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Abstract: In most countries, freight is predominantly transported by road cargo trucks. We present
a new satellite remote sensing method for detecting moving trucks on roads using Sentinel-2 data.
The method exploits a temporal sensing offset of the Sentinel-2 multispectral instrument, causing
spatially and spectrally distorted signatures of moving objects. A random forest classifier was trained
(overall accuracy: 84%) on visual-near-infrared-spectra of 2500 globally labelled targets. Based
on the classification, the target objects were extracted using a developed recursive neighbourhood
search. The speed and the heading of the objects were approximated. Detections were validated by
employing 350 globally labelled target boxes (mean F1 score: 0.74). The lowest F1 score was achieved
in Kenya (0.36), the highest in Poland (0.88). Furthermore, validated at 26 traffic count stations in
Germany on in sum 390 dates, the truck detections correlate spatio-temporally with station figures
(Pearson r-value: 0.82, RMSE: 43.7). Absolute counts were underestimated on 81% of the dates. The
detection performance may differ by season and road condition. Hence, the method is only suitable
for approximating the relative truck traffic abundance rather than providing accurate absolute counts.
However, existing road cargo monitoring methods that rely on traffic count stations or very high
resolution remote sensing data have limited global availability. The proposed moving truck detection
method could fill this gap, particularly where other information on road cargo traffic are sparse by
employing globally and freely available Sentinel-2 data. It is inferior to the accuracy and the temporal
detail of station counts, but superior in terms of spatial coverage.

Keywords: Sentinel-2; truck detection; road traffic; machine learning

1. Introduction

Road traffic as a whole is an important source of air pollutants [1–5]. 86% of the
transcended annual EU limits for NO2 were measured at traffic stations in 2019, according
to the European Environment Agency [4]. The majority of freight is transported on roads
in many countries using road cargo trucks for national and international trade [6–8]. This
produces a significant amount of emissions [9], as most road cargo trucks are still powered
by fossil fuel combustion [10]. The relevance of traffic for air-polluting emissions has been
shown in various countries globally [1–3,5]. Additionally, the role of road cargo in national
and international logistics suggests using the spatio-temporal abundance of trucks as an
economic proxy [11–13]. This nexus of economy, cargo traffic, and emissions has also been
evident during the COVID-19 pandemic that is widely associated with decreased NO2
concentrations [14–16].

Monitoring road cargo truck traffic is thus important for depicting spatial patterns of
economic performance and emissions.

A core part of road traffic observation is the detection of actual traffic by type [17].
Traditionally, this has been approached using automatic count stations, registering traffic
at selected sites [18]. Some countries operate station networks, e.g., Germany [19], the
United States [20] and Austria [21]. However, such intrusive monitoring techniques [22] are
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expensive and their operation may disrupt the traffic [17,23]. Various non-intrusive and off-
roadway traffic monitoring approaches [22] have been presented, that use e.g., cameras [24],
mobile phones [25] and social media data [26], and wireless sensors [22,27]. While these
measurements are conducted at a high temporal resolution, the observation stations are
operated sparsely and many regions lack such measurement networks at all [18,23]. Remote
sensing analysis as an independent space-borne monitoring method [22] may fill these gaps
with its repetitive availability, covering large areas especially where no traffic monitoring
through ground devices are installed [23]. Due to the relatively small size of road vehicles
mainly very high resolution (VHR) data have been used for vehicle detection [23,28–50].
We suggest using passive optical Sentinel-2 remote sensing data for detecting moving
trucks on roads. The presented method exploits a temporal sensing offset of the Sentinel-2
multispectral instrument (MSI) [51–55]. Sentinel-2 data has global coverage, a regular
5-daily revisit, and mission continuity [54,56]. These are advantages compared to traffic
count stations and VHR remote sensing data. With the presented method, we aim to
examine and validate the detectability of moving trucks in Sentinel-2 data.

Background

The first remote sensing studies of traffic mostly used airborne systems such as zeppelins,
helicopters and aircrafts [57]. Multiple optical cameras mounted on aircrafts have been
utilized at selected sites for detecting vehicles and quantifying their velocities [18,58–60].
Yao et al. [61] detected vehicles relying on airborne laser scanning (ALS). TerraSAR-X
data were also employed for vehicle detection and speed approximation [62,63]. Early
approaches based on very high resolution (VHR) spaceborne data were presented e.g.,
by Gerhardinger et al. [23] and Hinz et al. [64]. The latter exploited the vehicle shadow
as a result of time-specific sun angles. Larsen et al. [65] incorporated this property into
a classification-based approach. VHR data availability have created new potentials in
object-based remote sensing [66], including vehicle detection using e.g., WorldView [67,68]
and Planet Labs data [28]. Pesaresi [69] made use of a sensor-internal acquisition time-lag
between multispectral and panchromatic bands. An equivalent idea uses satellite video
data [50,70–73]. Remote sensing night light data has been used for a general approximation
of traffic density [74]. In recent years, object-detecting neural networks, in particular
convolutional neural networks (CNN), have been used extensively for vehicle detection
in VHR aerial and spaceborne data [29–49,75]. The disadvantage of most VHR systems
is their irregular acquisition [60,62]. In this paper, we present a method for large moving
vehicle detection using regularly acquired multispectral Sentinel data at 10 m spatial
resolution. The Sentinel-2 mission is part of the Copernicus earth observation program
owned by the European Commission (EC) and operated by the European Space Agency
(ESA) [76]. Sentinel-2 A/B are optical satellites carrying a push-broom MSI that captures
reflected solar electromagnetic radiation in 13 bands ranging from VIS, through NIR
to SWIR [54,56]. Functionalities of MSI are explained e.g., by Gascon et al. [54]. MSI
carries in sum 24 detector modules on two focal planes sensing the VIS-NIR and the
SWIR respectively. MSI achieves a 20.6◦ field-of-view enabling a 295 km swath width.
On each focal plane, the 12 detector modules are organized in a staggered layout. This
causes an inter-detector shift between odd and even detectors of 14–48 km along track. In
addition, there is an inter-band measurement shift within each detector module causing
a displacement of up to 17 km along track. These systematic effects cause a band- and
pixel-specific line-of-sight (LOS) that is corrected during the ground processing of the
data, using the satellite position, sampling date, and an earth model including a digital
elevation model (DEM) [54]. This processing creates a multispectral registration of less than
0.3 pixels [53–56,77]. However, the procedure relies on a static land surface at the altitude
of the earth model. Once either an object is moving (motion effect) and/or is situated at
a different altitude (altitude parallax), geometric shifts may be apparent in the data. The
described setup causes an inter-band parallax, which can be expressed as an angle and a
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temporal sensing offset: Each Sentinel-2 band is acquired at a slightly different time due to
the sensor build geometry [55,77].

