑
j=1

Distance(xi,xj) xi,xj ∈ S (3)

where the distance is aL-inf distancein the RGB color space:

Distance(xi,xj) = max (|xi .c − xj .c|) with c = R, G, B. (4)

In our experiments, the median function has proven effective while, at the same time, of less computational

cost than the Gaussian or other complex statistics.

Foreground points resulting from the background subtraction could be used for the selective background

update; nevertheless, in this case, all the errors made during background subtraction will consequently affect

the selective background update. A particularly critical situation occurs whenever moving objects are stopped

for a long time and become part of the background. When these objects start again, a ghost is detected in the

area where they were stopped. This will persist for all the following frames, preventing the area to be updated

in the background image forever, causingdeadlock[10]. Our approach substantially overcomes this problem

since it performs selectivity not by reasoning on single moving points, but on detected and recognized moving

objects. This object-level reasoning proved much more reliable and less sensitive to noise than point-based

selectivity. Therefore, we use a knowledge-based background model defined as:

Bt+∆t
k (p) =


Bt(p) if p ∈ O,O in {MVOt} ∪ {MVOt

SH}

Bt+∆t
s (p) if p ∈ O,O in {Gt} ∪ {Gt

SH}
(5)

The knowledge of the scene’s components in the current frame will be used to update the background

model:

Bt+∆t(p) =


Bt+∆t

s (p) if @O ∈ KOt : p ∈ O

Bt+∆t
k (p) otherwise

(6)

The expression in Eq. 6 defines a selective background update, in the sense that a different background

model is selected whether the point belongs to a known object or not. Differently from other proposals



([1][10][2][8]), selectivity is atobject-leveland not at pixel-level only, in order to modify the background in

accordance with the knowledge of the objects detected in the scene. The advantage is that the background

model is not “corrupted” by moving objects and thus it is possible to use a short∆t and a smalln so as to

also achieve reactivity.

In our approach, after background subtraction, a set of points called foreground points is detected and then

merged into labeled blobs according to their connectivity. An initial camera motion compensation might

have been performed previously, should the application require it (for example, to compensate small camera

vibrations due to non-ideal operational conditions). This step is based on the choice of a fixed reference in

the scene assumed to be never occluded at run time. In order to improve detection, background subtraction is

computed by taking into account not only a point’s brightness, but also its chromaticity, as in Eq. 4:

DBt(p) = Distance(It(p),Bt(p)) (7)

The L-inf distance has proven effective in our experiments, while at the same time being less computationally

expensive than other distances. In fact, other metrics can be used as the Euclidean distance, or the Maha-

lanobis distance used in [5], but this last is computationally more severe since it associates the correlation

between parameters using the covariance matrix.

The selection of the initial set of foreground points is carried out by selecting the distance imageDBt

defined in Eq. 7 with an adequately low thresholdTL. Among the selected points, some are discarded as

noise, by applying morphological operators. Then, the shadow detection process is applied (as described in

Section III) and the detected points are labeled as shadow points. A region-based labeling is then performed

to obtain connected blobs of candidate moving objects and shadows. Eventually, blob analysis validates the

blobs of candidate moving objects as either moving objects or ghosts. MVOs are validated by applying a set

of rules onarea, saliencyandmotionas follows:

• The MVO blob must be large enough (greater than a thresholdTA that depends on the scene and on the

signal-to-noise ratio of the acquisition system); with this validation, blobs of a few pixels (due, for instance,



to high frequency background motion, like movements of tree leaves) can be removed;

• The MVO blob must be a “salient” foreground blob, as ascertained by a hysteresis thresholding. The low

thresholdTL set on the difference imageDBt inevitably selects noise together with all the actual foreground

points. A high thresholdTH selects only those points with a large difference from the background and

validates the blobs which contain at least one of these points;

• The MVO blob must have non negligible motion. To measure motion, for each pixel belonging to an

object we compute the spatio-temporal differential equations for optical flow approximation, in accordance

with [18]. Theaverage optical flowcomputed over all the pixels of an MVO blob is the figure we use to

discriminate between MVOs and ghosts: in fact, MVOs should have significant motion, while ghosts should

have a near-to-zero average optical flow since their motion is only apparent.

