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SUMMARY

The paper evaluates the performance of several recently proposed tests for structural breaks in the conditional
variance dynamics of asset returns. The tests apply to the class of ARCH and SV type processes as well as
data-driven volatility estimators using high-frequency data. In addition to testing for the presence of breaks,
the statistics identify the number and location of multiple breaks. We study the size and power of the new
tests for detecting breaks in the conditional variance under various realistic univariate heteroscedastic models,
change-point hypotheses and sampling schemes. The paper concludes with an empirical analysis using data
from the stock and FX markets for which we find multiple breaks associated with the Asian and Russian
financial crises. These events resulted in changes in the dynamics of volatility of asset returns in the samples
prior and post the breaks. Copyright © 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

On this twentieth anniversary of Rob Engle’s seminal paper on ARCH it is worth reflecting
on some of the outstanding questions in the literature. It has long been conjectured that stock
market volatility exhibits occasional breaks. Diebold (1986), Hendry (1986) and Lamoureux and
Lastrapes (1990) were among the first to suggest that persistence in volatility may be overstated
with the presence of structural breaks. More recent and related evidence is provided by Diebold
and Inoue (2001), Granger and Hyung (1999), Mikosch and Starica (1999), among others, which
shows that the presence of breaks may also explain the findings of long memory, particularly in
volatility.

There is a substantial literature on testing for the presence of breaks in linearly dependent
stochastic processes (see, for instance, Bai, 1994, 1997; Bai and Perron, 1998, inter alia). There
is a temptation to apply the tests for ARMA-type processes in the context of ARCH or Stochastic
Volatility (SV) models. For instance, one could view squared returns as an ARMA process and
proceed with the application of tests suggested for testing breaks in the mean. Unfortunately,
things are not so simple. The resemblance between ARMA and GARCH or discrete time SV
models is deceiving (see e.g. Francq and Zakoian, 2000a,b). Carrasco and Chen (2001) present
a comprehensive study which shows that most univariate GARCH processes are S-mixing. This
result precludes the application of many aforementioned tests for structural breaks that require
uniform mixing conditions.!

* Correspondence to: Eric Ghysels, Department of Economics, Gardner Hall, CB 3305, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599-3305, USA. E-mail: eghysels@email.unc.edu

I Most tests proposed for linear processes impose ¢-mixing or uniform mixing conditions which are not satisfied by
ARCH processes. For a general treatment of estimating the weak GARCH models, see Francq and Zakoian (2000b).
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The purpose of this paper is to explore recent advances in the theory of change-point estimation
for strongly dependent processes including ARCH and SV models. Some early attempts to test
for a break in a GARCH are found in Chu (1995) and Lundbergh and Terasvirta (1998). A
number of recent papers have shown the consistency of CUSUM type change-point estimators for
a single break and least squares tests for multiple breaks.? The tests are not model-specific and
apply to a large class of (strongly) dependent ARCH and SV type specifications given appropriate
stationarity conditions. The theoretical developments are described in a series of recent papers; see,
in particular, Kokoszka and Leipus (1998, 1999, 2000) and Lavielle and Moulines (2000). So far
only limited simulation and empirical evidence is reported about these tests. We enlarge the scope
of applicability by suggesting several improvements that enhance the practical implementation
of the proposed tests. This paper focuses on the Kokoszka and Leipus (2000) and Lavielle and
Moulines (2000) tests and proposes three types of extensions. First, we find via simulations that
the VARHAC estimator proposed by den Haan and Levin (1997) yields good properties for the
CUSUM-type estimator of Kokoszka and Leipus (2000). Simulation evidence is also presented for
the application of this test to the multiple breaks setting using a sequential sample segmentation
approach similar to that of Incldn and Tiao (1994). Second, the series used in the tests so far
are either squared or absolute returns. We suggest the application of these tests to more precise
measures of volatility, including the high frequency data-driven processes studied by Andersen
et al. (2001), Andreou and Ghysels (2002), Barndorff-Nielsen and Shephard (2002), among others.
Third, the finite sample performance of these new tests is assessed via extensive Monte Carlo
simulations for realistic univariate GARCH models, single and multiple breaks as well as different
algorithms and information criteria for the multiple breaks case.

The empirical application examines various financial series, including equity index returns for
several financial markets in the Hong Kong, Japan, the UK and US as well as FX market series.
Our empirical analysis is particularly complementary to Granger and Hyung (1999) who use the
tests proposed by Incldn and Tiao (1994) and Bai (1997) to examine breaks in the absolute returns.
The advantage of the Kokoszka and Leipus as well as Lavielle and Moulines tests is their validity
under a wide class of strongly dependent processes, including long memory, GARCH-type and
non-linear models. The Incldn and Tiao test applies in principle to independent series and is
designed to find a break in the (unconditional) variance with unknown location. We show via
Monte Carlo that the Incldn and Tiao test has nevertheless power and only minor size distortions
when applied to strongly dependent data, though it is not as powerful as the Kokoszka and Leipus
and Lavielle and Moulines tests.

The paper is organized as follows. In Section 2 we describe the various tests. Section 3 presents
the Monte Carlo design and results. Section 4 contains the empirical application and a final section
concludes.

2. TEST STATISTICS FOR BREAKS IN VOLATILITY DYNAMICS

A classical statistical problem is to test the homogeneity of a process or the parameter constancy
of models. There is a substantial literature on this question known as a change-point problem.
The task is to test if a change or structural break has occurred somewhere in a sample and, if

2 The tests proposed by Andrews (1993) require -mixing and can be potentially applied to ARCH type models. They
are, however, designed for a single break.

Copyright © 2002 John Wiley & Sons, Ltd. J. Appl. Econ. 17: 579-600 (2002)
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so, to estimate the time of its occurrence. The simplest form of departure from stationarity is
a change in mean at some (unknown) point in the sample. This problem has received a great
deal of attention; see, for instance, Csorgo and Horvath (1997) for a literature review. Financial
returns series typically have constant mean, but exhibit noticeable and complex clustering patterns
in volatility (see e.g. Bollerslev et al., 1994, for a survey of stylized facts). Such processes pose
some non-trivial challenges as detecting a change in variance in an ARCH model can be rather
difficult.® This section provides a brief discussion of the Kokoszka and Leipus (2000) as well
as the Lavielle and Moulines (2000) tests for single and multiple breaks as well as the volatility
series to which the tests can be applied to in order to test for change points in the second-order
dynamics of a process.

2.1. CUSUM Type Tests

Let the asset returns process, 7y, be a strongly dependent, e.g. S-mixing process with finite fourth
moment. A large class of ARCH and SV models are S-mixing (see, for instance, Carrasco and
Chen, 2001) that satisfy these assumptions.* Define the process of interest X, = |r,|* for § = 1,2
which represents an observed measure of the variability of returns. Given that the measurable
functions of mixing processes are mixing and of the same size (see White, 1984, Theorem 3.49)
then X; = G(ry, ..., r;—¢), for finite 7, is also B-mixing. The choice of § is of course important. For
8 =2 we look at squared returns which is the parent process parametrically modelled in ARCH
or SV-type models. Alternatively, when § = 1, we examine absolute returns, which is considered
as another measure of risk; see, for instance, the Power-ARCH models (Ding et al., 1993). It is
worth mentioning that long memory features have also been established in the absolute returns (e.g.
Ding et al., 1993; Granger and Ding, 1996). Although the tests analysed here apply to some long
memory volatility models they are beyond the scope of this paper.> Without an explicit functional
form for the second conditional moment, the tests discussed in this section will examine whether
there is evidence of structural breaks in the dynamics of stock returns volatility. If we find a
break, one must conclude that when fitting ARCH or SV-type processes, there will be instability
in their parametric structure. We can take this reasoning a step further and think of sampling
returns intra-daily, denoted r(;), for some intra-day frequency i = 1, ..., m, and form data-driven
estimates of daily volatility by taking sums of squared intra-day returns. This is an example of
X, = G(r(zl)’t, ey r(zm),[). The high frequency process is S-mixing, and so is the daily sampled sum
of intra-day squared returns, or various other empirical measures of quadratic variation. Using the
notation of Andreou and Ghysels (2002) X, = (QVi), which are locally smoothed filters of the
quadratic variation using i days of high-frequency data. The case of QV1 corresponds to the filters
studied by Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002). The details of the
various specifications for the X, process will be discussed in the last subsection.

3 One could, for instance, think of extreme cases, where there is no change in the unconditional moments but only a
perturbation in the conditional variance dynamics.

4 Examples that form exceptions in this class are Integrated GARCH (IGARCH) or Fractionally IGARCH (FIGARCH)
models which are not covariance stationary.