Altitude parallax and motion effects, have been exploited for object extraction from
remote sensing data of sensors with a similar setup [69,78–80]. Experiences with Sentinel-2
in this regard are limited. Skakun et al. [55] emphasized the potential for high altitude
or moving object detection with Sentinel-2 and analyzed band phase correlations of such
objects. They calculated the minimum needed object speed to be 17 km/h. Frantz et al. [53]
detected clouds based on the altitude parallax within the Sentinel-2 NIR bands. The
displacements among the bands 7, 8 and 8A are depicted by a Cloud Displacement Index,
composed of the band ratios and their spatial variance. P. and H. Heiselberg [51,52]
exploited the altitude parallax and the movement effect for detecting ships and airplanes
and calculated their speed based on the band displacement. The object detection was
achieved by statistical thresholds, differentiating the target pixels from the background.
Liu et al. [81] detected flying airplanes and computed their speed on global scale exploiting
the Sentinel-2 altitude parallax and motion effects.

Extracting objects of sub-pixel size from Sentinel-2 data is outside the scope of the
satellite, as it was mainly designed for analyzing land surfaces [56]. We present a method
for detecting moving trucks based on the Sentinel-2-related motion effect. Road cargo
trucks (British English: lorry) in the EU are usually up to 18.75 m long and 2.55 m wide [82].
In other countries they may be longer, e.g., in Australia up to 53.5 m [83]. An EU truck of
maximum size covers 47.81 m2, which is about 50% of a Sentinel-2 10 m cell. However,
given the elongated truck shape, the maximum covered area per pixel is 25.5 m2, which is a
fourth of a pixel. A larger car of 4.8 m × 1.7 m size covers approximately 8% of a Sentinel-2
pixel. Our hypothesis was thus that the motion effect observed in Sentinel-2 data is only
apparent for large moving vehicles, mainly being trucks and vehicles of similar size. Trucks
are of lower size than Sentinel-2 grid cells. Therefore, detecting these objects requires a
discrete L-resolution remote sensing model [84]. In this case, the targeted object is smaller
than a grid cell.

This work refers to the target objects as “trucks”, while bearing in mind that other
large vehicles may be captured as well, e.g., buses. The temporal sensing offset caused by
the MSI inter-band parallax, along with the object movement, causes the observed object
position to be band-specific, elongating the moving object. Yet, a first approach contributed
to the Rapid Action on Coronavirus and EO (RACE) dashboard of EC and ESA showed
the potential of Sentinel-2 data for large moving vehicle detection on roads [85,86]. The
first approach was based on VIS band ratios. An object detection method is presented, ex-
tracting the whole distorted VIS signature spectrally and spatially. Object detection aims at
locating and delineating all target objects in an image, which most methods do by winning
contextual information in pixel windows [87], using spatial filters [88,89], background sub-
traction [66,90,91] or machine learning methods such as support vector machines, boosted
classifiers, and neural networks [87,92–99]. CNNs have shown strong performance also
in complicated tasks [95] by using a set of spatial filters targeting spectral-spatial patterns.
Detecting small objects of a few pixels using CNNs can be challenging [100–102], which is
the first reason why CNNs were not exploited in the presented work. Second, CNNs are
often employed for detecting highly complex objects [87] that can barely be described by
a comprehensible set of rules. The objects targeted in the presented work are shaped by
a well-understood and documented physical sensor effect. The order of the target pixels
must follow the band-specific temporal sensing offsets. In addition, the target objects are
characterized by reflectance patterns. Accounting for these specifics, a Sentinel-2 truck
object detection method was developed, combining an ML method for separating the
target spectra from the background, and an object extraction method. A random forest (RF)
classifier was trained to classify the target spectra of the assumed moving trucks, and the
background spectra. The developed object extraction method uses, based on the RF classifi-
cation probabilities, a recursive neighbourhood search intertwined with a rule set based
on known parameters of the motion effect. The aim of the presented work was to develop
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a Sentinel-2 truck detection method that is potentially globally applicable. Therefore, the
detection method relies on globally sampled training objects. Equivalently, the detection
performance was evaluated globally. The method was validated with ground truth data
in Germany, exploiting the dense traffic count station data availability. With this work,
we aim at proving the concept and validating a Sentinel-2 moving truck object detection
method that could be used in applications such as on traffic emissions, economy, regional
development and planning.

2. Materials and Methods
2.1. Theoretical Basis

Moving objects are seen by Sentinel-2 once per band. When an object is changing
its position within the band-specific temporal sensing offsets, it is captured at different
band-specific positions [55] (Figure 1).

Figure 1. Temporal sensing offset and parallax angle [77] in relation to the blue band B02.

Flying airplanes inherit both the movement and the altitude effect and are thus seen in
Sentinel-2 with two-dimensional pixel shifts (longitude and latitude) [55,81]. To avoid con-
fusion of these effects, the movement-related offset is here referred to as the motion effect.

Unless a truck is (nearly) black, it can be reasonably assumed that it is reflective in VIS
bands, as it is usually made of metal and truck tarpaulin. As the truck is moving, the re-
flectance of these materials is captured by Sentinel-2 band-wise at different positions [52,55].
This effect disassembles the truck object into its spectral parts, ordered in space and sensing
time. Assumingly, the reflectance of these pixels deviates from its surrounding, and this de-
viation must always be band-specific at each position. Taking the center position of a truck
at the start of the Sentinel-2 acquisition, the position captured by Sentinel-2 Positionband is a
function of the temporal sensing offset tband of a band and the speed v of the truck in km/h:

Positionband = v × tband
3.6

(1)

where division by 3.6 converts to meters. For instance, referring to B02 as a reference, at a
speed of 80 km/h, the truck would be captured in B03 about 11 m and in B04 about 22 m
distant from the position in B02. There is an apparent object size, as seen in the Sentinel-2
data, and the true object size, which is the length and width of the object on the ground.
The apparent pixel position(s) per band must be a function of object speed and size where
the latter is unknown. Yet, a minimum required speed can be approximated. When the aim
is to fully sense an object of about 10 m length at least at three pixels (once per VIS band) at
a 10 m resolution res, the minimum speed vmin results from the sensing offset of B04 tB04
(1.01 s) in relation to B02:

v = 3.6 × 2 × res
tB04

. (2)
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Multiplication of res by 2 results in a two-pixel step with B03 sensed at the center pixel,
multiplication by 3.6 converts to meters. The speed would be 72 km/h. However, aiming at
sensing an object of 20 m length at least partly in three pixels would result in a minimum
required speed of 54 km/h. The respective pixel of Positionband is here referred to as the
anomaly pixel of a certain band. In the simplest case, the truck is white and thus causes
a balanced high signal in all VIS bands at their positions. In each band, the signal would
then equally deviate from the background (road) at the anomaly pixel.

