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Abstract

Piecewise growth mixture models (PGMM) are a flexible and useful class of methods for 

analyzing segmented trends in individual growth trajectory over time, where the individuals come 

from a mixture of two or more latent classes. These models allow each segment of the overall 

developmental process within each class to have a different functional form; examples include two 

linear phases of growth, or a quadratic phase followed by a linear phase. The changepoint (knot) is 

the time of transition from one developmental phase (segment) to another. Inferring the location of 

the changepoint(s) is often of practical interest, along with inference for other model parameters. 

A random changepoint allows for individual differences in the transition time within each class. 

The primary objectives of our study are: (1) to develop a PGMM using a Bayesian inference 

approach that allows the estimation of multiple random changepoints within each class; (2) to 

develop a procedure to empirically detect the number of random changepoints within each class; 

and (3) to empirically investigate the bias and precision of the estimation of the model parameters, 

including the random changepoints, via a simulation study. We have developed the user-friendly 

package BayesianPGMM for R to facilitate the adoption of this methodology in practice. We 

describe an application to mouse-tracking data for a visual recognition task.
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1. Introduction

Longitudinal statistical models with piecewise functions (i.e., spliced lines or splines) are 

extremely useful for analyzing data that demonstrate a segmented growth process, where the 
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overall functional form incorporates two or more distinct functional forms with transitions 

from one phase to another over time (Kohli et al., 2015b). For instance, the development 

and/or decline in cognitive ability over time follows a piecewise trajectory (e.g., Bradway 

and Thompson (1962); Dominicus et al. (2008); Hall et al. (2001); Muniz Terrera et al. 

(2011)). The appeal of piecewise growth models is due to their flexibility to accommodate 

different kinds of functional forms with respect to each developmental phase (e.g., Cudeck 

and Klebe (2002)). To elaborate, a linear-linear piecewise function can be used where the 

respective trajectory in the first and second developmental phase is linear, or a quadratic-

linear or exponential-linear piecewise function can be used when the trajectory in the first 

developmental phase has some curvature and the rate of change in the second developmental 

phase is constant.

An important parameter of a piecewise function is the changepoint (knot), the time of 

transition from one developmental phase (segment) to another. The changepoint can be 

specified a priori or estimated as part of the model fitting procedure. Inferring the location of 

the changepoint(s) is often of practical interest, along with inference for other model 

parameters. It is possible to estimate a single changepoint or multiple changepoints under 

the assumption that transition times are common for a population of individuals (i.e., fixed 

changepoint), or that they vary from individual to individual (i.e., random changepoint) 

allowing for individual differences where the segments of the growth trajectories join (e.g., 

Fearnhead and Liu (2011); Lai and Albert (2014); Morrell et al. (1995); Wang and McArdle 

(2008)).

In many research settings, the data may consist of individuals from two or more unobserved 

subpopulations (i.e., classes). For example, in studies related to the Head Start programs, it 

has been found that children with two or more years of program participation have slower 

achievement growth, on average, than children with only one year of program participation 

(Kreisman, 2003). Analysis of data with latent classes requires the extension of growth 

models to include a categorical latent grouping variable. These statistical models are known 

as growth mixture models. The statistical framework of piecewise growth models can be 

extended to enable the identification of unknown classes, where individuals within a given 

class share similar mean segmented developmental trajectory with unknown changepoint(s) 

(e.g., Kohli et al. (2013, 2015a,b)). A piecewise growth mixture model (PGMM) can 

incorporate widely different changepoint locations and functional forms within each class; a 

PGMM with one class is simply referred to as a piecewise growth model (PGM). For 

example, Zhao and Banerjee (2012) considered a PGMM with a single, unknown random 

changepoint to examine log prostate-specific antigen (PSA) monthly data after prostate 

cancer surgery, with race and cancer stage at diagnosis as covariates.

The framework of PGMM is flexible and has a lot of utility in substantive research. 

However, fitting these models is complicated and time intensive. This is so because PGMMs 

are intrinsically nonlinear growth mixture models and the estimation of the mean or location 

of the changepoint(s) (a nonlinear parameter), along with the variance of the changepoint(s) 

is computationally very challenging. Additionally, the parameter estimation for these models 

may either employ frequentist inference procedures (e.g., Hall et al. (2000); Kohli et al. 

(2015a); Naumova et al. (2001)) or Bayesian inference procedures (e.g., Carlin et al. (1992); 
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Dominicus et al. (2008)). Wang and McArdle (2008), and Wang and Fang (2009) detailed 

the comparison of both inference approaches within the context of a single class piecewise 

growth model. Kohli et al. (2015b) compared the Bayesian-MCMC approach with the ML-

EM approach for estimating PGMM with an unknown changepoint that is class specific but 

does not vary for individuals within a class. The results from their study showed Bayesian 

estimation generally performed better than frequentist ML-EM estimation, in terms of both 

the accuracy of the estimated model parameters and computational feasibility.

In all of these previous studies the researchers hypothesized and prefixed the number of 

unknown changepoint locations, i.e., the number of changepoints were specified in advance. 

There is no existing methodological study that empirically detects the number of 

changepoints, i.e., considers the number of changepoints as unknown and to be inferred 

from the data, within a unified framework for inference. This is limiting for many 

applications. Piecewise studies of educational data typically assume one changepoint 

(Sullivan et al., 2016; Kohli et al., 2015c; Kieffer, 2012); however, it is plausible that many 

learning trajectories will have at least two changepoints: one preceding a period of 

accelerated growth (an “a-ha” moment), and another preceding a period of decelerated 

growth (a “saturation point”) (Gallistel et al., 2004). Multiple changepoints are also 

plausible for many physical growth processes. It is generally agreed that human height 

growth occurs in at least three linear phases (Karlberg, 1987), but that these phases can be 

altered in malnourished subpopulations (Karlberg et al., 1994). For these and other 

applications a flexible inferential framework that allows for an arbitrary number of latent 

changepoints, as well as individual variation and population heterogeneity in the form of 

latent classes, is needed.

