Chapter 11
Detecting Nasdaq Composite Index Trends
with OFNs

Hubert Zarzycki, Jacek M. Czerniak and Wojciech T. Dobrosielski

Abstract The chapter presents a novel way of describing changes in the stock index
and the identification of potential trends. The authors already used a similar approach
to describe the stock exchange index [16]; this chapter is a continuation and another
application of work on this issue. The method for detecting patterns in a trend by
means of linguistic variables is described. The use of computational operations on
numbers in the Ordered Fuzzy Number (OFN) notation [40—42] enables us to set
the values of linguistic variables and thus conduct fuzzification of the input. By
using one OFN number it is possible to store five parameters of index quotations
(open, high, low, and close values as well as a change direction). The OFN numbers
are conveyed into a linguistic form. In order to find trend sequence similarity the
following applies: sequence identity with the input frame expressed as a percentage,
frame size, the level of threshold conformity with the frame (threshold), and how
often the pattern is present (frequency). A dedicated computer program to detect
patterns is implemented. The program used data from the index Nasdaq Composite
from the years 2006-2016. The results represent a further step to develop effective
methods of rule-based forecasting.
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11.1 Introduction

In comparison to existing methods, more accurate forecasting methods can be
obtained using a rule-based forecasting (RBF), a technique combining data extrapo-
lation [7, 13, 14, 25, 26, 43-45], time series [28, 29, 44, 45], and elements of expert
systems [5-7, 22, 23, 34, 37, 46]. The four most important methods of extrapolation
were used: linear regression, random walk, and Brown’s exponential smoothing, as
well as Holt’s exponential smoothing. In order to create rules some information from
the literature, surveys, and knowledge of several experts was adapted [17, 19-21,
36, 38, 39]. The rules were calibrated using 80 time series. In contrast, the validation
needed another 40 series. In the opinion of the authors, RBF has been successfully
applied by combining domain expertise with statistical methods. This has been con-
firmed by many studies in the recent literature, where rule-based forecasting is a
fast-growing technology. It is worth mentioning a few examples from a very com-
prehensive literature such as M. Adya, J.S. Armstrong, and F. Collopy [1-3, 8, 9],
who publish in the International Journal of Forecasting, a magazine that inspires
other authors associated with the RBF methods. In this chapter time series of index
data were preliminarily fuzzified [30, 33] to check the proposed methods of detect-
ing trends [18]. Trends identified in the sequence of literals are then used to develop
trend prediction rules. Therefore fuzzy logic [12, 13, 16, 35] was used to develop
linguistic data input. Data for the study were quotations of the Nasdaq Composite
index from the years 2006-2016. Figure 11.1 shows the data in an illustrative man-
ner. Table 11.1 contains Nasdaq index data for a single trading day. Daily data are:
opening, maximum, minimum, and closing values as well as the percentage change

5,500
A
5,000 LYY

4,500 N’
: ad r
4,000 rf"‘ﬁ"

3,500

3,000 : ; ﬁw..",v/ Y

A
2,500 40 /¥ w;
2,000 ! o

1,500 Mf

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Fig. 11.1 NASDAQ Composite index quotations from 2006 to 2016
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Table 11.1 Selected historical NASDAQ Composite index. The dataset covers the time period
from November 1, 2016 to November 30, 2016