5 Results on change-point tests for volatility models with long memory can be found in Andreou (2002).
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In order to test for breaks in an ARCH(oco) Kokoszka and Leipus (1998, 2000) consider the
following process:

k T
Ur()y= | 1INTY X; —k/(TVT))_X; (1)

j=1 j=1

where 0 < k < T, X; = r2. The returns process {r;} follows an ARCH(co) process, r; = u;+/hy,
hy =a+ Z?‘;l b jrtz_ paz 0,b; > 0, with finite fourth moment and errors u, that can be non-

Gaussian. The CUSUM type estimator k of a change point k* is defined as:

k = min{k: |Ur (k)| = max Uz (j)l} 2

The estimate & is the point at which there is maximal sample evidence for a break in the squared
returns process. In the presence of a single break it is proved that k is a consistent estimator of the
unknown change-point k* with P{|k* — l%l >¢e} <C/ (SSZﬁ), where C is some positive constant
and § depends on the ARCH parameters and |k* — IA<| = 0,(1/n) (Kokoszka and Leipus, 1998,
2000). Under the null hypothesis of no break:

Ur (k) — ppo,11 oB(k) (3)

where B(k) is a Brownian bridge and o2 = Z?‘;_oo Cov (X}, Xp). Consequently, using an
estimator &, one can establish that under the null:

sup{|Ur(k)[}/6 — pio,1) sup{B(k): k&[0, 11} “)

which establishes a Kolmogorov—Smirnov type asymptotic distribution.

The computation of the Kokoszka and Leipus (1998, 2000) test (henceforth K&L test) is
relatively straightforward, with the exception of & appearing in (4). The authors suggest to
use a Heteroscedasticity and Autocorrelation Consistent (HAC) estimator applied to the X;
process. There are a number of such estimators, depending on the kernel function one uses
(see, for instance, the chapter by den Haan and Levin, 1997 and references therein). We have
experimented with a number of kernel estimators in addition to the procedure of den Haan and
Levin (1997) who propose a HAC estimator without any kernel estimation, which is called the
Vector Autoregression Heteroscedasticity and Autocorrelation Consistent (VARHAC) estimator.
This estimator has an advantage over any estimator which involves kernel estimation in that the
circular problem associated with estimating the optimal bandwidth parameter can be avoided. This
estimator involves fitting a parametric autoregressive model and choosing the order of AR using,
for instance, the AIC. The Monte Carlo evidence reported in den Haan and Levin (1997) indicates
that the VARHAC estimator performs better than the non-prewhitened and prewhitened kernel
estimators in many cases. Although we have not done a systematic study of various kernel HAC
estimators versus the VARHAC estimator, we found via simulations that the latter is reliable.
Hence all the results in the paper are based on the VARHAC estimator for ¢ appearing in (4).

The advantage of the K&L test is its validity under a wide class of processes, including long
memory, GARCH-type and non-linear time series models. In a study closely related to ours Granger

6 Critical values can be found in most textbooks on nonparametric methods. The 90%, 95% and 99% percentile (two-sided
test) critical values are, respectively: 1.22, 1.36 and 1.63.
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and Hyung (1999) use a different test, proposed by Incldn and Tiao (1994) for linear models with
breaks such as those proposed by Chen and Tiao (1990) and Engle and Smith (1999). Aggarwal
et al. (1999) also apply this test to GARCH models. The Incldn and Tiao test (henceforth I&T test)
applies in principle to independent series and is designed to find a break in the (unconditional)
variance with unknown location. The test statistic is defined as:

IT = /T2 max |Dy| (5)

where Dy, = [ Z’;: 1 X/ Z,T-:1 X j) —k/ Tl. It is interesting to note that the asymptotic distribution
of the statistic in (5) is the same as in (4), that is, the supremum of Brownian bridge and hence the
same Kolmogorov-Smirnov type asymptotic distribution. In the Monte Carlo simulations we will
examine how the Incldn and Tiao test performs in non-independent settings using transformations
that yield independent processes and compare it to the Kokoszka and Leipus test.

The Kokoszka and Leipus test is also adapted for the multiple breaks hypothesis. The number of
breaks is determined following a sequential sample segmentation approach similar to that of Inclan
and Tiao (1994) and Bai (1997). The simulations present some encouraging results regarding the
performance of the test for further theoretical investigation in the multiple breaks case. The test
is applied to a few sample segments given the appropriate significance level adjustment.

2.2. Least Squares Type Tests

The change-point literature has recently dealt with the unknown multiple change points question
in weakly dependent processes in a least-squares context. For instance, Bai (1994), Bai and Perron
(1998) and Liu et al. (1997) use the Hdjek—Rényi inequality to establish the asymptotic distribution
of the test procedure. Recent work by Lavielle and Moulines (2000) has greatly increased the scope
of testing for multiple breaks. They prove the Hijek—Rényi inequality results for weakly as well as
strongly dependent processes, the latter being a-mixing which include long memory and ARCH-
type processes.” The number of breaks is estimated via a penalized least-squares approach similar
to Yao (1988). In particular, Lavielle and Moulines show that an appropriately modified version
of the Schwarz criterion yields a consistent estimator of the number of change-points.
Consider the following generic model:

X;=pui+e tf,<t<tf 1<k<r (©)

where 75 =0 and 77| =T, the sample size. The indices of the breakpoint and mean values
wy, k=1,...,r are unknown. It is worth recalling that X, is a generic process. In practical
applications, equation (6) applies to squared returns, absolute returns, high-frequency data-driven
volatility estimates, etc. The Lavielle and Moulines tests are based on the following least-squares
computation:

r+1 Ik
= _mi Xi — )’ 7
Ory= min > D, (i—m) ™)
k=1 t=tx_1+1

Estimation of the number of break points involves the use of the Schwarz or Bayesian information
criterion and hence a penalized criterion Q7(¢) + Brr, where Brr is a penalty function to avoid

7 Recall that the latter are S-mixing which imply o-mixing.
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oversegmentation with r being the number of changes and {f7} a decreasing sequence of positive
real numbers. We examine the properties of this test using both the Bayesian information criterion
and that proposed in Liu et al. (1997). It is shown under mild conditions that the change-
point estimator is strongly consistent with 7 rate of convergence. The Lavielle and Moulines
simultaneously detects multiple breaks as opposed to the sequential adaptation of the Kokoszka
and Leipus test. It is worth noting that the Kokoszka and Leipus statistic in (1) can be weighted
by (k(T — k)T~'), 0 < y < 1, as suggested in Kokoszka and Leipus (1998, equation 1.3, p. 386)
which is then equivalent to the weighted least squares objective function when y = 0.5. This
brings out some similarities between the objective functions of the above two tests.

Given the asymptotic nature and sequential application of change-point tests in subsamples we
may obviously end up with relatively small samples. It will therefore be important to appraise the
power and size properties of these change-point tests in small samples via Monte Carlo simulations.

2.3. Empirical Processes

Following the above discussion the CUSUM and least squares tests are applied to the generic
process X, which represents the squared or absolute returns, both of which are regarded as
alternative measures of risk. A departure from the limited number of applications found in the
literature so far is to use estimates of conditional volatility which are based on high frequency data.
The logic for considering such empirical processes is that squared returns can be viewed as noisy
realizations of the underlying conditional volatility process (see Andersen and Bollerslev, 1998,
for a discussion). Hence, instead of considering the daily return process and square it, we can
take advantage of high frequency intra-daily data to obtain daily estimates of volatility.® Using the
notation r,), to represent high frequency data on day ¢ sampled with frequency m we can study
sums of squared returns r(zm), , for different values of m, to produce the daily volatility measure:

@) 6,QV1 = Z';‘:l r(zm)’t +1—jm» t=1,..., T, where for the 5-minute sampling frequency the lag
length is m = 288 for financial markets open 24 hours per day (e.g. FX markets) as in Andersen
et al. (2001), Andreou and Ghysels (2002) and Barndorff-Nielsen and Shephard (2002) or (ii)
One-day Historical Quadratic Variation (introduced in Andreou and Ghysels, 2002) defined as the
sum of m rolling QV estimates: 6, 2" = 1/m > i1 OV e1-jyms t =1,..., T. The intraday
volatilities are denoted as QVi, HQVi for window lengths i = 1, 2, 3. Clearly, the regularity
conditions for squared daily returns can be transplanted to these more efficient filtering schemes

like QVi (as discussed in Section 2.1).