This leads to the primary objective of this article, that is, (1) to develop a PGMM using a 

Bayesian inference approach that allows the estimation of multiple random changepoints 

within each class; (2) to develop a procedure to empirically detect the number of random 

changepoints within each class; and (3) to empirically investigate the bias and precision of 

the estimation of the model parameters, including the random changepoints, via a simulation 

study.

The organization of this article is as follows. In Section 2, we introduce a general 

probabilistic model for a PGMM with random number of changepoints. In Section 3 we 

describe a generally applicable Bayesian approach to estimate the parameters of the model 

in Section 2. In Section 4 we describe an application to mouse-tracking data for a visual 

language processing experiment, using the Bayesian method described in Section 3. In 

Section 5 we describe a comprehensive simulation study to assess the performance of the 

method, using results from the application in Section 4 as a starting point to simulate data. In 

Section 6 we describe an R package to apply the method. In Section 7 we discuss the 

advantages and limitations of our proposed approach, with potential extensions.

2. Likelihood model

Here we describe the data generating (likelihood) model for a piecewise growth mixture 

model with linear segments and latent number of changepoints. Hierarchical prior 
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distributions for unknown model parameters and other details that are specific to a Bayesian 

framework are discussed later in Section 3. In what follows, Greek characters denote 

unknown parameters to be estimated.

We first describe the model for a single class and fixed number of changepoints. For a single 

subject i, assume data are available for Mi measurement occasions. For each occasion j = 1, 

…, Mi, let yij denote the measured outcome for subject i and let xij denote the time of 

measurement. The longitudinal trajectory of the outcome is characterized by K + 1 segments 

of linear growth or decline, where K is the number of changepoints. That is, for changepoint 

locations λi,1, …, λi,K,

yi j = βi, 0 + βi, 1xi j + ∑
k = 1

K
βi, k + 1 xi j − λi, k

+ + εi j, (1)

where (·)+ is the positive part function,

xi j − λi, k
+ =

xi j − λi, k if xi j − λi, k > 0

0 otherwise,

and the error terms εij are independent and normally distributed with variance σε
2:

εi j
iidN 0, σε

2 . (2)

Because βi,k+1 denotes the change in slope at the k’th changepoint, the slope of the k’th 

linear segment is given by βi,1 + βi,2 + … + βi,k.

If subject i belongs to a single-class cohort of size N, i = 1, …, N, it is natural to assume a 

Gaussian random effects model for the subject-specific intercepts, slope changes, and 

changepoints:

βi, k
iidN βk, σβk

2 for k = 0, …, K + 1, and

λi, k
iidN λk, σλk

2 for k = 1, …, K,

where βk, λk  give the mean effects over all subjects and σβk
2 , σλk

2  give the variances of the 

subject-level effects. For identifiability of the index k we presume λ1 < λ2 < … < λK.

If the number of changepoints is unknown, we extend model (1) by introducing the latent 

parameter 𝒦:
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yi j = βi, 0 + βi, 1xi j + ∑
k = 1

K
βi, k + 1 xi j − λi, k

+ 𝟙 k ≤ 𝒦 + εi j, (3)

Where 𝟙 ⋅  is the indicator

𝟙 k ≤ 𝒦 = 1 if k ≤ 𝒦
0 otherwise.

Note that 𝒦 ∈ 0, 1, …, K  defines the number of changepoints, with a maximum of K 
possible changepoints.

If the N subjects belong to C classes, we let ψ(i) ∈ {1, …, C} represent the class to which 

subject i belongs for i = 1, …, N. In our context the class memberships ψ(i) are unknown, 

and ψ(i) = c with probability νc for i = 1, …, N and c = 1, …, C. Here νc defines the 

marginal probabilities in each class (i.e., the mixing proportions). The parameters {βi,k, 

λi,k} arise from a C-component Gaussian mixture with class specific means and variances:

βi, k
iidN βψ i , k, σψ i , βk

2 for k = 0, …, K + 1, and

λi, k
iidN λψ i , k, σψ i , λk

2 for k = 1, …, K .

(4)

The number of changepoints may also depend on the classes:

yi j = βi, 0 + βi, 1xi j + ∑
k = 1

K
βi, k + 1 xi j − λi, k

+ 𝟙
k ≤ 𝒦ψ i

+ εi j, (5)

where 𝒦1, …, 𝒦C give the latent number of changepoints in each class. The class 

membership may either be known or latent.