Figure 2 shows a visual example of the targeted VIS reflectance pattern.

Figure 2. Sentinel-2 VIS (B04, B03, B02) data on a highway near Salzbergen, Germany.

2.2. Sentinel-2 Data

The Sentinel-2 MSI captures electromagnetic radiation in 13 bands in the VIS, NIR, and
SWIR. The lowest center wavelength is 443 nm at band 1, the highest is 2190 nm at band 12.
Three VIS bands (B02-B04) and one of the NIR bands (B08) are distributed at 10 m spatial
resolution, six bands at 20 m and three at 60 m [54,56]. With two near-polar-orbiting satel-
lites (A/B) the mission has a revisit time of approx. 5 days [56]. Atmospherically corrected,
orthorectified Sentinel-2 Level 2A (L2A) data with multispectral sub-pixel registration were
used [103]. The atmospherically corrected digital numbers (DNs) were divided by 10,000,
yielding physical surface reflectances [54]. For training and validation, only cloud-free
scenes were considered.

2.3. Open Street Map Road Data

All Sentinel-2 data were masked by road pixels employing Open Street Map (OSM)
road data [104]. OSM data are sorted by keys that summarize several values. In the case of
road data, the key is denoted as “highway”, which comprises 26 values, sorted by the road
size and relevance. The focus was on trucks moving fast enough to be detectable, hence,
only the road types “motorway”, “trunk” and “primary” were included. In this work,
“motorway” is used interchangeably with highway. The “primary” and “trunk” road types
are only referred to as “primary” for simplicity.

Road vectors were downloaded via the OSM Overpass Application Programming
Interface (API) provided by the OSM Foundation [105]. Aiming at an aerial road mask,
the road network line data were buffered spatially, yielding road polygons. Based on
manual examinations a 20 m buffer for motorways was considered suitable. The lower road
types were assigned 5 m less than the next-higher type. Finally, the road polygons were
transformed into an OSM road mask on the Sentinel-2 grid of the respective area of interest.

2.4. Training and Validation Boxes

Rectangular bounding boxes, each delineating one assumed truck by four corner
coordinates, were created in a set of Sentinel-2 training and validation tiles. Five regions
in Europe and five globally distributed regions were selected for training. Equivalently,
ten regions in the same parts of the world were chosen for validation (Table A1). In each
training/validation area, one Sentinel-2 acquisition was obtained. The used dates range
from 2019 to 2021. Training acquisition dates originate from the months January, March,
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April, June, July, August and October. Validation acquisitions are from January, May,
July, August, September, October, November, December. The corresponding season varies
depending on the hemisphere and climate zone. No systematic balancing by seasons was
done. In sum, 2500 training and 350 validation boxes were derived. The labeling sub-area in
each training area was defined by a Sentinel-2 L2A tile of 10,9802 pixels, masked by the OSM
road mask. Only larger road types (motorway, trunk, primary) were considered. Though,
information on the road type was not labelled, and was thus not balanced systematically.
Bounding boxes, each covering a visible target object, were created. 250 of these boxes were
retained per training scene. The procedure was similar in the validation areas, though only
35 target objects in a subset of the tile were extracted. There, the aim was to label all visible
target objects for later calculating detection performance metrics. The target objects were
labelled based on their visual appearance in a true color composite of B04, B03, and B02
stretched to reflectance values between 0 and 0.2. Three conditions had to be fulfilled for
being labelled as a target object:

1. a noticeably higher reflectance in one of the VIS bands compared to its VIS counter-
parts and the surrounding,

2. the presence of condition (1) for each VIS band,
3. condition (2) must be fulfilled in the direct neighbourhood and the correct spatial order.

The boxes were not the actual training data but spectra at positions of the three VIS
anomaly pixels, denoted as blue, green, red. In each labelled box and for each target class,
criterion Aclass for the classes blue, green, red was calculated to locate the training pixel
within the box:

Ablue = ρB02 × 10 +
ρB02 − ρB04

ρB02 + ρB04
, (3)

Agreen = ρB03 × 10 +
ρB03 − ρB02

ρB03 + ρB02
, (4)

Ared = ρB04 × 10 +
ρB04 − ρB02

ρB04 + ρB02
, (5)

described by the reflectance ρband and a normalized band ratio within the VIS. In each
box and for each class, the position of maximum Aclass was extracted and assigned the
corresponding label, resulting in one label per class and box. Finally, as many background
samples as target samples were randomly distributed outside all boxes to differentiate
between target and non-target pixels [45,98,106–109]. To balance the training dataset [110]
an equal number of background samples as in each class was chosen [106,111,112]. This
resulted in 2500 training and 350 validation labels per class.

Vis Spectra

The mean spectra of B02, B03, B04 and B08 depict the Sentinel-2 reflectance values
by class (Figure 3). Among the VIS bands, the peak reflectance corresponds to the class,
e.g., the spectrum of the red class has its VIS peak at B04. The background class has overall
lower reflectance values in the VIS, yet a higher peak in the NIR.

Figure 3. Mean VIS-NIR spectra by class (standard deviation in shaded area): (a) red. (b) green.
(c) blue. (d) background.
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2.5. Machine Learning and Object Extraction Method

The moving truck detection method is divided into three stages: (1) ML prediction
using a RF model [113], (2) object extraction, (3) object characterization (Figure 4). This
combination of pixel and context information was chosen for exploiting both the spectral
and the spatial characteristics of the targets. After pre-processing the Sentinel-2 data, the
features for the RF prediction are built. The trained RF model is run, resulting in class
probabilities and classification maps, which are the foundation of the object extraction. The
resulting bounding box objects are characterized based on the motion effect parameters.

TrueFalse
Detection conditions

Preprocessing
RF prediction
Object extraction
Object characterization
Entry/exitCalculate features

RF classificationRF probabilities

Run RF prediction

Rescale to 0-1 

Mask to OSM roads 

Get "blue" positions 

Next position 

Extract object 

Is target 

Drop

Calculate speed
and heading Sentinel-2 trucks

Sentinel-2 L2A

OSM road data

RF model

Figure 4. Object detection workflow.