Index Date Open High Low Close Change

=

Nov 30, 2016 = 5391.35 5393.15 | 5323.68 5323.68 | -1.26%

U Nov 29,2016 = 5370.98 5403.86 | 5360.56 5379.92 0.17%
T Nov 28,2016 @ 5387.92 5396.27 | 536491 5368.81 | -0.35%
S Nov 25,2016 @ 5388.49 539892 | 5379.28 5398.92 0.19%
R Nov 23,2016 @ 5366.55 5380.68 @ 5350.68 5380.68 0.26%
P Nov 22,2016 @ 5384.75 5392.26 | 5365.60 @ 5386.35 0.03%
(0] Nov 21,2016 @ 5336.78 5369.83 5334.16 5368.86 0.60%
N Nov 18,2016 @ 5340.97 5346.80 | 5315.53 532151 | -0.36%
M Nov 17,2016 @ 5295.07 5334.05 | 5288.16 5333.97 0.73%
L Nov 16,2016 = 5253.73 5299.63 | 5251.88 5294.58 0.78%
K Nov 15,2016 = 5241.35 5287.06 | 5236.25 5275.62 0.65%
J Nov 14, 2016 = 5246.33 5247.17 | 5192.05 521840 | -0.53%
I Nov 11,2016 @ 5191.82 5241.08 | 5179.64 5237.11 0.87%
H Nov 10, 2016 = 5283.48 5302.68 | 5145.32 5208.80 | -1.41%
G Nov 09, 2016 = 5143.86 525899 | 5143.86 5251.07 2.08%
F Nov 08,2016 = 515499 5214.17 | 5145.30 5193.49 0.75%
E Nov 07,2016 @ 5128.99 5169.41 | 5122.77 5166.17 0.72%
D Nov 04,2016 = 5034.41 5087.51 | 5034.41 5046.37 0.24%
& Nov 03,2016 @ 5104.70 5115.06 | 5053.52 505841 | -0.91%
B Nov 02,2016 @ 5147.27 5156.70 | 5097.56 @ 5105.57 | -0.81%
A Nov 01, 2016 | 5199.77 @ 5201.13 | 5112.32 @ 5153.58 | -0.89%

as compared to the day before. These five values are replaced by the linguistic values.
Table 11.1 shows both the linguistic values and index quotations.

11.2 Application of OFN Notation for the Fuzzy
Observation of NASDAQ Composite

Data from November this year for the NASDAQ Composite are presented in
Table 11.1. Quotations are given in a widely used format for this type of time series.
Subsequent letters of the alphabet represent values for consecutive trading days.
Figure 11.2 shows an OHLC (open, high, low, close) chart of the Nasdaq Composite
index for one month. The graph shows the following attributes for each of the daily
quotations: opening, closing, highest, and lowest value. These attributes, along with
the change parameter are shown in Table 11.1. In addition, decrease in quotation is
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Fig. 11.2 Nasdaq Composite OHLC chart for the period of November 1, 2016 to November 30,
2016 (based on www.stockcharts.com).

Table 11.2 Characteristic points

Ordered OFN number fo fi g1 20 OFN number
orientation

Nasdaq Composite Index | Open High Low Close Change

marked in red and increase is marked in black. Positions A, B, and C in Fig. 11.2
show a decrease in quotations on specified days. Another four quotations-D, E, F,
G-show an increase in the value of the Nasdaq Composite. A very large spread
between the minimum and maximum value, and between the opening and closing
are on H; these are decreasing quotations. This is followed by increases to date S
with only two days of drops (J and N) in the range. Point P is interesting, because the
opening value is virtually level with the closing value, despite some fluctuations of
the Nasdaq Composite value during the trading day. It is essential that P be located
near the top of the local peak. Then visualizations T and W demonstrate declines
from the local peak. As the chart above may not be unambiguous in terms of the
trend interpretation the authors introduce the logic of Ordered Fuzzy Numbers [14,
24, 30] in order to interpret the quotations. Table 11.2 shows the OFN characteristic
points with the Nasdaq Composite quotation parameters as listed in Table 11.2.
Figure 11.4 is an OHLC chart with Nasdaq index parameters. In the considered
single day there has been an increase in quotations. The translation of data from
Fig. 11.4 on the OFN is presented in Table 11.3. The resulting fuzzy number is inter-
preted graphically in Fig. 11.3. The arrow of fuzzy numbers is directed towards
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Table 11.3 Example of positively directed OFN number for the Nasdaq index

OFN number f(()) f( 1) 8(1) 8(0) OFN number
positive
orientation

Nasdaq Composite Index | Open High Low Close Change (positive
value)
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Fig. 11.3 Graphically displayed positively directed OFN number and its characteristic points as
used for the Nasdaq Composite
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Fig. 11.4 Graphically displayed change parameter positive value as used in the Nasdaq Composite
OHLC chart

increasing values symbolizing the positive direction of the OFN and reflecting an
increase in the quotations.

Figure 11.5 shows the fuzzy number stretched on the same values as in Fig. 11.3.
However, the direction of the OFN here is the opposite. Chart 2.6 depicts the decrease
in quotations for a single day of trading. It should be noted that the equivalent of the
index’s downward movement is a negative direction of the OFN (Fig. 11.6).
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Fig. 11.5 Graphically displayed negatively directed OFN and its characteristic points as used for
the Nasdaq Composite
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Fig. 11.6 Graphically displayed change parameter negative value as used in the Nasdaq Composite
OHLC chart

11.3 Ordered Fuzzy Number Formulas

Nasdaq Composite index values R; + R, relate to a single trading day. Fuzzy obser-
vation in OFN notation is performed on a set of R. The observation is for one depen-
dent and four independent attributes. For each day the number R; € {R; +~ R} is
created of the four required values. Symbols of time are, respectively, t;, the day of
the measurement, whereas fo pen, tmin, imax 1fcLosEe are, respectively, quotations
of opening, minimum, maximum, and close value (Table 11.4).