3. Parameter inference

In this section we discuss inference for the unknown parameters of the model defined by 

Equations (2), (4) and (5). We use a Bayesian framework for inference. Our reasons for 

adopting a Bayesian framework, rather than, for instance, a frequentist framework with 

maximum likelihood estimation, are several fold. Bayesian inference gives a flexible 

philosophical framework for assessing uncertainty in all parameters, incorporating subjective 

prior beliefs, and borrowing information across multiple studies. Furthermore, Bayesian 

inference has generally been shown to outperform maximum likelihood inference for less 

complex piecewise random effects models, in terms of both the accuracy of the estimated 

model parameters and computational feasibility (Wang and McArdle, 2008; Kohli et al., 

2015b). Moreover, maximum likelihood is generally prone to overfitting richly parametrized 
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models (Myung, 2000). For example, a direct application of maximum likelihood to estimate 

the unknown parameters of the model given in Section 2 will always select the maximum 

number of changepoints 𝒦1 = … = 𝒦C = K , because this case subsumes models where 

𝒦c < K for some class c. Alternatively, one could specify and fix 𝒦c c = 1
C  and estimate the 

remaining parameters via maximum likelihood. Under this approach post-hoc penalized 

likelihood heuristics such as the Akaike information criterion (AIC) (Akaike, 1974) or 

Bayesian information criterion (BIC) (Schwarz et al., 1978) may be used to compare models 

with different candidate values for 𝒦c c = 1
C . While AIC/BIC values can be used for model 

selection, they provide little intuition on the relative strength of evidence and uncertainty in 

the number of changepoints. Moreover, AIC and BIC are justified asymptotically and their 

direct application is often inappropriate for models with multilevel or clustered effects (see, 

e.g., Vaida and Blanchard (2005) and Delattre et al. (2014)), and estimating all permutations 

of the number of possible changepoints for multiple classes can be computationally 

intensive. Rather, we treat 𝒦c c = 1
C  as random variables to be inferred in a unified Bayesian 

framework.

Let D denote the set of all observed data

D = yi j, xi j : i = 1, …, N and j = 1, …, Mi

and let Θ denote the set of all unknown model parameters

Θ = σε
2, βc, k , λc, k , σc, βk

2 , σc, λk
2 , 𝒦c , ν . (6)

The maximum number of possible changepoints K and the maximum number of classes C 
are fixed hyper-parameters. Let L(D | Θ) be the multivariate Gaussian likelihood defined by 

Equations (2), (4) and (5). Under a Bayesian framework, one puts a prior probability 

distribution on the parameter space, p(Θ). An application of Bayes’ rule gives the probability 

distribution of Θ conditional on the observed data:

p Θ D = p Θ L D Θ

∫ p Θ L D Θ dΘ
, (7)

this is called the posterior probability distribution, and serves as the basis for parametric 

inference.

3.1. Prior selection

The choice of a prior distribution p(Θ) reflects the a priori probability distribution of the 

parameters, which is refined by the observed data to give the posterior. In practice the choice 

of a prior can be informed by previously observed data or expert opinion. Alternatively, the 
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prior can be non-informative, chosen to minimize subjective bias and maximize the 

influence of the observed data D on the posterior. We describe in detail a prior that is 

intended to be non-informative for a given maximum of changepoints (K) and number of 

possible classes (C). This is the prior we use for our implementation, and it is designed to be 

applicable in a wide variety of situations by default when there is no clear rationale for a 

more informative prior. Alternative priors may be used, depending on the application, 

especially when there is rationale to use a more subjective prior. For example, here we 

construct a uniform discrete prior for the number of changepoints and a uniform prior over 

the inner range of X for the location of the changepoints; if subject matter knowledge for a 

given application suggests more information on the number and location of the 

changepoints, this information can be expressed in an alternative prior.

We use the notation

X = xi j: i = 1, …, N and j = 1, …, Mi

and

Y = yi j: i = 1, …, N and j = 1, …, Mi .

Note that the measured time-points xij need not be common across subjects, and the number 

of measurement occasions Mi may depend on the subject i. For example, if the measurement 

times xij are generally common across subjects but some outcome measurements yij are 

missing, time points with missing measurements for subject i can be removed for subject i 
only.

The prior distribution for each model parameter is given with appropriate justification below. 

For general applicability these priors should be robust to the scale of measurement for X and 

Y. Thus for some parameters the prior involves empirical hyper-parameters, i.e., parameters 

for a prior that depend on the data. However, these hyper-parameters are given only in terms 

of the baseline mean and overall scale of the observed measurements, to ensure that they are 

invariant to the scale of measurement for a given application. This is equivalent to using 

non-empirical priors after linearly scaling the data before analysis, in a way that will not 

affect the shape and structure of the trajectories (just scale the x- and y- axes).

• σε
2 ~ Inverse-gamma(0.001, 0.001). The inverse-gamma distribution is a 

conjugate prior for the variance of a normal distribution, meaning both the prior 

and the posterior belong to the same distributional family (here, the inverse-

gamma family). The Inverse-gamma(0.001, 0.001) prior is a commonly used 

non-informative prior for the residual variance (see Spiegelhalter et al. (1996)), 

as it accommodates both very small σε
2 0  and very large σε

2 ∞  values.

• βc, 0
iidN y ⋅ , 1, var y ⋅ , 1  for c = {1, ⋯, C}, where y ⋅ , 1 and var(y·,1) are the 

sample mean and variance of outcomes at the initial time point. The normal 

Lock et al. Page 7

Psychometrika. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution is conjugate prior for the mean parameters of normally distributed 

random effects. Here y ⋅ , 1 and var(y·,1) are empirical hyper-parameters assuming 

that the initial time point corresponds to 0 (xi,1 = 0) for all subjects. If not, the 

time scale can be shifted so that the first measured time point corresponds to x = 

0.

• βc, k
iidN 0, sd Y /sd X 2  for c = {1, …, C} and k = {1, …, K + 1}, where sd(X) 

is the sample standard deviation of the time points and sd(Y) is the sample 

standard deviation of the outcome over all time points. The empirical hyper-

parameter sd(Y)/sd(X) is motivated by the observation that for the simple model

yi j = β0i + βixi j + εi j with βi N β, σβ
2 , (8)

β < sd Y /sd X ; thus, we generally expect slope parameters to have absolute 

value smaller than sd(Y)/sd(X).