3. THE MONTE CARLO DESIGN AND RESULTS

The aim of this section is to evaluate the performance of the Kokoszka and Leipus (1998, 2000)
in (4) as well as Inclan and Tiao (1994) tests in (5) (also referred to as K&L and I&T tests,
respectively) in detecting breaks in the volatility dynamics of financial asset returns. The observed
absolute or squared returns transformations are the series monitored for single and multiple breaks.
The simulation design examines the size and power properties of the Kokoszka and Leipus and

8 We refrain here from a discussion of the diffusion details of this class of estimators as well as definitions of quadratic
variation. For details we refer the reader to Andersen et al. (2001), Andreou and Ghysels (2002) and Barndorff-Nielsen
and Shephard (2000).

Copyright © 2002 John Wiley & Sons, Ltd. J. Appl. Econ. 17: 579-600 (2002)



MULTIPLE BREAKS IN FINANCIAL MARKET DYNAMICS 585

Lavielle and Moulines tests for GARCH type processes that can be considered as representative
models of financial asset returns. Kokoszka and Leipus (2000) report simulation results that focus
on the sampling distribution of the change-point estimator k for an ARCH(1) process. They find
that its sampling distribution depends on the location of the change-point, the size of the variance
change and its source. The extensive results presented in this section complement some early
simulation evidence of these tests in establishing their power for univariate and bivariate GARCH
processes and a number of alternative change-point hypotheses often encountered in asset returns.
The robust character of the test is also examined in the presence of outliers given the stylized fact
of jumps or extreme observations observed in volatility and absolute returns which may lead to
spurious nonlinearities or IGARCH effects (e.g. Lamoureux and Lastrapes, 1990; van Dijk et al.,
1999).

The apparent similarity of the CUSUM-type statistics in K&L and 1&T calls for an interesting
comparison which brings about the connection between these two tests and their power in detecting
change-points in GARCH processes as well as jumps in financial markets. For comparison purposes
both tests in (4) and (5) are evaluated for absolute and squared returns whereas the I&T test is
also applied to the residuals of a GARCH process given that this test is originally designed for
independent processes. First we discuss the simulation design followed by an analysis of the
results.

3.1. Simulation Design

The simulated returns processes are generated from a univariate Normal-GARCH process given
by:

i = Ui\ hiy

hi,l Zwi+0‘i“12,z—1 +,3ihi,l—lv = 1,...,T and i =O, 1 (8)

where r; , is the returns process generated by the product of u; , which is i.i.d.(0,1) and the volatility
h; ; that has a GARCH(1,1) specification. This process without change points is denoted by i = 0
whereas a break in any of the parameters of the process is symbolized by i = 1. The models
used in the simulation study are representative of financial markets data with the following set of
parameters that capture a range of degrees of volatility persistence (measured by «g + By). The
vector parameters (wy, &y, Bo) in (8) describes the following Data Generating Processes: DGP1:
(0.4,0.1,0.5) and DGP2: (0.1,0.1,0.8) which are characterized by low and high volatility persistence,
respectively. The sample sizes of T = 500, 1000, 3000 are chosen so as to examine not only the
asymptotic behaviour but also the small-sample properties of the tests. The small-sample features
are particularly relevant for the sequential application of the tests in subsamples.

The model without breaks (i = 0) denotes the processes under the null hypothesis. Under the
alternative hypothesis the returns process is assumed to exhibit breaks and four hypotheses are
considered to evaluate the power of the tests. The simulation study first examines the single
change-point followed by the multiple breaks hypothesis. In the context of (2.1) we study a single
break in the conditional variance i, which can also be thought as a permanent regime shift in
volatility at change points 77 (7 = .3,.5,.7). Such breaks may have the following sources. H4:
a change in the volatility dynamics (or persistence), ;. H?: a change in the intercept, w;. H IC: a
change in the tails of ugp; to u; , ~N(,0,), (o, =1.1,1.5)att ==aT+1,...,T. H?: outliers in

Copyright © 2002 John Wiley & Sons, Ltd. J. Appl. Econ. 17: 579-600 (2002)
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the error, ug, to u; , ~ N(uy, 1), with jump sizes u, = 4, 5 and frequencies at given regular dates
of a daily sample, A-t;, (where A =250, 500 and ¢t; = 1,2, ..., A/T) and zero otherwise.” The
sample sizes are 7 = 1000 and 3000 observations to match the empirical analysis as well as the
large samples encountered in financial asset returns series of relatively high sampling frequency.

For the multiple breaks case we examine the alternative hypothesis that there are two breaks
(or equivalently three segments) where the change points occur in model (8) as follows:

e =ur b hy = o +oqug _y + By if 1 <t < [nT]
Py = U\ N, oy = wy + Olzug,,_l + Bohoyy—y  if [AT] <t < [2nT]
13 = Uz \/ 3, h3 = w3 + 06314%,,_1 + Bshz—y i 2n]<t<T 9

where m = 0.33 and u;, ~ N (0, o), j=1, 2, 3 and uncorrelated.'® Under the null hypothesis the
simulated process (8) holds whereas under the alternative hypothesis of multiple change points the
process (9) is simulated with different sources of breaks as described under H4, H?, H{ H? above.
In order to detect the two breaks at 0.33 («7) and 0.66 of the sample (27T) we first apply the
Kokoszka and Leipus (2000) test to the total sample (T') of X, and if a break is detected an algorithm
similar to that of Incldn and Tiao (1994) is applied according to which the sample is segmented and
the test is applied again to each subsample following sequential sample segmentation whenever a
break is detected. The simulation design sequentially applies the test for upto 5 segments. Hence
a 1% significance level is applied to each segment. The Lavielle and Moulines (2000) test is
also applied to the multiple breaks process (as well as single break case mainly for comparison
purposes with the K&L and I&T tests). This test simultaneously detects the number of change
points and dates the breaks. The Lavielle and Moulines is a least squares type test and in order
to detect multiple breaks one may apply a grid search approach or a more efficient algorithm
based on dynamic programming suggested in Bellman and Roth (1969) and reintroduced in Bai
and Perron (1998, 2002). Two information criteria are used for the penalty function: the BIC
(Bayesian Information Criterion) and its modification by Liu ef al. (1997) denoted LWZ. The
simulation as well as empirical analysis is performed using the GAUSS programing language.

The simulation investigation is organized as follows: First, we consider the application of the
I&T, K&L and L&M tests in model (8) to evaluate their size and power under the single break
hypothesis. The alternative hypotheses aim to examine the power of the test in detecting breaks
due to either changes in the parameters (defined by H4, H%) or the error of the GARCH process
(defined by H, HP). The former are interesting for studying the parameter constancy of the
GARCH dynamics whereas the latter for examining the distributional homogeneity of the process.
Both are the underlying assumptions in many asset pricing relationships and Value at Risk (VaR).
Second, we evaluate the performance of the K&L and L&M tests for multiple breaks for the
alternative hypotheses mentioned above.

9 In our experiment the above simple jump process would facilitate the evaluation of the test’s power in the presence of
controlled outliers.

10 The multiple change point model can be extended to more than two breaks and some preliminary simulation results with
four breaks show that the tests share good properties, partly because of the large sample sizes encountered in financial
asset returns. Therefore, for conciseness and comparison with other studies we report the two breaks case.
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3.2. Simulation Results

The simulation results commence with the evaluation of the K&L test when the underlying process
is a Normal-GARCH(1,1). Table I reports only minor size distortions for GARCH models with
low persistence (e.g. DGP1 where ay + By = 0.6). These minor distortions remain as the sample
size increases from 7 = 500 to 3000. For the high-persistent process (DGP2) the test suffers
more serious distortions up to 20%. The power of the K&L test is evaluated by a number of
alternative hypotheses as defined in the previous section. The results in Table I suggest that the
tests have good power in detecting breaks under the following alternative hypotheses: Break in
the constant (H%) or dynamics (H *]‘) of volatility. The power of the test is demonstrated even for
small changes (e.g. a 0.1 increase) in By for all DGPs. Similar results apply to the alternative of a
small change in the error term (H¢). The power of the tests increases with 7 in all DGPs. Note
that the high nominal power for the persistent GARCH process (DGP2) needs to be weighted by
the size distortions for this process. In H? the presence of outliers or short-lived jumps, which
are evident in financial markets, do not seem to have an adverse effect on the test. The power of
the K&L test is also evaluated for early change-points for H/, H?, HS and the results show that
the K&L test can detect breaks that occur as early as at 7 = 0.3 of the sample.