2.5.1. Random Forest Model

Random forest models [113–116] are well proven in classification and regression
tasks [117], including many remote sensing applications [118]. They decide based on the
majority vote of several random decision trees, which are systematically created [113]. The
method is known to be insensitive to over-fitting, to be fast, to have few hyper parameters,
and to provide intrinsic statistical measures such as for the generalization error and the
feature importance [117–119]. In 2001, Breimann [113] initiated the known RF. It belongs
to the ensemble learning ML methods, combining multiple classifiers for creating a more
accurate prediction. Two fundamental principles are used for creating randomness. First,
at each decision node of a tree, the features taken into account for a split are randomly
picked [115,120]. In addition, the classification and regression trees (CART) technique is
used [113]. That is, at each node, the selected features are analyzed based on the Gini
index and consequently improved [117]. Second, RF builds the trees using an aggregated
bootstrap, called bagging [113,117,119]. Building an individual tree can be summarized
by the steps: (1) bootstrap sampling, (2) finding the best split feature, (3) creating node. A
trained forest predicts new samples based on the majority vote of all trees [117].

2.5.2. Rf Feature Selection

The term f eature refers to the predictor variables used in the RF model. As emphasized
by [121], feature selection based on expert knowledge may be suitable in some applications.
For detecting larger moving objects, the full Sentinel-2 band stack has been exploited by
Heiselberg [52]. However, a visual inspection (Figure 5) suggests that the reflectance pattern
on roads targeted in the given case is hardly apparent in 20 m data.

Therefore, B02, B03, B04, and B08 were used exclusively. Anticipating inter-band
reflectance relationships, two normalized ratios of the bands Bi (B03 and B04 respectively)
and Bj (B02) were calculated, denoted as B03_B02_ratio and as B04_B02_ratio. The spectral
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variance was derived as reflectance_variance. As the targets are the deviations of reflectance
from normal values, the mean of each band across the whole band array was subtracted
from each band (Table 1).

Data: Sentinel-2 L2A on 2020-03-27 | Stretch: 0-0.2 | Coordinates: lon=9.83208, lat=49.7491 | 1:3000

(d) (e)(a) (b) (c)

10 m10 m

(spatial resolution)

20 m 20 m 20 m

Figure 5. Target object visualized using different band combinations and spatial resolutions: (a) B04,
B03, B02, (b) B08, B03, B02, (c) B04, B03, B02, (d) B8A, B11, B12, (e) B05, B06, B07.

Table 1. Random forest features.

Index Denotation Explanation

0 B02_centered Difference B02 from B02 mean
1 B03_centered Difference B03 from B03 mean
2 B04_centered Difference B04 from B04 mean
3 B08_centered Difference B08 from B08 mean
4 B03_B02_ratio Difference B03 vs. B02
5 B04_B02_ratio Difference B04 vs. B02
6 reflectance_variance Variation among B02, B03, B04

The seven features were checked for information duplication based on Pearson r-values.

2.5.3. Feature Statistics

Within the anomaly classes, the centered band reflectance values are characterized
by a peak in the corresponding anomaly band, e.g., B02 in the blue class (Figure 6). Con-
sequently, the band ratios are both mostly negative in the blue class, indicating that B02
exceeds its VIS counterparts, whereas in the green and red classes the band ratio of the
corresponding anomaly band is high. In the background class, no reflectance peak is visible,
which is also mirrored by low ratios. The features were checked for their correlations
(Supplementary Figure S1).

Figure 6. Statistics of training features by class: (a) Centered band reflectances. (b) Band ratios.
(c) VIS variance.



Remote Sens. 2022, 14, 1595 9 of 28

2.5.4. Hyper Parameter Optimization

Aiming at well-working values for the most important parameters [119], random
search was employed. The decision for random search was driven by its relative simplicity,
as there is little guidance on method selection for hyper parameter tuning of random
forests [122]. Random search tests random combinations of hyper parameter values in
parameter-specific value ranges [123]. Three parameters were tested in 200 combinations:

1. Number of trees (n_estimators): How many decision trees are created? It should
normally be in the magnitude of a couple of 100 trees [119,122]. Range: 100–2000.
Selected: 800.

2. Minimum samples per split (min_samples_split): How many samples are needed for
creating a new split? If this is not achieved, a leaf is created, hence it drives the size of
the trees [119]. Range: 2–7. Selected: 5.

3. Maximum depth (max_depth): How large are the trees allowed to be? This is defined
by the longest path from the root node to a leaf [119,124]. Range: 10–100. Selected: 90.

The best combination of these parameters was selected based on the accuracy scores,
derived as the ratio of correctly predicted samples and the number of samples [125].
Two other important parameters were selected without random search. The maximum
features (max_features) specify how many features are used at each tree split [122]. Here,
the common square root of the number of features was used [119]. Bootstrap was enabled
(Supplementary Table S1).

2.5.5. Feature Importances

For each of the 10,000 samples obtained from the training data, the seven features
were calculated, upon which the RF model was trained. The feature importance within the
trained random forest was analyzed using the intrinsic Gini feature importance measure [117].
All features but B08_centered have an importance of at least 0.13. The highest is 0.2 for
reflectance_variance (Supplementary Figure S1).

2.5.6. Prediction

The RF prediction creates two maps: (1) continuous class probabilities, (2) a discrete
classification with class values in the range of 1 and 4 associated with the background and
three target classes.

2.5.7. Object Extraction

The object extraction stage delineates the target objects based on the RF prediction.
A recursive neighbourhood search approach was developed. Pixels that are classified as
blue are utilized as markers for a potential target object. The object extraction iterates over
all these array positions and searches a target object in the neighbourhood. Thereby, it
looks for the ordered presence of pixels classified as blue, green, red (class values 2, 3, 4).
Figure 7 shows the object extraction procedure, taking a blue position p with an y, x array
position as the input. The possible result is an accepted object as a bounding box of four
geographic coordinates.

Surrounding the y, x array position p, 9 by 9 pixel subsets of the random forest
probabilities and the classification are obtained. 3 by 3 windows Cw3x3 of the random
forest classification and probabilities are extracted. The procedure starts with the class
value c = 2 (blue). It is known that within a target object this value must be neighbored
by either itself or one value higher (green) (Figure 2). Similarly, this is valid for 3, which
should have a 3 or 4 in its neighbourhood. However, depending on the object size apparent
in the data and the classification, another 2 might be found next to a 2, but no 3. In this
case, 2 is accepted. Hence, with the current c, Cw3x3 is first checked for c + 1. If nothing is
found, another c is searched. If again nothing is found, this may have two reasons: Either
the investigated area contains no target object but just a randomly classified pixel or the
object is yet completely extracted. The latter may only be the case if the current c equals 4
(red), which is the last part of the target object. Then, the current recursive process is exited
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and the proposed object is being characterized and checked. In case c equals 2: Assume,
c + 1 is present in the neighbourhood of p. Then, accounting for the option that there are
multiple target pixels in the window, the position with maximum RF prediction probability
is extracted. The resulting position is pnew. To avoid being blocked, it is checked if pnew has
yet been seen. Furthermore, if c equals 4, the extraction process finishes in case adding pnew
would result in more pixels of class 4 in the current object than of class 3 and 2, respectively.
Finally, pnew is added to the proposed object. It then becomes the new p, hence in the next
recursion its neighbourhood will be investigated for target pixels. Owing to the progressive
searching, pixels with value 2 are more likely to be omitted. Hence, once completed for
a given input blue p, all pixels of the value 2 next to a pixel with value 2 is added to the
object. Additionally, a detection score S is calculated, using the RF prediction probabilities
P. At each position in the object, the maximum score among the classes 2–4 is obtained
from P2,3,4, depicted as Pmax, together constituting the detection score S:

S = mean(Pmax) + max(Pmax) + mean(P2,3,4), (6)

between 0 and 2. The derived box has a length L and a width W. Based on the present
classes, the box dimensions and probabilities, an object is accepted by fulfilling four
conditions: (1) all classes 2–4 are present, (2) L > 2 or W > 2, (3) L < 6 and W < 6,
(4) S > threshold. The values for L and W are based on the box dimensions observed in the
training boxes. A set of values for the minimum score threshold was examined as part of
the detection performance evaluation and selected according to the highest mean F1-score.

Figure 7. Object extraction procedure. Input is a two-dimensional array coordinate of a pixel classified
as ‘blue’.
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2.5.8. Object Characterization

The detected objects inherit information from the Sentinel-2 inter-band parallax and
the resulting motion effect. These properties can be used to derive their heading [52] and
speed [55].

Heading

VIS reflectance values of the moving target objects are ordered in time and space
(Figure 2). MSI first senses the object in B02, then in B03, lastly in B04, creating an ordered
sequence. The heading is obtained as a vector between the B02 and the B04 position. The
position of a red label and a blue label within the object are extracted from the classification.
As multiple pixels of the object may have these labels, for blue, the smallest indices were
used, and for red the indices that are closest to the blue position. The relative position of
these pixels is summarized by a vector with the components x and y pointing from blue to
red, based upon which the degree direction z of the detection is derived:

z = deg(arctan2(−x, y)) mod 360. (7)

The x component is multiplied by −1 to align it with the scaling of the y-axis in
relation to the indexing in the spatial 2-dimensional array. The function arctan2 is the
two-dimensional angle in Euclidian space, deg converts values from radian to degree, the
modulo mod of 360 derives a degree value between 0 and 360.

Speed

Based on the temporal sensing offset and the spatial distance of the bands, the speed
of a moving object can be approximated [52,55]. B02 is sensed first, hence it contains the
timestamp t0 [52]. B04 is sensed 1.01 s [77] later than B02 and is thus the last band included
in the truck object. As a proxy for the length of the object, the maximum diameter d of the
detection box is used. Targeting the pixel center coordinate, 1 (pixel) is subtracted from
d. Moreover, d is multiplied by the resolution res (10 m). The vehicle speed v is calculated
similarly to the approach by [52] based on the sensing offset t. However, besides object
speed, the unknown real object size influences the seen size. Therefore, a correction is
applied by obtaining the square root of d multiplied by 20. This causes a regressive speed
increase with rising d. Multiplication by 3.6 converts to km/h:

v =

√
(d − 1)× res × 20

t
× 3.6. (8)

2.6. Validation

A three-stage validation was conducted:

1. the ML classifier was evaluated on the pixel level based on the spectra extracted from
the validation boxes,

2. the detected boxes were evaluated with the box geometries of the validation boxes,
3. the detection counts were validated with German station traffic counts in a set of

validation areas as done e.g., by [43].

2.6.1. Metrics

Decisions of a classifier can be true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) [126–128]. To depict the trade-off between TP and FP [128–131],
sensitivity (recall) and precision were used. The first shows how likely a positive is correctly
classified [126–128,132]:

sensitivity =
TP

TP + FN
= recall. (9)

The precision purely evaluates how well the method predicts a given class. It is
calculated as [128,132]:

precision =
TP

TP + FP
. (10)
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As the harmonic mean of recall, and precision the F1 score [132] at each probability
threshold can be obtained:

F1 = 2 × recall × precision
recall + precision

. (11)

Higher values of F1 indicate a better performance [132]. In addition to these metrics,
the detection score S based on the RF probabilities (Section 2.5.7) was calculated for each
detected object, providing a measure of detection accuracy.

2.6.2. Classifier Validation

The classifier performance was evaluated on 1400 samples extracted from the valida-
tion boxes. The four predicted classes of the RF model were evaluated using a multi-class
confusion matrix [127,128,132,133], overall accuracy, recall, precision, and the F1 score. The
classifier overall accuracy was calculated as the ratio of correctly classified samples and the
number of validation samples [134].

2.6.3. Detection Box Validation

Common practice in object detection evaluation is the comparison of predicted ge-
ometries with validation boxes [45,135]. The Sentinel-2 data were cropped to the extent of
the labelled boxes (Section 2.4). Within this area, TP, FN, FP were calculated. A positive
result was defined by the intersection over union iou. For each prediction box intersecting
with a validation box, and vice versa, iou was calculated as the ratio of the intersection
area of the two boxes and the area of their union [135]. Only intersections with iou > 0.25
were counted as positive. Commonly used is a threshold of 0.5 [45], however the target
object in this work consists of very few pixels. The iou can thus rapidly decrease yet
when a box is one pixel smaller or larger. Based on TP, FN, FP, recall and precision were
calculated and thereupon the F1 score. Trade-off between TP and FP was analyzed using
the precision-recall-curve (PR) [126,127,130]. A range of detection score thresholds between
0 and 2 (maximum reachable score) was used for the PR curve.

2.6.4. Traffic Count Station Validation

Traffic count data were obtained from 26 traffic count stations of the German Federal
Highway Research Institute (BAST) [19] on motorways (A) and primary roads (B). Station
counts deliver hourly traffic volumes [19]. At the primary level, the stations count motor
vehicles (“KFZ”), summarizing car-like and truck-like vehicles of the second level. The
truck-like class is further distinguished at the third level into cars with trailers, buses,
trucks heavier 3.5 t without and with trailers. Trucks of this level are split into articulated
trucks and trucks with trailer [136]. For validation, the vehicle class “Lastzug” (“Lzg”)
was used. As of 2020 the most recent provided data covered 2018 [19]. Validation areas
of interest (AOIs) are circular (Figure A1) except for the Braunschweig-Flughafen station
where a rectangular buffer AOI was used to only cover the target highway. In these areas,
the detection method was executed on all cloud-free Sentinel-2 L2A subsets in 2018. This
sums up to 390 acquisitions (Table A2). 64% of these acquisitions originate from spring and
summer months (April-September), 36% were acquired in autumn and winter months. The
validation data were not balanced by season.