• λc, k
iidUniform a, b  for c = {1, …, C} and k = {1, …, K}, where a is the second-

to-earliest measured time point in X (over all subjects), and b is the second-to-

latest time point. We choose not to let the mean changepoints have uniform 

support over the full range of X (Uniform(min(X), max(X))) to avoid model 

identifiability issues at the boundaries.

• σc, β0
iidUniform 0, sd y ⋅ , 1  for c = {1, …, C}, where sd(y·,1) is the sample 

standard deviation of outcomes at the initial time point. Here and elsewhere we 

use a uniform distribution over a range of plausible values for the standard 

deviation of latent subject-specific parameters (see Gelman et al. (2006)). The 

upper bound sd(y·,1) is motivated by the observation that the variance of the 

subject-specific intercepts will always be less than the variance of the observed 

values at time 0.

• σc, βk
iidUniform 0, sd Y /sd X  for c = {1, …, C} and k = {1, …, K + 1}. The 

upper bound sd(Y)/sd(X) is motivated by the observation that in model (8), 

σβ
2 < sd Y /sd X .

• σc, λk
iidUniform 0, b  where

b = max X − min X
4 ,

for c = {1, …, C} and k = {1, 2, …, K}. The upper bound b is motivated by the 

observation that anything larger than b necessarily implies plausible values of the 
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random changepoint occur outside of the range of X. That is, σc, λk
= b implies 

that

P λi, k ∈ λc, k ± range X /2 ≈ 0.95,

and so if the changepoint mean is at the midpoint, λc, k = max X + min X /2, 

plausible values of the changepoint cover the entire range of X.

• 𝒦c
iidUniform 0, 1, …, K  for c ∈ {1, …, C}. That is, we give equal prior 

probability to each possible number of changepoints in each class. In practice, 

this is accomplished by introducing auxiliary Bernoulli variables Ic,k for k = 1, 

…, K, with

P Ic, k = K − k + 1
K − k + 2,

then

𝒦c = ∑
k = 1

K
∏

k′ = 1

k
Ic, k′ .

As an alternative prior, we also consider 𝒦c
iidBinomial K, p , where the binomial 

probability p controls the expected number of changepoints and can be used to 

specify a more conservative prior. The binomial prior is constructed with 

Bernoulli variables Ic,k with P (Ic,k) = p, where

𝒦c = ∑
k = 1

K
Ic, k .

• ψ(i) = c with probability νc for i = 1, …, N and c = 1, …, C. By default, we use 

a Dirichlet(1, …, 1) prior for (ν1, …, νC), which is uniformly distributed over 

the standard C − 1 simplex (ν1 + ν2 + ⋯ + νC = 1). When C = 2, the 

Dirichlet(α1, α2) distribution is equivalent to a Beta(α1, α2) distribution for ν1. 

Therefore the default prior corresponds to a Uniform(0, 1) prior on ν1, because 

Beta(1, 1) is Uniform(0, 1). More generally, a Dirichlet(α1, …, αC) prior can be 

used. When α1 = ⋯ = αC = α*, smaller values of α* suggest less parity in the 

class sizes; this can lead to under-identified classes in the posterior, because the 

prior allows some classes to have negligible probabilities. Larger values of α* 

suggest more parity in the class sizes.

3.2. Posterior computation

The posterior distribution (7) cannot be derived analytically because the integral in the 

denominator is not tractable. Rather, we simulate draws from this posterior distribution via 
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Markov chain Monte Carlo (MCMC). In particular, we use the package rjags for R 

(Plummer, 2016), which performs Gibbs sampling in combination with other techniques to 

draw from the posterior distribution. Gibbs sampling was first described in Geman and 

Geman (1984) and is widely used to simulate draws from a Bayesian posterior with several 

parameters. We refer to Casella and George (1992) for an accessible and thorough 

introduction to Gibbs sampling. Sampling results in a Markov chain Θ t = θ1
t , …, θd

t
t = 1
T

containing T dependent samples from the joint posterior distribution defined by p(Θ | D).

The posterior sampling algorithm requires specifying initial parameter values 

Θ 0 = θ1
0 , …, θd

0 . The initial samples Θ(1), Θ(2), … are dependent on Θ(0), and so may not 

be representative of the posterior distribution. Typically, samples before a certain number of 

iterations T0 are ignored, and sometimes called the burn-in. Those samples after iterations 

T0, Θ
T0 + 1

, …, Θ T , are used for posterior inference. We obtain a point estimate for each 

parameter θi by taking the mean of posterior samples

θi = 1
T − T0

∑
t = T0 + 1

T
θi

t .

We obtain a 95% credible interval (CI) [ai, bi] where ai is the 2.5th percentile and bi is the 

97.5th percentile of θi
T0 + 1

, …, θi
T ; because the sample percentiles approximate quantiles 

of the posterior distribution, this gives

P θi ∈ ai, bi D ≈ 0.95.

for discrete parameters, such as the number of changepoints 𝒦c for each class, the relative 

frequency of each value over posterior samples approximates the posterior probability for 

that value.