Optical flow computation is a highly time-consuming process; however, we compute it only when and

where necessary, that is only on the blobs resulting from background subtraction (thus a small percentage

of image points). The same validation process should also be carried out for shadow points, in order to

select those corresponding to the set ofMVO shadowsand those belonging toghost shadows. However,

computing the optical flow is not reliable on uniform areas such as shadows. In fact, the spatial differences

in the optical flow equation is nearly null because shadows smooth and make uniform the luminance values

of the underlying background. Therefore, in order to discriminate MVO shadows from ghost shadows, we

use information about connectivity between objects and shadows. Shadow blobs connected to MVOs are

classified as shadows, whereas remaining ones are considered as ghost shadows. The box of Fig. 2 reports

the rules adopted for classifying the objects after blob segmentation. All foreground objects not matching

any of the rules in Fig. 2 are considered background and used for background update.

< MV O >←− (foreground blob)∧ ¬ (shadow)∧ (large area)∧ (high saliency)∧ (high average optical flow)
< Ghost >←− (foreground blob)∧ ¬ (shadow)∧ (large area)∧ (high saliency)∧ ¬ (high average optical flow)
< MV O shadow >←− (foreground blob)∧ (shadow)∧ (connected with MVO)
< Ghost shadow >←− (foreground blob)∧ (shadow)∧ ¬ (connected with MVO)

Fig. 2. Validation rules

In conclusion, by including Eq. 5 in Eq. 6,the background model remains unchanged for those points that



belong to detected MVOs or their shadow. Instead, points belonging to a ghost or ghost shadow are considered

potential background points and their background model is updated by use of the statistic function.

III. SHADOW DETECTION

By shadow detectionwe mean the process of classification of foreground pixels as “shadow points” based

on their appearance with respect to the reference frame, the background. The shadow detection algorithm

we have defined in Sakbot aims to prevent moving cast shadows being misclassified as moving objects (or

parts of them), thus improving the background update and reducing the undersegmentation problem. The

major problem is how to distinguish between moving cast shadows and moving object points. In fact, points

belonging to both moving objects and shadows are detected by background subtraction by means of Eq. 7.

To this aim, we analyze pixels in the Hue-Saturation-Value (HSV) color space. The main reason is that the

HSV color space explicitly separates chromaticity and luminosity and has proved easier than the RGB space

to set a mathematical formulation for shadow detection.

For each pixel belonging to the objects resulting from the segmentation step, we check if it is a shadow

according to the following considerations. First, if a shadow is cast on a background, the hue component

changes, but within a certain limit. In addition, we considered also the saturation component, which was

also proven experimentally to change within a certain limit. The difference in saturation must be anabsolute

difference, while the difference in hue is anangulardifference.

We define a shadow maskSP t for each pointp resulting from motion segmentation based on the following

three conditions:

SP t(p) =


1 if α ≤ It(p).V

Bt(p).V
≤ β ∧ |I t(p).S −Bt(p).S| ≤ τS ∧ DH ≤ τH ; α ∈ [0, 1], β ∈ [0, 1]

0 otherwise

(8)

where the.H denotes the hue component of a vector in the HSV space and is computed as:

Dt
H(p) = min( |I t(p).H −Bt(p).H|, 360− |I t(p).H −Bt(p).H| ) (9)



The lower boundα is used to define a maximum value for the darkening effect of shadows on the background,

and is approximately proportional to the light source intensity. Instead the upper boundβ prevents the system

from identifying as shadows those points where the background was darkened too little with respect to the

expected effect of shadows. Approximated values for these parameters are also available based on empirical

dependence on scene luminance parameters such as the average image luminance and gradient which can

be measured directly. A preliminary sensitivity analysis forα, β, τH andτS is reported in [9]. A detailed

comparison of this method with others proposed in the literature is reported in [17].