For comparing ground and remote sensing observations, Kaack et al. [43] generated
a spatial mask derived from the average vehicle speed and a time interval. That is, only
detected vehicles within this spatio-temporal buffer around a station were counted. The
hourly station counts were scaled down to a 10 min interval within the hour of fully cloud-
free Sentinel-2 acquisitions. Equivalent to the Sentinel-2 acquisition time, data of the 10 am
truck count were used. A circular buffer with distance d around the station was calculated
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as in [43], based on an assumed 80 km/h average speed v, which is the German speed limit
for trucks [137], and a 10 min time interval t:

d = v × t
60

. (12)

Detections off the respective count station road type were masked out. The station
data provide vehicle counts per hour (nh), hence the number of vehicles passing by t within
10 min in the Sentinel-2 acquisition hour was calculated as n:

n = nh × t
60

, (13)

assuming a stable traffic flow. This number contains only vehicles that passed by the
station, whereas the Sentinel-2 detections cover the whole road. Thus, for each detection
within the buffer, a vector between the station and the detection centroid coordinates was
calculated. Using the same method for calculating the vehicle heading as in Section 2.5.8,
the orientation of the detected vehicle in relation to the station was obtained. Postulating
smooth roads, the angle between a vector pointing from the station to the detection and the
heading vector of the detection should be smaller than 90° if the detection has yet passed
the station. If fulfilled, the detection should not have been counted by the count station
within t, and was thus excluded.

3. Results
3.1. Classifier Validation

The RF classifier has an overall accuracy of 84% (Table 2) and a mean F1 score of
0.85, with the lowest F1 score observed for the background class (0.79). The confusion
matrix (Figure A2) shows, red samples were most prone to being wrongly classified as
background.

Table 2. RF performance metrics.

Precision Recall F1 Score Support Overall Accuracy

blue 0.91 0.87 0.89 350
green 0.9 0.86 0.88 350

red 0.87 0.79 0.83 350
background 0.73 0.86 0.79 350

Average 0.85 0.84 0.85
0.84

3.2. Detection Box Validation

The detection score (Section 2.5.7) was used to investigate a detection certainty thresh-
old balancing precision and recall, expressed by the F1 score (Section 2.6.1). A detection
score of 1 on the x-axis (Figure 8) means that only detection boxes with a detection score > 1
were considered. The mean best detection score was 1.2 with a mean F1 score of 0.74
(Figure 8). The highest F1 score was yielded in Poland (0.88), the lowest in Kenya (0.36).
Nine of ten AOIs yielded higher precision than recall, also apparent in the precision-recall
(PR) curves (Figure 9).

Exemplary subsets of box validation AOIs provide a visual impression of the detection
behavior compared to the validation boxes (Figure 10).

3.3. Traffic Count Station Validation

The Pearson r-value r of all compared Sentinel-2 and traffic count station truck figures
is 0.82 with a linear regression slope of 1.3 and an intercept of 17.44 (Figure 11). Linear
regression implies lower Sentinel-2 counts than station measurements. The RMSE between
the station and Sentinel-2 figures is 43.7.
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Figure 8. Box validation F1 scores by detection score threshold.

Figure 9. Box validation PR curves.

  T21HUB (Argentina)

Data: Sentinel-2 L2A | Stretch: 0-0.2 | CRS: WGS 84 / UTM

   T34UDC (Poland)

   T37MCT (Kenya)     T33TUN (Austria)   T52SDE (South Korea)   T21SUC (USA)

  T60HUD (N. Zealand)    T35TMK (Romania)    T31UFS (Belgium)

  Labeled

   T29SND (Portugal)

  Detected

Figure 10. Validation and detection boxes in exemplary subsets of box validation areas.

The standard deviation of the station counts and the Sentinel-2 counts is 54.98 and
34.45, respectively (Table 3). The mean truck number at the station (63.18) is higher than
Sentinel-2 counts (35.14). On 81% of the processed acquisitions the Sentinel-2 method
detected less trucks than traffic count stations (Table 3). In the 75th percentile, the station
counted more trucks than the Sentinel-2 method for 98.98% of all values. In the 25th
percentile, 52% of the counts were lower at the station than based on Sentinel-2.

Mean truck counts by weekday results in an r of 0.99 (Figure 12). Both methods have
their average peak on Tuesday, and the lowest values on Sunday. Nearly all weekday mean
values derived from Sentinel-2 are lower than the station values except Sunday (Figure 12).

Mean r values between traffic count station and Sentinel-2 truck counts based on
the station-wise r is 0.67, the median 0.74 (Figure 13), with a maximum of 0.97 and a
minimum of 0.37. Overall, r is above average at 65% of the traffic count stations. At
72% of the motorway stations (“Autobahn”), r is above average, while being below at
75% of the primary/trunk stations (“Bundesstraße”). Linear regression slopes widely
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imply a tendency to overestimate absolute counts where correlations are low, whereas
high correlations are more often associated with high slopes suggesting underestimation
(Figure 13).

Figure 11. Comparison of Sentinel-2 truck counts with traffic count station truck (“Lzg”) counts.

Table 3. Statistical summary of station and Sentinel-2 counts.

Mean Count Standard Deviation Max. Count Min. Count

Stations 63.18 54.98 206 0
Sentinel-2 35.14 34.45 170 0

Figure 12. (a) Mean station and Sentinel-2 truck counts. (b) r values by weekdays.

Shown examples (Figure 14) are the station with the highest r value, two stations
close to the 75th percentile of the r values of all stations, three stations close to the median,
two stations close to the 25th percentile, and the station with the lowest r value. In
addition, results from three stations on primary roads or trunks are shown. Corresponding
detection maps include approximated speed, heading and detection scores (Figure 15). As
observed in the whole dataset, the Sentinel-2 method usually detects fewer trucks than the
traffic count stations. Predominant underestimation of the Sentinel-2-based truck counts
compared to station measurements is confirmed by the regression results. In general,
there are noticeable variations of counted trucks supported both by the stations and the
Sentinel-2 counts. For instance, at Braunschweig-Flughafen, the station counts reach 206
on 10 April (Sentinel-2: 170), whereas they are down to 4 (Sentinel-2: 13) on 20 May. At
Lenting, 22 April and 29 April (both Sunday) were captured with low counts. 2 April
(Easter Monday) has similar low counts. Many examples can be found where such an
agreement is not given. Furthermore, a cluster of unusual strong deviations between both
count methods is observed on several dates in February, with the station count being on
at least average level and the Sentinel-2 counts close to 0. This is seen e.g., on 21 and
23 February at Schwandorf-Mitte, 28 February at Odelzhausen, and 8 and 28 February at
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Strasburg. At Schwandorf-Mitte on 21 February, the station counted 72 trucks more than
the Sentinel-2 method.