In practice we initialize the model in two stages. First we perform Gibbs sampling for a 

small number of iterations for the simplified model with no within-class variability,

σc, βk
2 = 0 and σc, λk

2 = 0

for all c, k. In this first stage initial values are generated from the prior (Section 3.1), and 

Gibbs sampling is much faster than for the full model with random effects. The mean over 

iterations for parameters σε
2, βc, k , λc, k , and the mode for parameters { 𝒦c , ψ}, are 

then used as initial values for the full model.
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For accuracy of posterior inference it is important that simulated draws after the burn-in 

have negligible dependence on the initial values, and that enough samples are taken to 

adequately approximate the full posterior distribution. If both of these conditions are 

satisfied, we say the algorithm has converged. We assess convergence by running multiple 

MCMC chains, from different initial values, in parallel. If the algorithm has converged we 

expect results obtained from each chain, from samples after the burn-in, to be similar. In 

particular we use the potential scale reduction factor (PSRF) (Gelman and Rubin, 1992), 

which is the square root of the ratio of the total variation across chains over the average 

variation within chains, as a robust measure of convergence. The multivariate PSRF (Brooks 

and Gelman, 1998) is a generalization of the PSRF for a single parameter, to assess 

convergence of a parameter vector. A PSRF or multivariate PSRF less than 1.1 or 1.2 are 

common thresholds (Sinharay, 2004).

When Gibbs sampling for a mixture model there is a risk of label switching. For example, 

what is labeled class 1 in the beginning of the chain may be labeled class 2 at the end of the 

chain, and vice versa. To address label switching we apply the Equivalence Classes 

Representatives (ECR) algorithm (Papastamoulis, 2014) available from the 

label.switching package for R (Papastamoulis, 2015), as a post-hoc step after posterior 

samples are collected. This algorithm separately permutes the class labels at each iteration to 

best match a specified pivot labeling. The pivot is initially given by the most common label 

for each sample across the iterations, and it is updated for repeated applications of the ECR 

algorithm until convergence. In addition to label-switching of the classes, we must consider 

identifiability of the changepoint labels. For 𝒦c
t > 1, we permute labels of the piecewise 

components so that λc, i
t < λc, j

t  for all i < j < 𝒦c
t , which is necessary for the components to 

be consistently labeled across the MCMC iterations.

Note that correlations between the random effects {{βi,k}, {λi,k}} are not explicitly modeled 

by the prior given in Section 3.1. This choice was motivated by simplicity and practicality. 

Conjugate priors for a correlation/covariance matrix that facilitate Gibbs sampling such as 

the inverse-Wishart prior are inflexible and biased, whereas more flexible priors inhibit 

computational speed and convergence (see, e.g., Daniels and Kass (1999)). Alternatively, we 

compute the empirical sample correlation between each pair of random effects, averaged 

over each sampling iteration, as a post-hoc estimate. For example, a point estimate for the 

correlation between the first changepoint and the initial slope for Class 1 is given by

1
T − T0

∑
t = T0 + 1

T
cor βi, 1

t , λi, 1
t :ψ i = 1 .

4. Application

We apply the estimation approach detailed in Section 3 to mouse-tracking data for a 

language recognition task, originally described in Incera and McLennan (2016). For this 

task, subjects were shown text of a given color, and instructed to move a computer mouse 

and click on the word corresponding to that color as quickly as possible. Thus the conditions 
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were analogous to a Stroop task, with certain experimental modifications. For this 

illustration we focus on the control task, in which participants were shown meaningless text 

of the given color (e.g., “XXXXXX” in red); the study also included a congruent task in 

which participants were shown the word of the same color (e.g., “red” in red) and an 

incongruent task in which participants were shown the word of a different color (e.g., “blue” 

in red). The x-coordinate of the mouse was tracked for each trial, on the range of −100 

(away from the correct color) to +100 (toward the correct color). The x-location was 

measured at 20ms intervals for a period of 1000ms (1 second). The task was repeated for 16 

trials for each of 60 subjects. We consider the average x-location at each time point over the 

trials, yielding a sample size of N = 60 with Mi = 50 time points for each subject.

The position of the mouse is considered a proxy for the cognitive process of determining the 

word corresponding to the correct color. Therefore, the data for each subject represents a 

longitudinal learning trajectory for a simple task on a very short time scale (1 second). We 

are interested in modeling the pattern of this trajectory, and interpreting this pattern as it 

relates to the cognitive processes of recognition and action. Intuitively, we expect these 

trajectories to have 2 changepoints, that vary from subject to subject. All trajectories begin at 

the origin, and are initially flat as the subjects process the image. Thus the first changepoint 

has a critical interpretation as the “decision point”, when the subject recognizes the correct 

word and begins to move their mouse in that direction. For the second changepoint we hope 

to capture the “conclusion point”, after the subject has reached the correct word and settles 

on their decision. We estimate the two change-point model for one, two, or three possible 

classes. The two-class model had the lowest deviance information criterion (DIC) 

(Spiegelhalter et al., 2002), with a DIC of 15863 (the DIC for the single class model was 

15978, and for the three class model was 15898). Thus in what follows we focus on the two-

class results, which also had the clearest interpretation. The authors of the original study 

further hypothesized a possible difference in the trajectory between monolingual speakers 

and bilingual speakers. Of the subjects, 20 were fluent only in English, and 40 were fluent in 

English and one other language. Thus, we also consider whether the identified classes are 

representative of monolingual and bilingual speakers.