(a) (b) (c)

(d) (e) (f)

Fig. 3. The effects of shadow classification on the background modeling. Frame #180 is reported in (a) a raw image and in (b)
with the detected MVOs and MVO shadows. In frame #230 (c) the detected classes are reported in figure (f). Sakbot is able to
correctly segment the image (figure d), while using shadow suppression only the result is incorrect, as reported in figure e.

Figg. 3(a) and 3(c) are two frames (#180 and #230) of a video from an indoor scene with distributed

light sources creating many shadows. In the scene, a person keeps on moving in the same zone for a while,

and the points of his connected shadows occupy always a same area. Fig. 3(b) shows the detected MVO

and its connected shadows at frame #180; shadow suppression is evidently needed for achieving precise

segmentation of the MVO. Moreover, the use of shadowed areas is essential also for obtaining an accurate



and reactive background modeling. To demonstrate this, Fig. 3(c) shows a later frame of the same sequence

(frame #230), where the person moves from the area. Fig. 3(d) shows the correct segmentation achieved with

Sakbot, which correctly updates the background (see Eq. 5). Figg. 3(e) and 3(f) show the results achieved

without exploiting the shadow classification in the background update process. The MVO’s shape is evidently

affected by errors, arising as follows: let us suppose that in frame #180 the background is updated using all the

shadows; in frame #230, an area previously occupied by shadows is now uncovered, thus creating apparent

foreground points; some of them are grouped into isolated blobs, which can be easily classified as ghosts,

their average optical flow being null; however, other apparent foreground points connected with the real MVO

points are instead included in the MVO segmentation, thus substantially affecting the object’s shape. Fig. 3(f)

shows the differently classified points. Although difficult to be quantified, the corrupting effects of including

shadows in the background modeling update are relevant in real cases.

IV. RESULTS EVALUATIONS

In the following, we describe some relevant cases. The first example measures reactivity in a limit condi-

tion, when the background reflects changes from a car that starts its motion after having previously been part

of the background (a reverse out of a parking lot).

Fig. 4. The reactivity of the background model. First column contains the background model at frame #65; second column
contains a zoomed detail of the frame # 100 (upper image) and of detected MVOs (in black) by using pixel selectivity only
(lower image): false positives are due to the ghost; third column reports the detected MVO by using Sakbot (upper) and by
using statistic background update only at frame #134 (lower)

While the car is parked, it is included in the background image. At frame #65 (Fig.4, first column), it starts

reversing. Until about Frame #100 (Fig.4, second column, upper image) the moving object still substantially



covers the area where it was stopped, preventing separation from its forming ghost. However, after a few

frames, the correct background update and the correct segmentation can be achieved with Sakbot (Fig.4,

second column, upper image).

This result could not be achieved by using statistics only. As an example, the use of astatistic background,

using onlyBS in equation 6 (Fig. 4, second column, lower image), almost correctly updates the new back-

ground only after about forty frames, even with still considerable errors (the black area). Moreover, results

comparable with those of Sakbot cannot be achieved by only adopting selectivity at pixel-level, being the

usual approach that excludes from the background update pixels detected as in motion[1][8][2]. In fact, if the

value of the detected foreground points is never used to update the background, the background will never be

modified; consequently, the ghost will be detected forever (Fig. 4, first column, lower image). If, instead, the

value of the detected foreground points is used in the statistic update, but with a limited weight as in [8], the

udpate will still be very slow.

This different reactivity is compared in the graphs in Fig. 5, where false negatives (FN) and false positives

(FP) are compared against the ground-truth. The three lines show FN and FP results with the same statistical

function (Eq.s 2 and 3 withn=7), comparing the statistic background (Bs curve), selectivity at pixel-level

(Bs+pix sel curve) and with the knowledge-based selectivity of Sakbot (Sakbot curve); all the approaches

include shadow suppression and classification. The FN curves are similar for all three approaches, since FN

accounts for false negatives that are due to incorrect segmentation (mostly some parts of the car window,

erroneously classified as shadows). Instead, the FP curves account for false positives, differing much de-

pending on the different background reactivity. The Sakbot curve proves that immediately after an object

has moved away from its initial position (Frame #103 in the graph), nearly no ghost points are segmented as

MVO points. Starting from frame #105 the FP increase slowly: this is due to the fact that the moving car is

turning parallel to the road, increasing its size and that of its shadow; the FP increase proportionally due to

the unavoidable imperfections of the shadow detection algorithm. The ghost remains forever instead in the

case of pixel selectivity (Bs+pixsel curve), while it decreases slowly in the case of pure statistics (Bs curve).