The size and power properties of the K&L test are compared with those of I1&T. The latter is
derived for independent series but has been applied to processes that exhibit dependence (Aggarwal
et al., 1999; Granger and Hyung, 1999). Therefore we examine the properties of the test for (r;),
|r;| as well as the errors of the GARCH process (u;)*> where u, = r;/~/h; yields an independent
series. Note that u, refers to the simulated process and does not involve the estimation of the
conditional variance. Table II presents the nominal size and power simulation results of the I&T
test under the same null hypothesis of a Normal-GARCH(1,1) and all the alternative hypotheses
discussed above. Let us first compare the performance of the I&T for (r,)> and |r,|. The I&T test
for (r;)? suffers from size distortions (above 10%) for all DGPs and sample sizes but appears to
have good power in detecting even small changes in the GARCH coefficients or the error process
(shown by the alternative hypotheses H4, H%, HS) for large T. Nevertheless, its performance
is adversely affected by outliers which appear to be consistently detected as change-points. If
instead we adopt the |r;| transformation we note some interesting differences. The I&T test for |r;|
appears seriously under-sized and with relatively less power, when compared with (r,)? for any of
the alternative hypotheses. However, it is interesting to note that for large 7' (e.g. 1000, 3000) and
highly persistent GARCH processes (e.g. DGP2) the I&T test has good power properties and is not
susceptible to outliers as opposed to (r,)>. Finally we examine the I&T test for (,)> which is by
design an independent series. The size of the I&T statistic for (i,)* is near the nominal 5% level.
The I&T test for (u,)*> has power in detecting even small changes in the variance of error term
(demonstrated by H¢) and is not seriously affected by outliers (H?) for large samples, T = 3000.
This evidence complements the results in Incldn and Tiao for i.i.d. series in that it shows that this
test could be applied to the residuals of a GARCH for which it would have power to detect breaks
only in the error term for very large samples. This statement is supported by the simulation results
for the H4 and H? for (u,)* which show that it lacks power in detecting breaks in the conditional
variance. The reason u, lacks power is due to the standardization of the returns process r;//h;
that offsets the corresponding changes in r; and /A, and yields an i.i.d. error process, u.

In Table III we report the Lavielle and Moulines test simulation results for a single break. This
table reports the frequency distribution of the number of change points—to make it comparable
with the simulation results for multiple breaks that follow. The test appears to have good
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Table I. Nominal size and power of the Kokoszka and Leipus (2000) test for a single change-point in the
volatility based on a GARCH process

Samples, T Kokoszka & 500 Umax/0HAC 1000 Upax/OHAC 3000 Upax/OHAC
Leipus statistic Returns - ) N
transformations (1) |7 (re) [7e] (1) |71

Ho: Univariate GARCH, 7o, = u,;v/ho.1» ho.s = wo + ctouf ,_y + Boho.i—1, with (wo, @0, Bo):

DGP1: (0.4, 0.1, 0.5) 0.059 0.072 0.061 0.078 0.061 0.067

DGP2: (0.1, 0.1, 0.8) 0.171 0.165 0.187 0.185 0.212 0.205
H’?: Break in the dynamics of volatility, By (increase of 0.1) at 0.57.

DGPI1: By =0.5to B; =0.6 0.273 0.280 0.492 0.473 0.945 0.926

DGP2: o = 0.8 to g1 =0.9 0.978 0.978 0.999 0.999 1.000 1.000
H ’14: Break in the dynamics of volatility, By (increase of 0.1) at 0.37.

DGP1: Bp =0.5to g1 = 0.6 0.190 0.204 0.382 0.390 0.838 0.825

DGP2: By = 0.8 to g1 = 0.9 0.934 0.942 0.996 0.999 1.000 1.000
H f: Break in the constant of volatility, wp (increase of 0.1) at 0.57.

DGPI: wg = 0.4 to w; = 0.5 0.210 0.204 0.353 0.353 0.809 0.787

DGP2: wp = 0.1 to w; =0.2 0.718 0.702 0.913 0.915 1.000 1.000
H ‘f : Break in the constant of volatility, wp (increase of 0.1) at 0.37.

DGPI: wgp =0.4 to w1 =0.5 0.148 0.153 0.254 0.262 0.674 0.634

DGP2: wp = 0.1 to w; =0.2 0.552 0.573 0.851 0.844 0.999 0.999

HIC : Break in the error, ug ~ N(0, 1) (increase o, = 1.1) at 0.5T
DGPI1: u; ~ N(0, 1.1) 0.287 0.277 0.548 0.520 0.921 0.917
DGP2: u; ~ N(0, 1.1) 0.449 0.437 0.710 0.700 0.982 0.975
HIC: Break in the error, up ~ N (0, 1) (increase o,,, = 1.1) at 0.3T
DGP1: u; ~ N(0, 1.1) 0.195 0.199 0.329 0.333 0.833 0.804
DGP2: u; ~ N(0, 1.1) 0.376 0.386 0.548 0.548 0.932 0.923
H?: Outliers in the error, ug ~ N(0, 1) (u,; = 5 every 250 observations).
DGPI: u; ~ N(5, 1) 0.019 0.046 0.015 0.039 0.005 0.044
DGP2: u; ~ N(5, 1) 0.039 0.115 0.046 0.134 0.062 0.145

Notes: The Kokoszka and Leipus (2000) test statistic is defined as

1 & k1
Uk: R rz.——— rz.

The max U7 (k) is standardized by the VARHAC estimator, ogac, which is applied to X, that represents either squared or
absolute returns of the GARCH model. The normalized statistic Upax/0nac converges to the sup of a Brownian Bridge
with asymptotic critical value 1.36 at the 5% significance level. The Normal GARCH (1,1) model is simulated (1000
replications) where the superscripts 1 and 0 in the variables and coefficients in the Table denote the cases with and without
change-points, respectively.

size properties for either information criterion (BIC or LWZ) and for both DGPs and return
transformations. For the persistent GARCH (DGP2) the LWZ criterion performs better than the
BIC in terms of size. The test appears to have good power overall for a single break except when
there is a small change in the coefficients of either the constant or dynamics of the GARCH
model. This result is evident in the low persistent GARCH and in particular when the LWZ is
used. However, the L&M test with the LWZ criterion seems to have relatively more power in
detecting changes in the GARCH error than the BIC. Both criteria appear robust to the outliers.
Comparing the L&M and K&L simulation results we observe that the latter performs relatively
better when the size of change is small (e.g. 0.1 increase in the parameters of DGP1) but suffers
from relatively higher size distortions in persistent GARCH processes.
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Table II. Nominal Size and Power of the Incldn and Tiao (1994) test for a single change-point in the volatility
based on a GARCH process

Samples, T Inclan & 500 IT 1000 IT 3000 IT
Tiao statistic Returns ) N ) 5 5 5
transformations (rr) 72l (ur) (re) [7¢] (ur) (r1) 7l (ur)

Ho: Univariate GARCH, 7o, = u,;v/ho.1» ho.s = wo + ctouf ,_y + Boho.i—1, with (wo, @0, Bo):
DGPI: (0.4, 0.1, 0.5) 0.117 0000 0041  0.130 0000 0.046  0.149  0.000  0.052
DGP2: (0.1, 0.1, 0.8) 0280  0.001 0044 0301 0005 0046 0373  0.003  0.052

H‘i‘: Break in the dynamics of volatility, By (increase of 0.1) at 0.5T
DGP1: By = 0.5, B = 0.6 0.415 0.009 0.040 0.622 0.027 0.045 0.961 0.296 0.052
DGP2: By = 0.8, 81 = 0.9 0.989 0.635 0.040 1.000 0.964 0.045 1.000 1.000 0.052

H ? : Break in the constant of volatility, wg (increase of 0.1) at 0.57
DGPI: wy = 0.4, w1 =0.5 0.474 0.008 0.040 0.493 0.008 0.045 0.875 0.130 0.052

DGP2: wy = 0.1, w; = 0.2 0.807 0.125 0.040 0.962 0.413 0.045 1.000 0.975 0.052
HIC: Break in the error, uy ~ N (0, 1) (increase o,, = 1.1) at 0.5T
DGP1: u; ~ N(0, 1.1) 0.442 0.009 0.242 0.663 0.029 0.451 0.969 0.331 0.914
DGP2: u; ~ N(0, 1.1) 0.675 0.054 0.242 0.817 0.158 0.451 0.989 0.675 0.914
H lD: Outliers in the error, ug ~ N(0, 1) (i, =5 every 250 observations).
DGPI1: u; ~ N(5, 1) 0.365 0.000 0.232 0.275 0.000 0.131 0.227 0.000 0.083
DGP2: u; ~ N(5, 1) 0.526 0.006 0.232 0.481 0.005 0.131 0.450 0.002 0.083

Notes: The Inclan and Tiao (1994) statistic IT = /T /2 max |Di|, where

b= Kz/z) -

j=1 j=1

~| =

|

is specified for independent processes. It also converges to the sup of a Brownian Bridge with asymptotic critical value
1.36 at the 5% significance level. The process u; is the ‘true’ simulated process that does not involve volatility estimation.
In the above table the seed of the random number generator is controlled for comparison purposes. We note that when
the seed is not controlled there may be a variation in the simulation results that only affects the third decimal place of
the reported results.