Pearson r-value
Röstebachtalbrücke

Crailsheim-Süd
Winklarn

Eisfeld
Lichtenau-Blankenrode

Lenting
Strasburg

Sprakensehl
Schuby
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Odelzhausen

Schwandorf-Mitte
Median

Reussenberg
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0.95
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1.26
0.96
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1.03
1.03
1.05

1.57
2.0

2.38
0.98

1.82
1.03

0.71
1.22

1.77
1.75

1.07
1.35

Figure 13. Comparison of Sentinel-2 truck counts with traffic count station figures: Station-wise r
values and linear regression (x = Sentinel-2, y = station) slopes.
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Figure 14. Station and Sentinel-2 truck count series, scatter and regression at selected validation
stations in 2018 (green = station, red = Sentinel-2).

Apart from collective spatio-temporal truck abundance, each truck carries speed and
heading properties. Example maps of detections in six box validation AOIs provide an
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impression of these properties and the detection scores with underlaid VIS reflectances
(Figure 15).
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Figure 15. Visual detection examples at six validation stations with calculated speed, heading and
detection score; bottom center and right are on primary roads, others on highways.

3.3.1. Relationship between Sentinel-2 Truck Counts and Station Truck Types

The traffic count station truck classes differ in their agreement with the Sentinel-2
truck counts (Figure 16). In the validation, “Lzg” (“articulated truck”) was used, containing
“Sat”, a truck always pulling a trailer, and “LmA”, a truck-like vehicle (heavier than 3.5 t)
with a trailer. “Lkw” summarizes all truck-like vehicles, including buses and cars with a
trailer and trucks without a trailer [136,138]. While the variation agreement is similar for
all classes given an r value of 0.81 to 0.82, “Sat” has a slope close to 1 (1.06) and the lowest
intercept of all classes (14.51).

Figure 16. Comparison of Sentinel-2 truck counts with figures of different truck classes at the traffic
count stations: (a) “Lkw” includes trucks, buses, cars with trailer. (b) “Lzg” is an articulated truck.
(c) “Sat” always pulls a trailer.

3.3.2. Relationship between Sentinel-2 Truck Counts and Station Car Counts

The r value of Sentinel-2 truck counts and the car station counts is 0.63. On average,
the Sentinel-2 truck counts are 8.5% of the station car counts. Station car-like vehicle counts
have a different magnitude than the station and the Sentinel-2 truck counts (Figure 17). Yet,
some variations are shared (r in Figure 17 between 0.48 and 0.65).
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Figure 17. Series of Sentinel-2 truck (red) counts, and station truck (green) and car (turquoise) counts
at selected stations in 2018.

4. Discussion

The presented moving truck detection based on multispectral Sentinel-2 data agrees
well with globally labelled target objects in most tested countries. Detected trucks correlate
spatio-temporally with truck figures provided by traffic count stations in Germany with
a tendency to be underestimated by the Sentinel-2-based method. The method performs
best where trucks travel fast and are distinguishable from the background. Limitations and
weaknesses are discussed in the following.

4.1. Detection Performance and Validation

The moving truck detection method partly relies on an RF classifier with an overall
accuracy of 84%. Confusions mainly occurred between the three target anomaly classes
and the background class. Confusions have occurred particularly in the box validation
area in Kenya, which reached the lowest F1 score. A comparably low recall drives this low
score, while the precision is high. The Kenyan box validation area is an example where
some of the labelled targets (Figure 18) are difficult to distinguish from the background.
The classification (a in Figure 18) exemplifies that the assumed blue anomaly pixel was not
predicted here. Similar challenges regarding the manually labelled validation boxes were
observed in the US-American validation area. These examples imply that differentiation
from the background is not always successful and depends on local road conditions and
types. Particularly bright road surfaces seem to decrease detection performance. Balancing
the training and validation dataset by road type and weather conditions was not done here,
and should be examined in the future.

Data: Sentinel-2 L2A | Stretch: 0-0.2 | EPSG:32737Labeled            Detected

(a) (b) (c) (d)

Figure 18. Detected and labelled example in Kenya: (a) True positive. (b) False negative. (c) False
negative. (d) False negative and underlying RF classification.

Apart from these problematic areas, however, the agreement with validation boxes is
satisfactory. It can also be stated that the detection performance seems not biased towards
European countries, although 50% of the training and validation objects were collected in
European countries. Four of the six highest F1 scores were obtained in European validation
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areas. The box validation results suggest global applicability, though local performance
differences should be kept in mind.

Only ground truth data inform about the relationship to real-world vehicles and
vehicle types. Validation with such data has yet been limited to the traffic count station
network in Germany. There is a strong relationship between counted trucks at traffic count
stations in Germany and trucks detected by the Sentinel-2 method, given an r of 0.82.
Overall, a tendency to lower Sentinel-2-based detections than station counts was observed.
Moreover, the Sentinel-2 method tends to particularly underestimate the counts in peak
traffic situations. It was shown that the Sentinel-2 method nearly never overestimated
figures in these peak situations, whereas in nearly half of the low traffic situations the
Sentinel-2 counts exceeded the station counts. Two reasons are likely: (1) we must assume
that there are several false detections that are independent of the true truck traffic. When
counts are low the false detection noise will be a higher percentage of the final counts.
(2) congested but still moving traffic situations could lead to an underestimation due to
low speed. Validating these conclusions would require comparing spatio-temporal traffic
congestion data with detections.

On average, weekday variations were similarly captured by the traffic count station
data in Germany and the Sentinel-2-based counts. Sunday, Easter, and Christmas min-
imums were frequently detected in agreement with the station data. These are coarse
patterns, finer variations among working days occurred only occasionally. The validation at
traffic count stations shows that agreements are better on highways than on primary roads.
It is crucial to consider that, in low count settings, already slight differences strongly impact
the agreement. Still, the counts are within the correct magnitude. Systematic truck count
underestimations by the Sentinel-2 method were observed at several stations in February
2018. A closer look shows that in particular acquisitions in Strasburg, Reussenberg, and
Röstebachtalbrücke were affected by snow cover (Figure 19), caused by a cold spell in
February 2018 [139]. The VIS reflectance values besides the roads, partly also covering the
roads, are widely close to saturation. Also visually, nearly no assumed target objects could
be identified in the acquisitions. Two reasons are likely: (1) caused by the problematic
weather conditions, trucks might have been too slow for being visible and detectable,
(2) the detection method fails due to many saturated pixels. Once many pixels are highly
reflective, the subtraction of the overall band mean values from the reflectance values is
likely to result in negative values. This could be tackled by calculating the band mean
values only based on reflectance values below a threshold. Here, it is important to generally
note that the band mean values differ depending on the AOI. The snowy observations
combined with the partly low detection performance in the box validation areas in the
USA and Kenya confirm that temporary or constant conditions of the surrounding may
affect the truck detection adversely. Hence, local applicability should be at least subject to
plausibility checks.