We run Gibbs sampling for the full model with T = 50, 000 total iterations, including T0 = 

20, 000 iterations for burn-in, for 3 MCMC chains. The sampling algorithm converges 

satisfactorily, with a PSRF across chains of less than 1.10 for each of the parameters (6), and 

a multivariate PSRF of 1.08 over all parameters. Table 1 gives parameter estimates and 95% 

credible intervals for the overall and class-level parameters. Figure 1 shows a spaghetti plot 

showing the trajectory for each individual, and the class trajectories defined by the mean 

parameters for each class. The class membership of each trajectory shown in Figure 1 is 

determined by whichever class has the highest posterior probability for that individual. As 

shown in Table 1, there is considerable individual variability about the mean parameters for 

each class. Figure 2 shows the individual parameter fits for the model for three subject 

curves in each class; these curves are chosen to be representative (with posterior probability 

> 0.975 for their class) and to illustrate variation in the subject-level trajectories within each 

class.
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The algorithm identifies one large class (Class 1; ν ≈ 0.77, or about 77% of subjects) and 

one smaller class (Class 2). There was strong evidence of two changepoints in each class, 

with posterior probability P 𝒦c = 2 D  above 0.99 for c = 1, 2. The mean trajectory of the 

larger class agrees with the intuition above, wherein the mouse curser is stationary at first, 

then increases sharply after the first changepoint when the subject makes a decision and 

moves in the correct direction, then is mostly stationary after the second changepoint after 

the subject settles on their decision. However, for the smaller class there is a more gradual 

increase after the first changepoint, and a sharper increase after the second changepoint. Our 

interpretation is that the subjects in Class 1 react quickly and confidently after making an 

initial decision, whereas subjects in Class 2 proceed more tentatively at first and gradually 

move toward their decision with increasing confidence. Interestingly, the decision point, 

given by the first changepoint, is similar for both classes; it is the swiftness with which they 

react after their initial decision, and the pattern of their reaction, that distinguishes the two 

classes.

The 95% credible intervals in Table 1 are relatively wide for the class proportion ν2, and for 

certain parameters in Class 2. This is partly due to uncertainty in the class memberships: 8 

individuals had posterior class probabilities between 0.1 and 0.9. Uncertainty in the class 

memberships can drive uncertainty in the parameter estimates, particularly for the smaller 

class (Class 2). Moreover, even for given class memberships, the flat uniform prior will in 

general yield more posterior variance for the underlying class proportion than, e.g., a more 

informative Dirichlet prior with larger hyperparameters.

Of the 11 subjects that were allocated to the larger class, 5 were monolingual speakers. The 

association between the identified class for each subject and monolingual/bilingual status 

was not significant (p-value= 0.48, Fisher’s exact test), suggesting that monolingual/

bilingual status was not the dominant distinguishing characteristic in these data.

5. Simulation

Here we describe a comprehensive simulation study to evaluate different aspects of the 

proposed method, using the results from the application in Section 4 as a starting point. We 

simulate data under the piecewise linear model of Section 2 to assess recovery of the true 

parameters, using the estimates in Table 1 as parameter values, with certain manipulated 

conditions. We consider different values of the sample size N, and number of time points Mi, 

to assess how either affect the overall accuracy of the fitted model. We consider different 

class proportions νc, to assess how the relative sizes of each cluster affect class allocation. 

We also manipulate the number of changepoints 𝒦c, as detecting the number of 

changepoints is a key innovation of the present model. Specifically, we simulate under the 

following assumptions:

• The overall sample size, N, is 60 or 120.

• The number of time-points, Mi, is 25 or 50. For each simulation scenario the 

number of measurement occasions Mi is the same for each subject i = 1, …, N. If 

Mi = 25, the measurement occasions occur after intervals of length 40, xi = (40, 
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80, 120, …, 1000), rather than intervals of length 20 for Mi = 50, xi = (20, 40, 60, 

…, 1000).

• The proportion of samples in Class 1, ν1, is 0.8 or 0.5. If ν1 = 0.8 the classes are 

of size 48 and 12 for N = 60 or 96 and 24 for N = 120, if ν1 = 0.5 the classes are 

of size 30 and 30 for N = 60 or 60 and 60 for N = 120.

• The number of changepoints in Class 2, 𝒦2, is 0, 1, or 2. For 𝒦2 = 1 the effect at 

changepoint 2 is removed, and for 𝒦2 = 0 the effects at both changepoints are 

removed, but other parameters for Class 2 remain the same. We include both 

changepoints for Class 1 𝒦1 = 2  for all scenarios.

We implement a fully crossed factorial design with the above conditions, resulting in 2 × 2 × 

2 × 3 = 24 simulation scenarios. We generate 100 replicated datasets under each simulation 

scenario, and apply the estimation algorithm outlined in Section 3 to each replication.

For each of the 2, 400 total replications, we ran the algorithm for 50, 000 sampling iterations 

per chain for each of the 2, 400 total replications, with a 20, 000 iteration burn-in; we ran 

three chains for each replication, to assess convergence. The percent of replications that 

converged, with a mean PSRF over all parameters less than 1.2, ranged from 26% to 82% 

across the 24 simulation scenarios. To assess the effect of the number of sampling iterations 

on convergence we repeated all 100 replications in the application-motivated scenario with 

N = 60, Mi = 50, ν1 = 0.80, and 𝒦2 = 2 for a larger number of iterations. For this scenario 

44% of replications converged within the first 50, 000 iterations (with 20, 000 burn-in), 76% 

converged when the algorithm was run for 50, 000 more iterations (100, 000 total; 50, 000 

burn-in), and 91% converged when the algorithm was run for 100, 000 more iterations (200, 

000 total; 100, 000 burn-in). These results suggest that poor convergence can be overcome 

by increasing the number of sampling iterations for certain situations.

Among converged replications across all simulation conditions, the classes were generally 

well identified; when class membership was determined based on whichever class had 

higher posterior probability, the mean misclassification rate across all replications was 3.9%. 

The number of changepoints in each class was also generally well-recovered; the average 

estimated posterior probability for the true number of changepoints, across all classes and 

simulation conditions, was 0.958.

We used multi-factor ANOVA to investigate the effects of the manipulated simulation 

conditions on three key performance metrics representing convergence, misclassification, 

and recovery of the number of changepoints. For each metric we performed ANOVA with 

main effects for each of the four manipulated conditions. Table 2 gives the significance of 

each effect, as well as the overall mean within each level. Interestingly, while results 

generally improved with a larger sample size (N = 120 vs. N = 60), the number of 

measurement occasions (Mi = 50 vs. Mi = 25) did not significantly affect any metric.

