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Abstract
The National Cancer Institute (NCI) suggests a sudden reduction in prostate cancer mortality rates,
likely due to highly successful treatments and screening methods for early diagnosis. We are
interested in understanding the impact of medical breakthroughs, treatments, or interventions, on
the survival experience for a population. For this purpose, estimating the underlying hazard
function, with possible time change points, would be of substantial interest, as it will provide a
general picture of the survival trend and when this trend is disrupted. Increasing attention has been
given to testing the assumption of a constant failure rate against a failure rate that changes at a
single point in time. We expand the set of alternatives to allow for the consideration of multiple
change-points, and propose a model selection algorithm using sequential testing for the piecewise
constant hazard model. These methods are data driven and allow us to estimate not only the
number of change points in the hazard function but where those changes occur. Such an analysis
allows for better understanding of how changing medical practice affects the survival experience
for a patient population. We test for change points in prostate cancer mortality rates using the NCI
Surveillance, Epidemiology, and End Results dataset.
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1. Introduction
According to the National Cancer Institute, there has been a sudden reduction in mortality
rates for prostate cancer, likely due to highly successful treatments, screening methods for
early diagnosis, and public health programs [1]. This reduction in mortality rates has sparked
interest towards a better understanding of the impact of medical breakthroughs, treatments,
and interventions, on the survival experience for a population. We are interested in
estimating the underlying hazard function, with possible time change points, as it will
provide a general picture of the survival trend and when this trend is disrupted.
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An estimate of the overall survival trend for an entire patient population can provide a better
understanding of how changing medical practice, health policy, the role of the health care
system, and public health services, affect the population survival experience. Furthermore,
from an individual perspective, understanding the hazard function including how and when
changes in the risk for mortality occur, allows for a life course view.

Several authors (see, for example, [2,10,11]) have proposed methods for detecting a single
change point in a piecewise constant hazard function. However, with advances in
biomedical research and increasing survival rates of patients we believe there may be some
cases where a model with two or more change points is more appropriate [8]. We consider
the situation where there are multiple changes in the piecewise constant hazard function at a
few unknown time points, often referred to as the change points. We propose a data-driven
approach for detecting the number of change points in the hazard function, and estimating
all of the unknown parameters in the model, including the change points. An alpha-spending
scheme [9] is developed such that the maximum number of change points, K, does not need
to be prespecified. We propose a Wald-type test statistic based on the theoretical results of
Yao [17], as the likelihood ratio test is controversial in a change-point setting due to the
irregularity of models and issues of singularity [4,11,12,15]; simulation studies confirm the
validity of our proposed test.

The rest of this article is structured as follows. We define the piecewise constant model with
multiple change points and develop a Wald-type test statistic in Section 2. We discuss the
issue of sequential testing and model selection using an alpha-spending type function in
Section 3. For methodology assessment, simulation studies to investigate the overall Type I
error, power, and estimation of parameters are presented in Section 4. We apply our
proposed methods to test for change points in the mortality rates of prostate cancer patients
in the NCI Surveillance, Epidemiology, and End Results (SEER) Program in Section 5. We
conclude with a general discussion in Section 6.

2. Piecewise constant multiple change point model
Let X1, …, Xn denote independent identically distributed survival times, and C1, …, Cn be
the censoring times which are assumed to be independent of X. We only observe the pairs
(Ti, δi), i = 1, 2, …, n, where Ti = min(Xi, Ci) and δi = 1 if Xi ≤ Ci and zero otherwise.
Consider the following change point model:

(1)

where 0 = τ0 < τ1 < ⋯ < τk = ∞ are the change points, k the number of change points in the
model, and αj the value of the hazard function between the time points τj−1 and τj.

We propose a maximum (profile) likelihood estimation to estimate the unknown parameters
of α and τ. Based on Equation (1), the log-likelihood function is
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where  is the number of deaths observed up to time t. With τj, j = 1,
…, k, fixed, some algebra yields that the maximizers of αj,j = 1, …, k + 1 are given by

. Substituting these values into log L
gives the profile likelihood for τj’s, which can be expressed as

We then maximize ℓ(τ1, …, τk) with respect to τj, j = 1, …, k and insert the obtained values
back to α̂j, j = 1, …, k + 1 for the MLEs of αj.

Our primary interest is to test for the existence of change points in the hazard function; or
equivalently, to test whether the hazard before and after such points are different. To test the
null hypothesis of no change points against the alternative of one change point, we develop a
hypothesis test based on the hazard parameters (H0 : α1 − α2 = 0). Yao [17] showed that the
estimates of the αj and τj are independent. Based on this, we formulate the Wald-type test
statistic solely on the hazard rate (αj) parameters while treating the change point (τj)
parameters as fixed.