The remaining simulation analysis addresses the multiple breaks hypotheses given in model (9).
Table IV reports the K&L results using a sequential sample segmentation approach. The frequency
distribution of the number of breaks under the alternative hypotheses is reported. The results show
that the K&L has good power only for large and non-monotone (rather than small and gradual)
changes in the GARCH parameters for any of the DGPs but for the absolute rather than the squared
returns transformations. Similarly it shares good power for detecting changes in the variance of
the error term in the GARCH process. As the sample size (T) increases the performance of the
test improves even for small change points. The Lavielle and Moulines multiple breaks results
are reported in Table V. The frequency distribution of the number of change points is reported
for the alternative hypotheses, the two information criteria and two breaks. The results show that
the L&M has good power in detecting the two change points especially when the BIC is applied
to 2 for small and gradual changes and when applied to either return transformation for large
changes. In contrast, the LWZ underestimates the number of breaks in the GARCH parameters.
Generally the L&M test has less power in detecting small and/or monotone (gradual) changes
in the GARCH parameters as opposed to large and non-monotone changes. This is a common
feature shared by the L&M and K&L tests. It is interesting to note that in detecting changes in the
distribution of the GARCH process the absolute rather than squared returns transformation yields
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Table III. Size, power and frequency distribution of the number of change-points obtained with the Lavielle
and Moulines (2000) test when there is a single break at 0.57 of the sample in the GARCH process

Samples, T Lavielle & 1000 1000
Moulines Segments,
BIC Lwz BIC Lwz
ty = 5 Returns
Number of breaks 5
() |7:]
0 1 >2 0 1 >2 0 1 >2 0 1 >2

Hy: Univariate GARCH, ros = “O,t\/hO,t’ hOA,r = wo + Olou%ﬂt_l + ﬁOhO,t—l’ with (a)o, a, ﬁo):
DGP1: (0.4, 0.1, 0.5) 096 0.03 0.01 1.00 000 000 098 002 000 1.00 0.00 0.00
DGP2: (0.1, 0.1, 0.8) 0.8 0.07 005 100 000 0.00 093 007 000 100 0.00 0.00

H?: Break in the dynamics of volatility with parameters (B, B1)

DGPI: (0.5,0.6) 072 024 004 1.00 000 000 079 020 0.01 1.00  0.00 0.00
DGP1: (0.5,0.8) 0.00 095 005 000 100 0.00 0.00 093 007 000 1.00 0.00
DGP2: (0.8,0.7) 021 075 003 08 015 000 020 075 0.05 084 016 0.00
DGP2: (0.8,0.4) 0.00 0.72 028 000 100 000 000 086 0.14 0.00 1.00 0.00
H ‘f : Break in the constant of volatility with parameters (wg, @1)
DGPI: (0.4,0.5) 0.85 0.14 0.01 1.00 0.00 000 082 018 0.00 1.00 0.00 0.00
DGPI: (0.4,0.8) 000 094 006 038 062 000 000 1.00 0.00 036 064 0.00
DGP2: (0.1, 0.3) 000 094 006 0.18 082 000 0.00 099 0.01 0.13 0.87 0.00
DGP2: (0.1, 0.5) 000 086 0.14 000 100 000 000 095 0.05 0.00 1.00 0.00
H IC: Break in the variance of the error with parameters (o, 0y, )
DGPI: (0, 1.1) 001 049 050 001 094 005 001 057 042 001 095 0.04
DGPI: (0, 1.5) 0.00 063 037 000 097 003 000 058 042 0.00 097 0.03
DGP1: (0, 3) 0.00 0.0 040 000 098 0.02 0.00 053 047 000 093 0.07

H lD: Outliers in the error, up ~ N(0, 1) (u,, = 5 every 250 observations).
DGPI: u; ~ N(5, 1) 099 0.01 000 100 000 000 099 001 000 100 0.00 0.00
DGP2: u; ~ N(5, 1) 098 0.02 0.00 1.00 000 000 092 006 002 1.00 0.00 0.00

Notes: The Lavielle and Moulines (2000) test is described in Section 2.2. The Bayesian Information Criterion (BIC) and
its modification by Liu et al. (1997) denoted as LWZ are used. The simulations focus on DGP1, DGP2, T = 1000 for 500
trials. For comparison purposes the alternative hypotheses of change points are similar to the K&L simulations (Table I)
and extended to larger breaks. Reported is the frequency distribution of the breaks detected. The bold numbers refer to
the true number of change-points in the simulated process.

relatively higher power with the BIC. Overall increasing the sample size, T, and the number of
segments, t;, improves the power of the test especially when the size of change is small. For large
breaks the L&M and K&L share similar power. However for small or monotone changes the K&L
has relatively more power and is computationally less demanding than the L&M test. The latter
however has better size properties and does not overpredict the number of breaks.

4. EMPIRICAL RESULTS

There is a plethora of empirical evidence that squared asset returns exhibit dynamic heteroscedas-
ticity (e.g. Bollerslev et al., 1994) and absolute returns feature long-range dependence (e.g. Granger
and Ding, 1996). Empirical studies recognize that the existence of breaks or regime changes in
financial markets affects volatility and long-range dependence in stock returns (e.g. Lamoureux
and Lastrapes, 1990; Mikosch and Starica, 1999; Granger and Hyung, 1999; Diebold and Inoue,
2001).
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Table IV. Size, power and frequency distribution of the number of change-points obtained with the Kokoszka
and Leipus (2000) test when there are rwo breaks at 0.337 and 0.677T of the sample in the GARCH process

Samples, T" Returns 1000 3000
Number of breaks 5 )
(re) [7¢] (re) 7]

0 1 2 =3 0 1 2 >3 0 1 2 >3 0 1 2 =3

H114: Break in the dynamics of volatility with parameters (8o, B1, B2)

DGP1:

(0.5,0.6,0.8) 0.00 0.88 0.01 0.11 0.00 0.00 0.87 0.13 0.00 0.87 0.13 0.00 0.00 0.00 1.00 0.00

(0.5,0.6,0.3) 0.00 0.60 0.39 0.01 0.00 0.00 099 0.01 0.00 0.00 099 0.01 0.00 0.00 1.00 0.00

DGP2:

(0.8,0.5,0.8) 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
H f: Break in the constant of volatility with parameters (wg, @1, @)

DGP1:

(0.4,0.5,0.8) 0.00 0.39 0.61 0.00 0.00 0.00 0.71 0.29 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

(0.4,0.8,0.4) 0.00 0.53 0.39 0.08 0.00 0.00 0.77 0.23 0.00 0.30 0.66 0.04 0.00 0.00 0.99 0.01

DGP2:

(0.1,0.2,0.5) 0.00 0.01 099 0.00 0.00 0.00 099 0.01 0.00 0.00 099 0.01 0.00 0.00 1.00 0.00

(0.1,0.5,0.8) 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

(0.1,0.5,0.1) 0.00 0.06 094 0.00 0.00 0.00 098 0.02 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

(0.1,0.3,0.1) 0.00 0.20 0.78 0.02 0.00 0.00 097 0.03 0.00 0.00 099 0.01 0.00 0.00 0.99 0.00
H IC: Break in the variance of the error with parameters (o, 0y, , Ou,)

DGP1:

(0,1.5,3) 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

(0,3,5) 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

Notes: The K&L test (see notes in Table I) is applied following a sequential sample segmentation approach and the
frequency distribution of the change-points is reported. The bold numbers refer to the true number of breaks in the
simulated process.

The empirical analysis aims to complement the simulation evidence in the following directions.
We examine the change-point hypothesis in volatility dynamics of international stock market
indices and FX returns. The empirical performance of the tests, discussed in the previous sections,
is evaluated by examining the relation of the change-points to economic events detected not only
in the squared and absolute returns but also to a family of data-driven volatility filters. Moreover,
we estimate the volatility in subsamples prior and post breaks in an attempt to verify changes in
the dependence of the series. The empirical analysis also complements the simulation results to
tests for multiple breaks using the Lavielle and Moulines least-squares test as well as the Kokoszka
and Leipus sequential sample segmentation test (henceforth K&L and L&M, respectively).