For Class 1, which always had 2 changepoints, the correct number of changepoints had 

posterior probability greater than 0.5 for all simulation replications, and had posterior 

probability greater than 0.95 for 99.8% of replications. For Class 2, the mean probability for 
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each number of changepoints is shown against the true number of changepoints in Table 3. 

Here, too, the number of changepoints is generally well recovered. However, the scenario 

with 1 true changepoint gave non-trivial probability to the 2 changepoint model; this is 

likely in part due to misclassification, in which some of the subjects with 2 changepoints 

(from Class 1) are misallocated to Class 2.

Table 4 shows the bias and variability, as well as coverage rates for the 95% credible 

interval, for the converged replications across all simulation conditions. The parameters are 

generally well-recovered, but some are estimated with bias. This bias is apparently due in 

part to misclassification; parameter estimates tend to shrink toward the midpoint of both 

classes, as a small proportion of subjects in Class 1 are misallocated to Class 2 and vice-

versa. Note also that the estimates for Class 2 are generally less precise, due to its smaller 

sample size in several simulation scenarios. For the N = 601 converged replications when ν1 

= 0.5, the estimates for ν1 had mean 0.492 and standard deviation 0.049, yielding a z-

standardized bias of −0.16. For the N = 525 converged replications when ν1 = 0.8, the 

estimates for ν1 had mean 0.77 and standard deviation 0.079, yielding a z-standardized bias 

of 0.295.

A spreadsheet with summary results for each of the 24 simulation scenarios is available as a 

supplementary file online. Additional simulation studies and illustrations are described in a 

supplementary document available online. A simulation involving up to five changepoints 

(K = 1, 2, 3, 4, or 5) demonstrates the feasibility to accurately detect the number and 

location of a larger number of changepoints. A simulation with up to 4 classes (C = 1, 2, 3, 

4) demonstrates the feasibility to correctly identify the class memberships even when the 

maximum number of classes is over-specified. Additional simulation studies illustrate the 

effect of prior specification on the posterior for key model parameters, which is important to 

consider for any Bayesian approach. In a study with different prior choices for the number of 

changepoints, the correct number of changepoints had the highest posterior probability for 

all priors considered, but certain prior choices favored over- or under-detection of the 

changepoints. Thus, the choice of prior can be used to imply a more conservative model that 

avoids over-estimating changepoints. A study on the effect of the cluster concentration 

parameter α illustrates how a higher α favors more equality among the latent class 

proportions in the posterior; however, the accuracy of the class memberships and other 

model parameters are relatively robust to changes in α. A study using alternative priors for 

the variances of the random effects reveals that an appropriately scaled half-Cauchy prior 

performs similarly to the uniform priors used here; generic (unscaled) half-Cauchy priors 

and uninformative inverse-gamma priors perform poorly and are not recommended.

6. Implementation

We have created a well-documented and user friendly package for R, called BayesianPGMM, 

to estimate the model under the default priors given in Section 3.1. This package provides 

estimates and 95% credible intervals for all model parameters, assesses convergence of the 

algorithm, and includes functions to automatically visualize and summarize results. The 

package is included as a supplementary file online [and will be uploaded to the CRAN 
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package repository upon acceptance of the manuscript]. A brief tutorial on the use of the 

package is given in Section 2 of the supplemental material available online.

7. Discussion

In this article we have described a mathematical framework for piecewise growth mixture 

models with unknown number of changepoints, and we have proposed a Bayesian estimation 

scheme that is appropriate for a wide variety of application scenarios. The advantages of our 

proposed method are its flexibility and its simple interpretation. The model can 

accommodate many diverse patterns of growth, with subject-level variation and minimal a 

priori assumptions on important parameters such as the number and location of the 

changepoints. This facilitates interpretation, as the locations at which the functional form of 

a growth trajectory changes, and the nature of those changes, is invaluable information for 

many applications in psychometrics and in other fields.

We have described an application to mouse-tracking data for a language recognition task, 

which may be extended in several ways. Here we have focused on modeling the mean mouse 

trajectories over 16 trials of the same task, across a population of individuals. Alternatively, 

one could directly model intra-subject variability over the 16 trials, which would involve a 

more complex model with multiple hierarchical levels for subjects and trials within a 

subject. One could also allow potential covariates of interest, such as mono/bilingual status, 

to enter the model explicitly in a number of ways.

By necessity our framework involves many unknown parameters that are influential and 

highly interdependent, and this can pose a challenge to their estimation. In particular, the 

bias in estimation of class-specific parameters can be non-negligible, especially if there is 

considerable overlap between the two classes. And the computational time required to fit the 

model is not trivial for large datasets. The application described in Section 4 took 

approximately 1 hour to run on a laptop with a 2.5 GHz i7 processor, and computing time 

scales approximately linearly with the sample size, the number of measurement occasions, 

and the number of MCMC iterations. In practice we recommend monitoring convergence 

closely, and only interpreting parameter estimates after the MCMC algorithm has reached 

the desired level of convergence. Fortunately, in certain situations poor convergence may be 

addressed by increasing the number of MCMC iterations for a given application, if 

necessary.