In frame #103, the Bs curve still shows a non negligible value of FP; this is due to the still partially erroneous

background shown in Fig. 4, second column, lower image.

In Sakbot, high responsiveness to background changes is given by the concurrence of two features, namely

the limited number of samples in the statistics and the knowledge-based selectivity at object level. Differ-

ently from purely statistical methods, the knowledge-based selectivity allows the system a limited observation

window without an erroneous background update. Differently from pixel-level selective methods, the classi-

fication of ghosts is more robust and deadlock is avoided.

(a) False Positives (b) False Negatives

Fig. 5. Reactivity comparison between a simply statistical background, a pixel-level selective background and the statistical and
knowledge-based background models. Segmentation is provided via background subtraction including shadow detection.

V. CONCLUSIONS

(a) Domotics applica-
tion

(b) US Intelligent
Room

(c) Outdoor surveil-
lance

(d) Traffic Control in
US Highways

(e) Video segmenta-
tion for transcoding

Fig. 6. Examples of different applications of Sakbot.

This paper has presented Sakbot, a system for moving object detection in image sequences. This system

has the unique characteristic of explicitly addressing various troublesome situations such as cast shadows and



ghosts. Cast shadows are detected and removed from the background update function, thus preventing unde-

sired corruption of the background model. Ghosts are also explicitly modeled and detected so as to avoid a

further cause of undesired background modification. Actually, in scenes where objects are in constant motion

(i.e., no ghosts are present), any common background suppression algorithm already performs effectively.

However, if the dynamics of the scene is more complex, with objects stopping and starting their motion, stan-

dard techniques would suffer from significant errors, due to the absence of the object-level knowledge which

is instead accounted for in our proposal. With Sakbot, when an object starts to move, only initially it will be

connected to its ghost. This connected object-ghost blob can be either globally accepted as a true object or

rejected based on its AOF. In either case, this will cause inevitable transient errors in the background model.

However, as soon as the ghost separates from the actual object, it will be quickly classified as ghost object

and, unlike any other common approaches, the background will recover immediately. This will significantly

reduce the impact of ghost errors in highly dynamic scenes such as dense urban traffic scenes with mixed

vehicles and people. The approach proved fast, flexible and precise in terms of both shape accuracy and re-

activity to background changes. These results are mainly due to the integration of some form of object-level

knowledge into a statistical background model.

The Sakbot system has been tested in a wide range of different environments and applications. Fig. 6

shows some of these applications: domotics, intelligent rooms, outdoor surveillance, traffic control on US

highways, and object segmentation in video for semantic transcoding [19]. Sakbot resulted to be a general-

purpose approach that can be easily tuned for various contexts. This approach was intentionally designed

to be completely independent of the tracking step in order to retain maximum flexibility. Since tracking is

often application-dependent, this might jeopardize the generality of this moving object detection approach.

Actually, if feedback from the tracking level to the object detection level could be exploited, it is likely that

the object classification could be improved by verification of temporal consistency.

Finally, the method is highly computationally cost-effective since it is not severe in computational time

(excluding the computation of approximate optical flow equation, which is however limited to the pixels of



foreground blobs only). Unlike other background subtraction methods which compute multiple and more

complex background statistics at a time, the very simple median operator requires very limited computation.

This approach consequently allows fast detection of moving objects, which for many applications is per-

formed in real time even on common PCs; this in turn allows successive higher-level tasks such as tracking

and classification to be easily performed in real time. For example, we analyzed the time performance with a

Pentium 4 1.5 GHz for a video with 320 x 240 frames (24 bits per pixel) in which the Sakbot system is able

to obtain an average frame rate of 9.82 fps with∆t=10, and reaches 10.98 fps (performance obtained on the

video of Fig. 6(a)).
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