Hence, to test H0 : αk−1 − αk = 0 versus H1 : αk−1 − αk ≠ 0, we use a Wald-type test statistic
of the form,

(2)

which asymptotically follows a Chi-squared distribution with one degree of freedom under
the null hypothesis.

3. Sequential testing and model selection
We assume that the maximum number of change points in the model is some finite number
K. Our aim is to find the model, with the number of change points k (k = 0, …, K) that best
fits our data. We frame our model selection process as a sequential testing problem. We start
with the model with no change points and perform a hypothesis test to compare it with the
model with one change point. If we fail to reject the null hypothesis, then we stop and
conclude that the final model has no change points. However, if we reject the null
hypothesis, then we will continue on to the next hypothesis test; compare the model with
one change point, to the model with two change points. If the null hypothesis is rejected we
test the subsequent hypothesis. That is, we will test for the existence of τk only after
verifying the existence of τk−1. The algorithm is continued until we fail to reject a
hypothesis.

We are cautious of choosing an over-fitted model with a large number of change points. The
issue of selecting the appropriate number of change points is similar in spirit to the issue of
selecting bin width in a smoothing problem. To address this issue, we borrow methodology
from the group sequential analysis literature. Lan and DeMets [9] proposed an alpha
spending technique in which the nominal significance level needed to reject the null
hypothesis at each analysis is ≤ α and increases as the study progresses. Thus, for the test, it
is more difficult to reject the null at the earliest analysis but easier later on. They proposed
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where α*(k) is the significance level for the kth hypothesis and s*(k) = k/K is the spending
function. Here, α*(1) < α*(2) < ⋯ < α*(K); an increasing alpha spending function.

In order to find a parsimonious model, we want strong evidence for choosing a more
complicated model, a model with more change points, over a simpler one. Therefore, we are
interested in a decreasing alpha spending function, where α*(1) > α*(2) > ⋯ > α*(K); the
test for each additional change point will be conducted at a more conservative α level than
the one before it.

If the overall significance level is α, we propose α*(k) = α/2k−1, where α*(k) is the
significance level for the kth hypothesis test. An advantage of this alpha spending function is
that it does not depend on the overall number of hypothesis tests being conducted.
Therefore, one does not need to specify K, the maximum number of change-points, which is
ideal for flexibility in model selection.

In this setting, Type I error is the probability of incorrectly choosing a model that has more
change points than the true model. We show that the type I error rate will not exceed α by
calculating three probabilities (i) choosing a model with one or more change points given
the true model has no change points, (ii) choosing a model with k change points given the
true model has no change points, and (iii) choosing a model with more than k change points
given the true model has k change points, are all at most α.

Let Mi be the event that the model has i change points. Then

(3)

(4)

and for k ≥ 1

(5)

The derivations of Equations (4) and (5) can be found in Appendix 1.

4. Simulation
In order to test our proposed methodology, we conducted simulation studies on models with
two, three, and four change points. In this paper we discuss and present results for the model
with two change points as this is the simplest multiple change point case and simulation
studies for models with a greater number of change points are easily extrapolated from those
of two change point model. We conducted simulation studies to investigate the estimation of
model parameters, the power of our proposed test, and the overall Type I error rate.

Survival times for a piecewise constant hazard model with two change points were
generated by inverting the cumulative distribution function and using the probability integral
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transformation. In this case, three different distributions have to be generated: (1) survival
times before the first change point; (2) survival times between the first change point and the
second change point and (3) survival times after the second change point. Censoring times
were generated from three corresponding uniform distributions. Five parameters need to be
specified a priori: the value of the hazard function for the three distributions and the two
change points. We developed simulation scenarios that closely approximated those of the
SEER data from the application in Section 5 and simulated models under the following
conditions 0 < αk < 1, 0 < τ1 < 5, and τ1 < τ2 < 10. Censoring percentages were calculated
for each simulated data set. We manipulated the amount of censoring by changing the ranges
on the censoring distributions. We tested a variety of model scenarios and compared the
average of each simulated data set to the theoretical average of the specified model.