The empirical analysis is performed using data from the stock and FX markets. The four
international stock market returns indices, the Financial Times Stock Exchange 100 index (FTSE),
the Hang-Seng Index (HSI), the Nikkei 500 index (NIKKEI) and the Standard and Poors 500
index (S&P500) are studied over the period 4/1/1989—-19/10/2001 at daily frequency (sample
size, T = 3338). The data source is Datastream. The choice of the sample is based on the recent
experience of the Asian and Russian financial crises. We also study the Yen vis-a-vis the US
dollar returns over the period 1/12/1986—30/11/1996 at 5-minute sampling frequency. The data
source is Olsen and Associates. The original sample is 1,052,064 five-minute return observations
(2653 days-288 five-minute intervals per day). The returns for some days were removed from the
sample to avoid having regular and predictable market closures which affect the characterization
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Table V. Size, power and frequency distribution of the number of change-points obtained with the Lavielle
and Moulines (2000) test when there are two breaks at 0.337 and 0.67T of the sample in the GARCH

process
Samples, T Lavielle & # 1000 1000
Moulines Returns
BIC LWZ BIC LWZ
Number of
breaks Segments N
() i
o 1 2 =3 o0 1 2 =3 0 1 2 =3 0 1 2 =>3
bGP H’?: Break in the dynamics of volatility with parameters (8o, B1, B2)
(0.5,0.6,0.8) 5 0.00 0.95 0.05 0.00 0.01 0.99 0.00 0.00 0.00 0.98 0.02 0.00 0.06 0.94 0.00 0.00
3 0.00 1.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00 0.97 0.03 0.00 0.02 0.98 0.00 0.00
(0.5,0.6,0.3) 5 0.14 0.47 0.39 0.00 0.94 0.04 0.02 0.00 0.16 0.56 0.28 0.00 0.93 0.07 0.00 0.00
3 0.20 0.50 0.28 0.00 0.97 0.03 0.00 0.00 0.19 0.62 0.19 0.00 0.96 0.04 0.00 0.00
DGP2:
(0.8,0.5,0.8) 5 0.00 0.03 0.90 0.06 0.70 0.19 0.11 0.00 0.01 0.00 0.99 0.36 0.06 0.58 0.00 0.00
3 0.03 0.97 0.00 0.00 0.68 0.32 0.00 0.00 0.00 0.01 0.99 0.00 0.51 0.08 0.41 0.00
H 113: Break in the constant of volatility with parameters (wg, @1, @)
DGPI:
(0.4,0.5,0.8) 5 0.05 091 0.04 0.00 0.66 0.34 0.00 0.00 0.04 0.94 0.02 0.00 0.63 0.37 0.00 0.00
3 0.02 0.97 0.01 0.00 0.52 0.48 0.00 0.00 0.05 0.94 0.01 0.00 0.69 0.31 0.00 0.00
(0.4,0.8,0.4) 5 0.09 0.00 0.90 0.01 0.92 0.00 0.08 0.00 0.09 0.02 0.89 0.00 0.92 0.00 0.08 0.00
3 0.02 0.00 098 0.00 0.90 0.00 0.10 0.00 0.09 0.01 0.90 0.00 0.97 0.00 0.03 0.00
DGP2:
(0.1,0.2,0.5) 5 0.00 0.82 0.18 0.00 0.01 0.99 0.00 0.00 0.00 0.67 0.30 0.03 0.00 1.00 0.00 0.00
3 0.00 091 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.72 0.28 0.00 0.00 1.00 0.00 0.00
(0.1,0.5,0.8) 5 0.00 0.18 0.79 0.03 0.00 0.99 0.01 0.00 0.00 0.36 0.60 0.04 0.00 0.96 0.04 0.00
3 0.00 0.20 0.80 0.00 0.00 1.00 0.00 0.00 0.00 0.34 0.66 0.00 0.00 0.91 0.09 0.00
(0.1,0.5,0.1) 5 0.00 0.00 0.95 0.05 0.01 0.00 0.99 0.00 0.00 0.00 0.94 0.06 0.00 0.00 1.00 0.00
3 0.00 0.00 1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 1.00 0.00 0.02 0.00 0.98 0.00
(0.1,0.3,0.1) 5 0.00 0.00 0.99 0.01 0.77 0.00 0.23 0.00 0.02 0.02 0.93 0.03 0.75 0.02 0.23 0.00
3 0.01 0.02 0.97 0.00 0.68 0.00 0.32 0.00 0.04 0.00 0.96 0.00 0.71 0.02 0.27 0.00
H IC: Break in the variance of the error with parameters (0y,, 0w, 0u2)
DGPI:
(0,1.5,3) 5 0.00 0.78 0.22 0.00 0.00 0.98 0.02 0.00 0.00 0.37 0.56 0.07 0.00 0.96 0.04 0.00
3 0.00 0.97 0.03 0.00 0.00 1.00 0.00 0.00 0.00 0.53 0.47 0.00 0.00 1.00 0.00 0.00
(0,3,5) 5 0.00 0.76 0.24 0.00 0.00 0.96 0.04 0.00 0.00 0.00 0.81 0.19 0.00 0.00 0.98 0.02

3 0.00 0.96 0.04 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

of the volatility dynamics. For the description of the data removed refer to Andersen et al. (2001).
The final sample includes 705,024 five-minute returns reflecting 7 = 2448 trading days.

The empirical analysis commences with investigating the hypothesis of a single break in the four
international stock market indices. The results in Table VI provide evidence that neither the K&L
nor the I&T tests support the null hypothesis of homogeneity in the absolute or squared returns
of the stock market indices over the sample 1989-2001. These results hold for two alternative
non-parametric estimators of (r,)*> and |r,| used for standardizing the max Uz (k) statistic defined in
Section (1.1): the VARHAC estimator and the Nonlinear Least Squares (NLS) variance estimator
of the ARMAC(1,1) for squared and absolute returns (Francq and Zakoian, 2000b). The overall
picture of the four stock market returns indices dates the change point in 1997 and in particular
in the summer months of 1997 for the FTSE, HKI and NIKKEI. The same change-point dates are
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Table V. (Continued)

Samples, T Lavielle & 3000 3000
Moulines Returns
Number of breaks BIC Lwz BIC Lwz
Segments )
(rz)z [7¢]
o 1 2 =3 o0 1 2 =3 0 1 2 =3 0 1 2 =>3

bGP H114: Break in the dynamics of volatility with parameters (8o, B1, B2)
(0.5,0:6,0‘8) 5 0.00 0.92 0.08 0.00 0.00 1.00 0.00 0.00 0.00 0.79 0.21 0.00 0.00 1.00 0.00 0.00
(0.5,0.6,0.3) 5 0.00 0.91 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.77 0.22 0.01 0.00 1.00 0.00 0.00
DGP2:
(0.8,0.5,0.8) 5 0.00 0.00 0.96 0.04 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 1.00 0.00

H f: Break in the constant of volatility with parameters (wg, @1, @)
DGPI:
(0.4,0.5,0.8) 5 0.00 0.90 0.10 0.00 0.01 0.99 0.00 0.00 0.00 0.92 0.08 0.00 0.03 0.97 0.00 0.00
(0.4,0.8,0.4) 5 0.00 0.00 0.99 0.01 0.09 0.00 0.91 0.00 0.00 0.09 0.91 0.00 0.00 0.98 0.02 0.00
DGP2:
(0.1,0.2,0.5) 5 0.00 0.45 0.54 0.01 0.00 1.00 0.00 0.00 0.00 0.16 0.82 0.02 0.00 0.98 0.02 0.00
(0.1,0.5,0.8) 5 0.00 0.01 0.99 0.00 0.00 0.35 0.65 0.00 0.00 0.01 0.94 0.05 0.00 0.39 0.61 0.00
(0.1,0.5,0.1) 5 0.00 0.00 0.99 0.01 0.01 0.00 0.99 0.00 0.00 0.00 0.96 0.04 0.00 0.00 1.00 0.00
(0.1,0.3,0.1) 5 0.00 0.00 0.99 0.01 0.01 0.00 0.99 0.00 0.00 0.00 0.97 0.03 0.01 0.00 0.99 0.00

H IC: Break in the variance of the error with parameters (0y,, Oy, 0u2)
DGPI:
(0,1.5,3) 5 0.00 0.74 0.26 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.75 0.25 0.00 0.87 0.13 0.00
0,3,5) 5 0.00 0.64 0.34 0.02 0.00 0.99 0.01 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.99 0.00

Notes: Refer to the notes in Table III.

also supported by the I&T test. Using the simulation evidence in Table II we note that for large
sample sizes T the I&T test for |r;| is well-behaved in terms of size and power and is not distorted
by outliers. It is interesting to note that the extension of the I&T statistic by Kim et al. (2000) (also
reported in Table VI as By (C)) does not detect any change-points. One possible explanation can
be the poor power performance of the test in the presence of highly persistent GARCH processes
as documented in Kim et al. and as is supported by the estimation of GARCH models for the four
stock market indices (presented in the last table).