In the application and simulation we have focused on the model with a maximum of 2 

changepoints (K = 2), and 2 classes (C = 2). The framework readily allows for more 

changepoints and classes, and a supplemental document describing additional simulations 

and illustrations when K > 2 or C > 2 is available online. However, we caution against over-

parameterization. At minimum, K must be restricted by the number of time-points Mi that 

are commonly observed across subjects. In particular, if the number of active changepoints 

is greater than Mi − 1, this requires inferring multiple changepoints between two 

measurement occasions for subject i, which presents identifiability issues. DIC or other 

model selection metrics may be used to select these hyper-parameters. But the 

asymptotically motivated assumptions for DIC, such as multivariate normality of the 
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posterior, are likely not well satisfied for smaller sample sets. Diagnostics such as the widely 

applicable information criterion (WAIC) or leave-one-out cross-validation (LOO) (Vehtari et 

al., 2017) may be useful alternatives. WAIC and LOO consider the accuracy of the posterior 

predictive distribution for held-out data points, and in this context, a “new data point” may 

be the entire trajectory for an individual, or a single measurement occasion.

Our framework may be extended in several ways. In this article we focus on a model with no 

discontinuity (jumps) in the outcome over time. We think continuity is a reasonable 

assumption for most applied situations, but the model may be extended to accommodate 

discontinuity at the changepoints if necessary. In this article we have also only considered 

piecewise segments that have a linear form. In theory, these segments may take an 

exponential, quadratic, or other polynomial form. Allowing these forms to be unknown and 

vary across different segments would improve the flexibility of the model, but would 

increase the complexity of estimation and interpretation.

More advanced and targeted estimation techniques may improve the efficiency and accuracy 

of posterior computation. For example, reversible jump MCMC (Green, 1995) inherently 

infers the presence of fundamentally different parameters, and may be used in this context to 

jump between models with different number of changepoints or different functional forms 

for each phase during MCMC. Moreover, there is a considerable literature on Bayesian 

estimation for changepoint problems involving a single process with multiple phases 

realized from distinct stationary distributions (see, e.g., Carlin et al. (1992); Chib (1998); 

Fearnhead (2006)). That is, yj ~ p(ηj) where parameters ηj are given by phases over time:

η j =

θ1 if x j < λ1
θ2 if λ1 ≤ x j < λ2
⋮
θK + 1 if λK − 1 ≤ x j < λK .

In particular, Chib (1998) suggests a hidden Markov approach, that models the probability of 

transitioning from one phase to the next for discrete time points. Such an approach is not 

readily extended to our context, chiefly because the assumption of stationarity within each 

phase is not satisfied, and modeling segment-wise constant probabilities of change at 

discrete time points is not readily incorporated into a random effects framework where the 

location of the changepoint(s) are of substantial interest. However, generally this literature 

provides many tools that may improve Bayesian estimation of segmented growth models for 

a population. Improving the estimation and flexibility of segmented growth models remains 

an exciting area of active and future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spaghetti plot of the mouse-tracking data for the color recognition task (a positive position 

corresponds to the correct color). The trajectory defined by the mean parameters for each 

class are shown in bold.
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Figure 2. 
Individual model fits for three representative subjects in Class 1 and three subjects in Class 

2. Raw data are shown in gray, piecewise model fits are shown in black.

Lock et al. Page 21

Psychometrika. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lock et al. Page 22

Table 1

Estimates, with 95% credible interval, for model parameters in each class.

Parameter Class 1 estimate Class 1 95% CI Class 2 estimate Class 2 95% CI

ν 0.77 (0.53, 0.88) 0.23 (0.13, 0.47)

σ 3.16 (3.08, 3.24) 3.16 (3.08, 3.24)

β0 0.003 (−0.054, 0.054) 0.000 (−0.052, 0.053)

β1 −0.002 (−0.006, 0.001) −0.005 (−0.012, 0.002)

β2 0.194 (0.172, 0.232) 0.060 (0.036, 0.108)

β3 −0.171 (−0.202, −0.143) 0.081 (−0.052, 0.135)

σβ0
0.020 (0.001, 0.038) 0.019 (0.001, 0.038)

σβ1
0.010 (0.008, 0.013) 0.008 (0.004, 0.014)

σβ2
0.064 (0.049, 0.082) 0.027 (0.013, 0.054)

σβ3
0.079 (0.056, 0.103) 0.068 (0.035, 0.122)

λ1 362 (332, 391) 321 (222, 409)

σλ1
93.6 (70.6, 119) 132 (72.2, 221)

λ2 643 (567, 695) 726 (626, 827)

σλ2
149 (102, 191) 128 (68.3, 222)
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Table 2

ANOVA p-values and mean effects for four different simulations conditions (sample size N, measurement 

occasions Mi, class proportion ν1, and number of changepoints in Class 2 𝒦2) on three different performance 

metrics.

Log2(PRS) Misclassification P(Correct 𝒦2)

N = 60 0.290 0.043 0.954

N = 120 0.366 0.035 0.962

p-value < 0.001 0.001 0.256

Mi = 25 0.334 0.041 0.957

Mi = 50 0.321 0.038 0.958

p-value 0.880 0.307 0.896

ν1 = 0.8 0.320 0.056 0.917

ν1 = 0.5 0.336 0.025 0.993

p-value 0.001 < 0.001 < 0.001

𝒦2 = 2 0.464 0.071 0.985

𝒦2 = 1 0.334 0.061 0.902

𝒦2 = 0 0.185 0.005 0.979

p-value < 0.001 < 0.001 < 0.001
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Table 3

True number of changepoints and mean posterior probability, for Class 2.

True 𝒦2 = 2 True 𝒦2 = 1 True 𝒦2 = 0

Posterior 𝒦2 = 2 0.97 0.17 0.00

Posterior 𝒦2 = 1 0.02 0.81 0.04

Posterior 𝒦2 = 0 0.01 0.02 0.96
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