Definition 1 On a given day #;, the set forming fuzzy observation of the Nasdaq
Composite index, is provided as

R/t; € (RO /topen, RY /iy, RV /tyax, RO /tcrose) (11.1)

where
tcLose > {tmin, tmax} > topeN

Jr(0) < fr(l) < gr(l) < gr(0)
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Table 11.4 Example of a negatively ordered OFN as an interpretation of the Nasdaq index

OFN Jo Sy 8) £(0) OFN positive
orientation

Nasdaq Composite Index | Open High Low Close Change (negative
value)

The OFN arrangement (order) is synonymous with the measurement time of t
movement intensity, where t € {topen, tmMIN, timax, tcLose ). The measurements
must be performed in a specific order. The OFN order in Fig. 11.3 is the direction
of index changes for one trading day. The default direction of OFN R is positive
(Fig.11.2).

Lemma 1
Rcrose < Ropen
anxilive = ROPENs RMINv RMAXs RCLOSE (112)

Sr(0), fr(1), gr(1), gr(0)

and the opposite case is

Rcrose > Roren
Ruegative = § Rerose, Ruax, Ruin, Ropen (11.3)

Jr(0), fr(D), gr(1), gr(0)

The NASDAQ was launched in the 1970 s and was the first fully electronic secu-
rities trading system in the world. The stock market traded shares of companies
mainly related to modern technology (IT). The Nasdaq Composite is one of the three
major US indices, next to the Dow Jones Average and the S&P500 [47-50]. As for
2016, listed on the NASDAQ are approximately 3,000 companies, including Apple,
Google, Microsoft, and Intel. The Nasdaq composite index is an aggregate of the
common stocks listed on the NASDAQ stock market. The formula for aggregating
fuzzy observation of subaggregate S,, for n component companies of the index is as
follows.

Definition 2 Fuzzy observation of index Nasdaq Composite at the time #; is a set of

. R sitive Rn ati
Sy = Z( ]é"”zvv | —If&g-lujf) (11.4)
i=1 1 1
where n < 3000 and w; € {wy, ... w,} is a vector of the individual companies’

impact, default w; = 1.

The weight of each company in the index is

R; % w;
Pi= 21—  %100% 11.5
J Z;"lei*wi* v ( )

where j € [1, m]
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Definition 3 If a subaggregate Sm of the Nasdag Composite aggregate with a certain
number n of (e.g., sector-related) companies has a different direction of the OFN from
the direction of the main index, then it can be assumed that it is a predictor of trend
change. This includes the rule:

IF NasdagqComposite is positive AND S, is negative

THEN Possible change is true (11.6)

11.4 Conclusions

Investing in the stock market is associated with high risk. This is due to the lack of
ideal solutions for the analysis of market data and predictions in short- and long-term
changes in indices, major stock market indicators. Processes occurring on the stock
markets have nonlinear chaotic characteristics, making it difficult to study them. The
technical analysis often uses expert knowledge and expert rules to detect and use
recognizable trends [43]. One can base investment strategy on trends that will bring
profits during the boom and limit losses when a market is in decline. Expert knowl-
edge and rules can be transferred to digital form. Currently, there are many methods
for identifying trends on the stock exchange [16, 50]. Many of them are unattractive
due to their complicated structure. An interesting alternative to describing the phe-
nomenon of the trend is the application of fuzzy numbers and fuzzy logic [4, 10, 11,
31, 32]. The chapter presents Ordered Fuzzy Numbers, which use five specific index
parameters as well as index analysis methods to identify the occurrence of a trend.
Ordered Fuzzy Number notation made it possible to replace up to five attributes
(open, close, high, low, change) describing the index quotes with a single OFN. In
addition, the use of OFNs lets one quickly detect changes in the trend, which is very
important in short-term investments. The authors previously proposed similar solu-
tions based on research WIG20 [16]; there are also other works on similar solutions
and financial investment [27, 28]. The authors intend to carry out further research in
this area in order to find more versatile and accurate prediction models to identify
market trends.
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