The change-points detected in the three international stock market indices in Table VI refer to
the Asian crisis period. However, the single change point hypothesis can mask the existence of
multiple breaks which implies that in dating change-points it is advisable to follow a multiple
breaks procedure. The results of two tests are summarized in Table VII. In the Lavielle and
Moulines test we adopt two penalty function criteria, the first is the Bayesian Information Set
(BIC) and the second is a modified BIC as proposed in Liu ef al. (1997) (denoted by LWZ in
Table VII) and we set the number of segments #; equal to 3 and 5. The empirical findings show
that irrespective of the choice of #; the L&M test consistently detects the same number of breaks.
Specifically the combination of the BIC and |r;| tends to predict the largest number of breaks
whereas the pair of LWZ and (r;)> the smallest number of change-points. The latter result is
consistent with the conservatism of the LWZ found in the simulation analysis. The Asian crisis
period appears to be a common break in the above combinations (of processes and information
criteria) and in all stock market indices that is revealed in different months of 1997. In July and
August 1997 we detect the first change-points associated with the Asian crisis in the FTSE, HSI
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Table VI. Testing for a single change-point in the volatility of daily stock market Indices (SMI) over the
period 1989-2001

SMI Returns Change-point Change-point Statistics
k*
Kokoszka & Leipus test Inclan & Tiao tests
max Ugs max Uy max Uy T Br(C)
OHAC OARMA

FTSE |7 05/06/97 1.917 5.862* 6.665* 4.414* 0.599
(r)? 04/08/97 2.238 5.266* 3.511* 9.195* 1.249
HSI |7 14/08/97 3.460 4.619* 5.828* 4.954* 0.321
(r)? 18/08/97 7.104 2.181% 1.291 8.583* 0.556
NIKKEI |7 31/07/97 1.521 3.091% 3.806* 2.905* 0.449
(r)? 21/10/97 1.836 1.972* 1.305 4.427* 0.684
S&P500 |7 04/02/97 2.395 6.882* 7.181* 5.837* 0.356
(r)? 26/03/97 2718 4.888* 1.665* 11.103* 0.678

Notes:(1) The Stock Market Index (SMI) series refer to the Financial Times Stock Exchange index 100 (FTSE100), the
Hang-Seng Index (HSI), the Nikkei 500 (NIKKEI), the Standards and Poors 500 index (S&P500). The daily sample over
the period 4/1/1989 to 19/10/2001 yields T = 3338 observations. The series r, := log p, — log p,_; represents the returns
on each index. The change-point tests are applied to the (r;)> and |r;| transformations as well as (i;)> where u; is the
residual from the GARCH. (2) The Kokoszka and Leipus (1998, 2000) reported max U+ is the maximum of the statistic,

1 & N
Ui=| =S P -=—3"2
ﬁj:l J Tﬁj;./

which is standardized by non-parametric estimators, Heteroscedastic Consistent (6gac) and ARMA estimators (Gagrpa)
of squared and absolute returns. The normalized statistic max U+ /o converges to the sup of a Brownian Bridge. (3) The
Inclan and Tiao (1994) statistic

~| =~

k T
Dy = (Z r?-/Zr?) -
j=1  j=1
specified for i.i.d. processes normalized as IT = /T /2 max |Di| also converges to the sup of a Brownian Bridge and is
extended in Kim et al. (2000) for GARCH processes to be By (C) = C ﬁ max |Dy| where C2and « are constants that are
estimated by substituting the quasi-MLEs of the GARCH(1,1) &, @, 8 and T~! ZJT.:, {0 o, a, fand E(r}). (4) k*
refers to the location of the break and the * symbol attached to statistics denotes that the null hypothesis of no structural
change is rejected using the asymptotic critical value of 1.36.

and NIKKEI followed by the October 1997 change-point in the S&P500 as well as the NIKKEL!!
A second common break in the stock indices that is revealed in the L&M procedure is associated
with the Russian crisis. In July 1998 we detect change-points in the FTSE and the S&P500
followed by the August 1998 break in the NIKKEI. Table VIII reports the results of multiple
breaks from the Kokoszka and Leipus test sequential application. Comparing the results from the
two tests we observe that the latter test detects a larger number of breaks especially when applied
to the |r,| process even at the 1% significance level. The two multiple change-point tests detect
some common breaks in the same year mainly that of 1997.

As a final empirical application we test for change-points in the FX market applying the K&L
test to the family of high-frequency volatility filters that estimate the Quadratic Variation (QV)

T A detailed chronology of the Asian financial crisis events in 1997 and 1998 produced by N. Roubini can be found at
http://www.stern.nyu.edu/nroubini/asia/AsiaChronology 1.hml
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Table VII. Testing for multiple change-points in the volatility of daily stock market Indices (SMI) over the
period 1989-2001

Lavielle and Moulines test

SMI Process Selection criterion Number & location of breaks
FTSE |7 BIC —2.616(2), —2.610(1) 2 3/11/92, 1/8/97
LWZ —2.599(1), —2.549(0) 1 1/8/97
(r)? BIC —2.123(1), —2.070(0) 1 10/7/98
LWZ —2.112(1), —2.069(0) 1 10/7/98
HSI |7 BIC —1.121(3), —1.117(2) 3 3/7/192, 24/1/95, 15/8/97
LWZ —1.108(1), —1.074(0) 1 15/8/97
(r)? BIC 2.005(1), 2.009(0) 1 15/8/97
LWz 2.010(0) 0
NIKKEI |7 BIC —1.874(2), —1.867(1) 2 15/9/92, 30/7/97
LWZ —1.857(1), —1.851(0) 1 20/8/98
(r)? BIC —0.457(2), —0.452(1) 2 15/9/92, 14/10/97
LWz —0.448(0) 0
S&P500 |7 BIC —2.525(3), —2.513(2) 3 27/12/91, 5/1/96, 28/7/98
LWZ —2.492(2), —2.491(1) 2 20/8/91, 3/2/97
(r1)? BIC —1.602(1), —1.559(0) 1 14/10/97
LWz —1.591(1), —1.559(0) 1 14/10/97

Notes: For brief data description refer to note 1, Table VI. The Lavielle and Moulines test is described in Section 2.2.
The number of segments for multiple breaks denoted by m is set equal to 3. The selection criteria BIC and LWZ refer to
the Bayesian or Schwarz Information Criterion and modified BIC proposed in Liu ef al. (1997).

of diffusion processes with stochastic volatility (briefly discussed in Section 2.3). These high-
frequency volatility estimates have been introduced by Merton (1980) and applied in Poterba and
Summers (1986), French er al. (1987) and Hsieh (1991) infer alia. More recently Andersen and
Bollerslev (1998) reintroduced these filters using intraday data, similar to Hsieh (1991). Based
on a continuous time diffusion process Andersen and Bollerslev (1998) estimate the one-day
Quadratic Variation (QV'1) which is also called integrated volatility and defined as the sum of
the squared returns, r%m)’,, for the intraday frequency m, to produce the daily volatility measure:
QV1, discussed in Section 2.3, using 5-minute sampling frequency the lag length is m = 288 for
financial markets open 24 hours per day (e.g. FX markets). QV'1 can be considered as an efficient
estimate of the quadratic variation of a stock returns process. One reason for their efficiency being
that they utilize the high-frequency intraday data information. The QV1 filter is generalized in
Andreou and Ghysels (2002) using the results in Foster and Nelson (1996) to increase the window
length k = 2, 3 days in QVk and to suggest rolling instead of block sampling schemes. The rolling
estimation method yields the one-day Historical Quadratic Variation (HQV1) defined as the sum
of m rolling QV estimates, as discussed in Section 2.3, which is also extended to a k window
length, HQVk. The rolling estimation method yields smooth volatility filters which answers one of
the criticisms of the QV'1 filter (see, for instance, Andreou and Ghysels, 2002, Barndorff-Nielsen
and Shephard, 2002). The K&L and I&T tests are applied to these estimates of the quadratic
variation and compared with the results for (r,)?. The results in Table IX reveal the existence of
a single change-point that is detected in all the QV type filters by the Uyax/0varnac and IT even
at the 1% significance level as opposed to the mixed evidence of a change-point in (r,)*> and |r,|.
This change-point in the quadratic variation of the YN/USS$ series is consistently estimated by the
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Table VIII. Sequential sample segmentation approach of the Kokoszka and Leipus (2000) test for detecting
multiple breaks in stock market returns