Figure 19. Subsets of acquisitions with snow cover in February 2018: (a) Röstebachtalbrücke 14 Febru-
ary 2018. (b) Strasburg 8 February 2018. (c) Reussenberg 21 February 2018.

The validation at traffic count stations in Germany implies good agreements with
truck counts of the station class “Lzg”, which summarizes large trucks and buses within the
main class “Lkw” (trucks). “Lzg” contains “Sat” (long articulated trucks). Consequently,
the best agreement was found between the Sentinel-2 counts and the “Sat” class. This
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implies that the Sentinel-2 moving truck detection method is most suited for detecting
large trucks. Station counts of the “KFZ” class (car-like vehicles) are on average the 12-fold
of the Sentinel-2 detections. Yet, there is a correlation (r: 0.63) between the number of
counted cars and the Sentinel-2 trucks. Although the relationship may differ in other
areas of the world, this result suggests the potential of extrapolating general road traffic
density based on the Sentinel-2 moving truck detection, at least where other data sources
are sparse. The detection performance evaluation using manually labelled target boxes,
and the station-based validation combined, suggest applicability beyond Germany. Further
validation approaches in other regions would be favorable. Other reference data sources
could be employed, for instance, traffic webcam data [140].

Furthermore, CNNs could be tested for detecting moving trucks in Sentinel-2 data.
Here, the emphasis should be on the small size of the objects, which usually consist of three
to eight pixels. This was the main reason why CNNs were not used in this study. A CNN
infrastructure will have to take the small object size into account [100–102].

The presented method is closely tied to Sentinel-2 data by exploiting the specific MSI
sensor layout [56] and resulting reflectance effects. Transferring the specific procedure to
other remote sensing data sources such as unmanned aerial vehicles (UAV) [141] or satellite
sensors is thus not straight forward. However, the concept of motion detection and velocity
approximation through a sequence of images has been used for many years [18,58–60,78].

4.2. Applications

Bearing in mind data-related limitations such as cloud cover and revisit time, the
Sentinel-2 truck detection method may be well suited to fill gaps, especially in areas
where data on road cargo traffic counts are sparse. Information on truck abundance
can serve as a proxy for economic activity: In Germany, an index based on truck toll
provides near real-time information on truck traffic and thereby also information on eco-
nomic performance [12]. Li et al. revealed that among different vehicle types in China
truck traffic is the second most important predictor for the gross domestic product [13].
Boarnet et al. [11] found strong positive correlations between road cargo density and em-
ployment in urban sub-centers of Los Angeles. Economy, cargo traffic and its environmental
impact are closely related; we have seen the impact of systematic disruptions of economies
e.g., on air pollution during the COVID-19 pandemic [14–16]. Sentinel-2-based moving
truck detection is applicable in areas where little or no other data sources exist, including
regions that are difficult to access, e.g., in sub-Saharan Africa. For instance, we could
imagine to regularly apply the method in areas where illegal mining or deforestation is
undertaken. By detecting truck count anomalies, the method could even be an addition
e.g., to conservation early warning systems [142].

5. Conclusions

For the first time, a moving truck detection method based on Sentinel-2 MSI data was
presented. We have demonstrated that, due to temporal sensing offsets of the Sentinel-2
spectral bands, moving vehicles of truck size are visible and detectable at 10 m spatial
resolution. The developed moving truck detection method performs well in most globally
tested countries. It agrees with spatio-temporal truck figures from traffic count stations in
Germany, however, the method tends to underestimate absolute truck counts. Detecting
large and fast trucks works best. The temporal coverage of the Sentinel-2 data and the
accuracy of absolute counts are inferior to continuous monitoring by traffic count stations.
Compared to truck detection based on very high resolution aerial and satellite remote
sensing data, the advantage of the Sentinel-2-based moving truck detection is its systematic
and free global coverage. Due to varying road surfaces, truck speed, and size, further
checks and optimally local validations will be required. Provided careful considerations,
the Sentinel-2 moving truck detection method may be a valuable addition to research and
applications by providing a proxy for cargo traffic, emissions, and economic activities,
particularly in areas with sparse other data sources.
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Figure A1. Locations of selected BAST traffic count stations and validation areas. Circles show the
buffered AOIs. The Braunschweig-Flughafen AOI is rectangular to avoid covering adjacent highways.
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Figure A2. RF confusion matrix on the pixel level based on the subset of the labelled data.

Table A1. Sentinel-2 tiles and number (N) of labelled boxes.

Sentinel-2 Tile ID Country N Training N Validation

1 T31UEQ France 250
2 T32UNA Germany 250
3 T35JPM Russia 250
4 T36VUM Spain 250
5 T49QHF Ukraine 250
6 T35UQR South Africa 250
7 T30TVK China 250
8 T49QCE USA 250
9 T23KKQ Brazil 250
10 T18TWK Australia 250
11 T33TUN Austria 35
12 T31UFS Belgium 35
13 T34UDC Poland 35
14 T29SND Portugal 35
15 T35TMK Romania 35
16 T37MCT Kenya 35
17 T52SDE South Korea 35
18 T12SUC USA 35
19 T21HUB Argentina 35
20 T60HUD New Zealand 35

Sum 2500 -
- 350

Share 85% -
- 15%

Table A2. BAST traffic count stations and number of used Sentinel-2 acquisitions for the valida-
tion run.

Station Name Road Type Used Acquisitions

1 AS Dierdof VQ Nord (7781) A 14
2 Bockel (3302) A 16
3 Braunschweig-Flughafen (3429) A 24
4 Crailsheim-Süd (8827) B 14
5 Eisfeld (S) (9165) A 18
6 Gospersgrün (4114) A 13
7 Hagenow (1612) A 14
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Table A2. Cont.

Station Name Road Type Used Acquisitions

8 Herzhausen (6202) B 9
9 Lathen (3369) A 7

10 Lenting (S) (9090) A 18
11 Lichtenau-Blankenrode (5136) A 23
12 Nieder Seifersdorf (4123) A 20
13 Oelde (5102) A 16
14 Odelzhausen (O) (9014) A 14
15 Reken (5705) A 7
16 Reussenberg (8168) A 14
17 Röstebachtalbrücke (4372) A 8
18 Salzbergen (3499) A 10
19 Schleiz (4323) A 12
20 Schuby (1189) A 17
21 Schwandorf-Mitte (N) (9902) A 14
22 Sprakensehl (4702) B 28
23 Strasburg (1610) A 17
24 Theeßen (3810) A 10
25 Vockerode (3804) A 19
26 Winklarn (9304) B 14

Sum 390
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