We start by using the Wald-type test statistic (see Equation (2)) to compare the null model
with no change points to an alternative model with one change point. If we reject the null
model we continue to the next hypothesis and test the null model of one change point to the
alternative model of two change points. We continue this algorithm until we are unable to
reject a hypothesis. The α level for each test was determined using the decreasing alpha
spending function proposed in Section 3. We simulated 5000 datasets; for each dataset a
final model was chosen and the parameters were estimated by maximizing the likelihood
function for the final model using the Nelder–Mead Simplex algorithm, a reliable procedure
to carry out such optimization (available in common statistical software). Table 1 displays
the results of our simulations for n = 500, under 7 different model scenarios:

1. α1 = 0.95, α2 = 0.55, α3 = 0.15, τ1 = 2.0, τ2 = 4.0, and 0% censoring;

2. α1 = 0.15, α2 = 0.55, α3 = 0.35, τ1 = 2.0, τ2 = 4.0, and 5% censoring;

3. α1 = 0.15, α2 = 0.35, α3 = 0.55, τ1 = 1.0, τ2 = 3.5, and 20% censoring;

4. α1 = 0.65, α2 = 0.35, α3 = 0.15, τ1 = 1.5, τ2 = 3.5, and 25% censoring;

5. α1 = 0.15, α2 = 0.35, α3 = 0.55, τ1 = 1.0, τ2 = 2.5, and 30% censoring;

6. α1 = 0.15, α2 = 0.55, α3 = 0.95, τ1 = 2.0, τ2 = 4.0, and 35% censoring;

7. α1 = 0.15, α2 = 0.95, α3 = 0.45, τ1 = 2.0, τ2 = 4.0, and 50% censoring.

The mean estimated value is the average estimated parameter value from all 5000 simulation
runs, and the standard error is the standard deviation of these estimates. Based on simulation
studies our method estimates the change points and the value of the hazard quite well even
with a moderate amount of censoring. In most cases, the coverage probability is close to the
nominal level of 95%. However, for n = 500 as the percentage of censoring increases above
40% the coverage probability decreases significantly (see Table 1).

We examined the power of the test under the two change points alternative. The power is
essentially a measure of the accuracy of our algorithm in choosing the final model. Table 2
displays the results of the power analysis for samples of size 500 under 10 different model
scenarios:

1. α1 = 0.15, α2 = 0.55, α3 = 0.95, τ1 = 2.0, τ2 = 4.0, and 1% censoring;

2. α1 = 0.15, α2 = 0.55, α3 = 0.35, τ1 = 2.0, τ2 = 4.0, and 3% censoring;

3. α1 = 0.95, α2 = 0.55, α3 = 0.15, τ1 = 2.0, τ2 = 4.0, and 16% censoring;

4. α1 = 0.15, α2 = 0.35, α3 = 0.55, τ1 = 1.0, τ2 = 3.5, and 23% censoring;

5. α1 = 0.95, α2 = 0.35, α3 = 0.75, τ1 = 1.5, τ2 = 3.5, and 26% censoring;

6. α1 = 0.95, α2 = 0.65, α3 = 0.45, τ1 = 1.0, τ2 = 3.5, and 27% censoring;
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7. α1 = 0.15, α2 = 0.35, α3 = 0.55, τ1 = 1.0, τ2 = 3.5, and 27% censoring;

8. α1 = 0.15, α2 = 0.55, α3 = 0.95, τ1 = 2.0, τ2 = 4.0, and 36% censoring;

9. α1 = 0.15, α2 = 0.95, α3 = 0.45, τ1 = 2.0, τ2 = 4.0, and 49% censoring;

10. α1 = 0.15, α2 = 0.95, α3 = 0.45, τ1 = 2.0, τ2 = 4.0, and 57% censoring.

Power was most affected by sample size, the difference between αk−1 and αk, and the
difference between τk−1 and τk. With samples of size 500, |αk−1 − αk| > 0.2, |τk−1 − τk| >
1.5, and < 30% censoring, we observed power of at least 90%, however as the censoring
percentage increase above 30% the power decreases (see Table 2).

To test the overall Type I error rate, we simulated data with two change points (α1 = 0.95,
α2 = 0.55, α3 = 0.25, τ1 = 2, and τ2 = 4) and implemented our stepwise model selection
algorithm. We developed a censoring distribution using three uniform distributions, zero to
the first change point, from the first change point to the second change point, and from the
second change point to the largest survival time. On average, this distribution produces a
35% censoring percentage; we decrease the censoring percentage by increasing the upper
limits on the censoring distributions and increase the censoring percentage by decreasing the
upper limits on the censoring distributions. Table 3 displays a sample of our results for
samples of size 500. The Type I error is the number of times our algorithm chooses a final
model with three or more change points over the null model of two change points. The
observed overall Type I error rate is similar to the nominal significance level of the test (see
Equation (5)).

5. Prostate cancer mortality
To examine prostate cancer mortality, we analyze the Surveillance, Epidemiology, and End
Results (SEER) Program (www.seer.cancer.gov) Public-Use Data (1973–2007), National
Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch. This
data set contains cancer incidence and survival for cases diagnosed from 1973 to 2007,
follow-up continued until 31 December 2007. We are interested in finding: (i) if there are
change points in the hazard function, (ii) the number of change points and (iii) estimating
the location of the change points and all other model parameters.