SMI Process Subsamples Kokoszka and Leipus test
(observat.) .
k %T(k) Number of breaks
OHAC
Observ. Date
FTSE |r¢] 1-3338 2197 5/6/97 5.861* 4
1-2197 1021 2/12/92 3.508*
2198-3338 2497 30/7/98 1.366*
1021-2197 1631 5/4/95 2.041*
(r)? 1-3338 2239 4/8/97 5.265* 4
1-2239 991 21/10/92 2.744*
992-2239 1556 21/12/94 1.734*
992-1556 1279 29/11/93 2.507*
HSI |7l 1-3338 2247 18/8/97 4.619* 6
1-2247 1630 4/4/95 1.815*
2248-3338 2554 19/10/98 2.818*
1-1630 1239 4/10/93 2.416*
1240-1630 1404 23/5/94 2.540*
1405-1630 1534 21/11/94 1.953*
(r)? 1-3338 2249 18/8/97 2.181* 2
2250-3338 2554 22/10/98 2.072*
NIKKEI |7¢l 1-3338 2237 31/7/97 3.091* 5
1-2237 966 16/9/92 2.476*
2238-3338 2792 16/9/99 2.161*
1-966 293 16/2/90 3.119*
2238-2792 2365 27/1/98 1.716*
(r)? 1-3338 2295 21/10/97 1.972* 4
1-2295 966 16/9/92 2.470*
2296-3338 2861 22/12/99 1.757*
1-966 295 20/2/90 2.162*
S&P500 |7l 1-3338 2110 4/2/97 6.841* 4
1-2110 776 30/12/91 4.143*
2111-3338 2495 28/7/98 1.863*
780-2110 1776 25/10/95 2.130*
(r)? 1-3338 2146 26/3/97 4.888* 3
1-2146 779 31/12/91 3.159*
780-2146 1814 18/12/95 2.343*

Notes: The test is based on a sequential sample segmentation approach with a 1% significance level for each segment.

high-frequency volatility filters to be located on the 8/2/1993 and 9/2/1993 and is associated with
the highest increase of the YN vis-a-vis the US dollar since the 1970s and the possibility of Central
Bank interventions (as published in the Asian Wall Street Journal dated 23 February, 1993).

The empirical analysis so far applied single and multiple breaks test procedures and identified the
common dates estimated by the above tests as change-points. In an approach to verify that there was
indeed a structural change in the asset returns processes we examine the volatility characteristics
of the series in alternative subsamples—prior and after the breaks. The results in Table X report
the estimated MLE parameters from a Normal GARCH(1,1). The varying estimated coefficients of
volatility persistence and unconditional variance over the subsamples can be considered as further
supportive empirical evidence that complements the change-point tests.
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Table IX. Testing for a single change-point in high-frequency volatility filters in the YN/US$ during the
period 1986—-1996

Volatility k* Change-point statistics
filters . . :
Kokoszka & Leipus Inclan & Tiao & extention
max Uy max Uys max U IT Br(C)
OHAC OARMA
[yl 26/4/91 0.3538 1.493* 1.589* 1.996* 0.451
(r)? — 0.2676 1.120 1.273 1.151 0.260
oVl 9/2/93 0.3445 1.925% 3.845* 2.302* —
ov2 9/2/93 0.3443 1.262 7.685* 2.301* —
Qov3 9/2/93 0.3442 1.021 11.212* 2.300% —
HQVI 8/2/93 0.3428 1.804* 4.222* 2.291% —
HQV2 8/2/93 0.3429 1.207 8.467* 2.292% —
HQV3 9/2/93 0.3432 0.948 12.435* 2.294* —

Notes: (1) The Yen vis-a-vis the US dollar returns over the period 1/12/1986-30/11/1996 at the 5-minute sampling
frequency is analysed for structural changes. The data source is Olsen and Associates. The original sample is 1,052,064
five-minute return observations (2, 653 x 288 five-minute intervals per day). The returns for some days were removed
from the sample to avoid having regular and predictable market closures which affect the characterization of volatility
dynamics. The final sample includes 705,024 five-minute returns reflecting N = 2448 days. (2) The one-day Quadratic
Variation (QVI) is the sum of squared returns r(y), for the intraday frequency m, to produce the daily volatility
measure: QV1 = Z;”:l r(zm).t+17j/m, t =1---, Tgays, where for the 5-minute sampling frequency the lag length is = 288
observations for financial markets open 24 hours per day. In QV2 and QV3 the window length is k = 2,3 days,
respectively. The rolling estimation method yields the one-day Historical Quadratic Variation (HQVI) defined as the
sum of m rolling QV estimates: HQV1 = 1/m 27;1 OV1umy,i41—jjm» t =1---, Taays, which is also extended to a k
window length, HQVk.(3) The tests are described in the notes of Table VI.

5. CONCLUSIONS

There is a substantial literature on testing for the presence of breaks in linearly dependent stochastic
processes. The purpose of this paper is to explore recent advances in the theory of change-point
estimation, using various new CUSUM type change-point estimators and tests for multiple breaks
in the context of volatility models. The tests are not model-specific and apply to a large class
of strongly dependent processes such as ARCH and SV type processes and were developed in
a series of recent papers in particular by Kokoszka and Leipus (1998, 1999, 2000) and Lavielle
and Moulines (2000). We focus on the Kokoszka and Leipus (2000) and Lavielle and Moulines
(2000) tests which monitor non-linear transformations of returns processes (in square and absolute
returns) without the need to specify any particular, restrictive functional form of the process.
Moreover, the CUSUM type test of Kokoszka and Leipus and the RSS minimization type test
of Lavielle and Moulines are characterized by relative computational simplicity which is an
additional advantage for the complex nonlinear structure of financial time series. So far only
limited simulation and empirical evidence is reported about these tests. We enlarge the scope of
applicability by suggesting several improvements that enhance the practical implementation of the
proposed tests. The extensive simulation investigation regarding the performance of the Kokoszka
and Leipus test provides evidence that the test has good power properties in detecting even small
changes in all the GARCH parameters and the error and appears robust to outliers, but suffers
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Table X. Estimating volatility dynamics in subsamples prior and post the change-points of stock market
returns indices

SMI Process Subsamples k* Normal GARCH(1,1) Estimates
(observations) Date
) a B
FTSE (r)? 1-3338 0.003[4.409] 0.067[10.46] 0.919[111.8]
1-2484 13/7/98 0.003[3.669] 0.058[6.744] 0.915[64.18]
2485-3338 0.017[2.839] 0.100[4.410] 0.845[22.40]
HSI (r)?* 1-3338 0.016[15.80] 0.124[19.29] 0.855[128.6]
1-2248 15/8/97 0.023[18.71] 0.134[17.04] 0.810[97.42]
2249-3338 0.029[4.387] 0.092[7.462] 0.878[63.48]
NIKKEI (r)? 1-3338 0.005[6.979] 0.134[16.33] 0.859[105.4]
1-966 16/9/92 0.002[2.206] 0.229[11.11] 0.801[58.14]
967-2290 14/10/97 0.007[4.959] 0.080[7.805] 0.877[52.79]
2291-3338 0.011[3.125] 0.100[5.752] 0.875[41.36]
S&P500 (r)? 1-3338 0.0007[4.712] 0.039[12.979] 0.958[294.4]
1-2291 15/10/97 0.0003([3.256] 0.018[7.796] 0.979[409.1]
2292-3338 0.013[3.440] 0.075[5.801] 0.883[42.41]

Note: The Moulines and Lavielle (2000) multiple breaks results in Table VII for the absolute and squared returns processes
are used to create various subsamples of each stock market return index. The estimated Normal GARCH(1,1) coefficients
as well as the Power-ARCH coefficients are reported for the total sample (7 = 1 — 3338) as the various subsamples
determined by the estimated break points. Although not all subsamples have equal size some are approximately equal
which allow for a better comparison of the estimated parameters. The bold parameters emphasize the change in the size
of the volatility estimates in most subsamples (especially the parameters referring to the constant and ARCH effects of
dynamic volatility).

some size distortions in the persistent GARCH case.'? For the multiple breaks hypothesis we find
that both tests share good power properties especially the BIC criterion in the RSS of Lavielle and
Moulines. We also suggest the application of these change-point tests to more precise measures of
volatility, including the high frequency data-driven processes studied by Andersen et al. (2001),
Andreou and Ghysels (2002), Barndorff-Nielsen and Shephard (2002), among others.

The empirical analysis examines various financial series, including equity index returns for
several financial markets in Hong Kong, Japan, the UK and the USA. The data series are similar
to several prior studies, particularly Granger and Hyung (1999) who consider a longer but less
recent sample. The applications of the Kokoszka and Leipus as well as the Lavielle and Moulines
tests detect change-points in the volatility dynamics which are associated with the Asian and
Russian financial crises. The empirical analysis is also performed using high frequency data from
the FX markets. The above tests are applied to the Yen/US$ class of data driven volatility filters
in an attempt to provide more efficient approximations of the quadratic variation of the process
for which we also detect change-points.
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