We define an event as death from prostate cancer. Subjects who died from another cause are
censored at the time of death. We restrict our analysis to men who were diagnosed with
prostate cancer between 1973 and 2002 to allow for at least five years of follow-up. For the
purpose of analysis, we excluded subjects with unknown follow-up time. To avoid
singularity, we restrict the change points to be larger than the first survival time and smaller
than the second to last survival time, assuming these are non-censored time points, T(1) < τ1
< ⋯ < τk < T(n−1) [13,17].

There were 378,095 men who fit our restriction criteria in the SEER data set with 75,343
events and 80.1% of the observations being censored. The average age of men in the sample
is 84 with an average age at diagnosis of 71. In our sample population 84% of the men are
non-Hispanic white, 11% are non-Hispanic Black and approximately 5% are another race/
ethnicity (i.e. Hispanic, American Indian/Alaska Native or Asian). The estimated hazard
function has two change points (namely at 3.0 and 5.4) and is defined by Equation (6).

(6)
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Before the first change point there are 32,247 events and 63% censoring, between the first
change point and the second change point there are 16,140 events and 71% censoring and
after the second change point there are 26,956 events and 89% censoring. Figure 1 displays
the estimated hazard function. The hazard function for men diagnosed with prostate cancer
between 1973 and 2002 starts at 33.4 per 1000 population until 3 years after diagnosis, it
decreases to 24.9 per 1000 population until 5.4 years after diagnosis and then decreases to
21.6 per 1000 population until the end of the follow-up period. When a one change point
model is fit to this data the change point is estimated at 2.8 very close to the first estimated
change point (3.0) in the two change point model.

6. Discussion
Inference about the change-point in the piecewise constant model is a nontrivial issue
previously discussed in the literature (see, for example, [5–7]). We developed a Wald-type
test statistic employing the statistical independence of the estimates of the hazard rates and
the change point parameters [17]. The Wald test has a known asymptotic Chi-squared
distribution, facilitating drawing inference. Our methodology requires use of the Nelder–
Mead Simplex optimization algorithm [14], this algorithm uses only function values and is
robust but can be relatively slow. It will work reasonably well for non-differentiable
functions and requires the user to provide initial starting values for the parameter estimates.
From our simulation studies we found these values need to be reasonable but not precise.
There are other optimization methods available (e.g. quasi-Newton variable metric
algorithm, conjugate gradients method, box constraints) and easily implemented in most
software packages each with their own set of advantages and disadvantages [16].

An advantage of our method is its ability to appropriately handle sequential testing with
careful selection of a parsimonious model over an over fitted model. Although traditional
smoothing techniques (see, for example [3]) can be applied to estimate the hazard function.
When using these methods the knots and the number of knots are to be pre-specified by the
data analyst. Our approach uses the data to determine the number and value of the change
points. In settings where there is an interest in not only knowing the trend of the hazard
function but when the changes in trend occur, our proposed methodology has several
advantages when compared to existing approaches.

The methods we propose are easily implemented, using maximum likelihood estimation and
Wald-type test statistics, and can be applied to other important applications. The resulting
estimate of the hazard function can also be used for predictive purposes and allows for non-
parametric extrapolation of very long term survival by extrapolating the trend from the last
change point. Change-point hazard functions may have implications in health care policy
decisions. With an enhanced understanding of the changes in population mortality rates we
can identify gaps, seek solutions, improve performance, and ultimately, better the public’s
health.
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Appendix. Proofs of Inequalities (4) and (5)
Proof of Inequality (4): Note that

where the first equality follows from the fact that (1 − α/2k) < 1, the second follows from

the fact that 0 < α < 1, αk < α, and the last equality follows from the fact that .

Proof of Inequality (5): Note that
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Figure 1.
Estimated prostate cancer mortality hazard function for men diagnosed 1973–2002.
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Table 2

Power analysis for the piecewise constant model with two change points based on 5000 simulations (n = 500).

α2 − α1 α3 − α2 τ2 − τ1 % Censoring Power

0.4 0.4 2 1 0.98

0.4 −0.2 2 3 0.98

−0.4 −0.4 2 16 0.95

0.2 0.2 1.5 23 0.93

−0.6 0.4 2 26 0.92

−0.3 −0.2 1.5 27 0.93

0.2 0.2 1.5 27 0.96

0.4 0.4 2 36 0.81

0.8 −0.5 2 49 0.90

0.8 −0.5 2 57 0.69
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Table 3

Type I error analysis for the piece-wise constant change-point model based on 5000 simulations (n = 500).

% Censoring Type I error

0 0.048

5 0.048

10 0.046

15 0.044

20 0.050

25 0.052

30 0.048

40 0.049

45 0.053

50 0.052

60 0.047

80 0.053
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