
Detecting Network Anomalies in
Backbone Networks

Christian Callegari, Stefano Giordano, Michele Pagano, and Teresa Pepe
Dept. of Information Engineering, University of Pisa, ITALY

E-mail: {firstname.lastname}@iet.unipi.it

1 Introduction
Uncovering anomalies in large ISPs and enterprise networks is challenging because of
the wide variety of such anomalies. They can come from activity with malicious inten-
tions (e.g., scanning, DDoS, prefix hijacking), or from misconfigurations and failures
of network components (e.g., link failures, routing problems, outages in measurement
equipment). In the literature, the problem of detecting anomalies in the network traffic
has often been seen as equivalent to the problem of detecting heavy changes (HCs) in
some traffic descriptors. In this context a wide variety of approaches has been pro-
posed.

Nevertheless most of them analyzes the single traffic flows, resulting to be unscal-
able and thus not applicable in modern backbone networks.

For this reason, in this work we have decided to analyze traffic aggregates, so as
to obtain a more scalable system, and in more detail we have designed our system
to work on the top of probabilistic structures, namely the sketches, that allow us to
obtain a scalable real-time system (that analyzes the traffic flows after having randomly
aggregated them), while simultaneously improving the detection rate of “classical”
systems [1].

Give this substrate, our method is based on a statistical analysis of the distribution
of the Heavy Hitters (HHs) [2] in the network traffic. The idea behind this approach is
that the distribution of the big flows should change between normal and attacks period,
especially in the case of DoS/DDoS attacks, network scans, and so on.

Hence, in this work we present a novel method for network anomaly detection,
based on the idea of discovering HC in the distribution of the HHs in the network
traffic. To assess the validity of the proposed method, we have performed an exten-
sive experimental evaluation phase, during which our system performance have been
compared to a more “classical” HC-based approach.

2 System architecture
In this section we detail the system we have implemented to detect anomalies in the net-
work traffic. The following subsections describe the significant blocks of the proposed

1



system.

2.1 System Input
First of all the input data are processed by a module called Data Formatting. Indeed,
this module is responsible of reading the Netflow [3] traces and of transforming them
in ASCII data files, by means of the Flow-Tools. The output of this first block is given
by text files containing on each line an IP address and the number of bytes sent by that
IP in the last time bin.

In more detail, in our implementation we have in input Netflow data, measuring the
traffic gone through a given router over five minutes time-bins. Thus, this module will
output a distinct file for each considered time bin; let us assume we have N distinct
time bins.

Note that the modularity of the system allows great flexibility. Indeed, instead of
considering the number of bytes sent by a given IP, the system administrator can easily
choose of using another traffic descriptor that better allows her to detect the different
attacks.

2.2 Sketch module
After the data have been correctly formatted, they are passed as inputs to the hash
functions responsible for the construction of the sketch tables. In more detail, for each
line of each file, the IP address is considered as the key it , as described in Section II.A,
while the number of bytes is considered as the weight ct . Each file, corresponding to a
time bin, is thus used to build a distinct sketch table.

Note that in our implementation we have used d = 16 distinct hash functions, which
give output in the interval [0;w−1], that means that the resulting sketch tables will be
∈ Nd×w, where w can be varied. As far as the the hash functions are concerned, we
have used 4-universal hashes, obtained as:

h(x) =
3

∑
i=0

ai · xi mod p mod w (1)

where the coefficients ai are randomly chosen in the set [0, p− 1] and p is a random
prime number (we have considered the Mersenne numbers).

At this point, given that we had N distinct time bins, we have obtained N distinct
sketch tables T n

d×w, where n ∈ [1,N] is the time bin.

2.3 Detection Phase
Basically, the method tracks the variations in the HH distribution of the network traffic.

In more detail, the sketch table T is given in input to two distinct modules, namely
a forecast module and a HH matrix construction module.

The forecast module takes in input the sketch table T n−1 and its own output at
the previous step, and uses these two elements for forecasting the value of the next

2



sketch table. This prediction is performed by using an Exponentially Weighted Moving
Average (EWMA) forecast algorithm, described by the following equation:

T̂ n = αT n−1 +(1−α)T̂ n−1 (2)

where α ∈ [0,1] is a tunable parameter of the algorithm.
Given this step, the system has two distinct values for the sketch table at time bin

n, the real value T n and the predicted value T̂ n. Both these tables are feed to a module,
responsible for computing an empirical distribution of the HHs.

This “distribution” is computed by evaluating the HHs present in the traffic, that is
the traffic aggregates (namely the sketch buckets) that exceed a given threshold, given
by a percentage of the total traffic. The related buckets are then updating by inserting
the quantity of traffic for which that aggregate exceed the threshold, while all the other
buckets are set to one byte.

This matrix is named Mn
HH if computed starting from T n and M̂n

HH if calculated
starting from T̂ n.

Given these two matrices, the system compares the actual HH distribution in MHH
with the forecasted one in M̂HH . To perform such task the system computes the Jane-
Shannon Divergence (JSD) between each line of the two matrices, where the JSD be-
tween two generic vectors P and Q is defined as:

JSD(P,Q) =
1
2
·KL(P,M)+

1
2
·KL(M,Q) (3)

where KL is the Kullback-Leibler divergence, defined as

KL(P,Q) = ∑
i

pi · log(pi/qi) (4)

and M is the “average” array of P and Q, that is mi = (pi +qi)/2.
If such distance exceeds a given threshold for more than H lines of the matrix, the

system reveals an anomalous time bin and the anomaly is thus identified.

3 Experimental results
The proposed system has been tested using a publicly available data-set, composed of
traffic traces collected in the Abilene/Internet2 Network [4], a hybrid optical and packet
network used by the U.S. research and education community.

The used traces consist of the traffic related to nine distinct routers, collected in
one week, and are organized into 2016 files, each one containing data about five min-
utes of traffic (netflow data). To be noted that the last 11 bits of the IP addresses are
anonymized for privacy reasons; nevertheless we have more than 220000 distinct IP
addresses.

Moreover we have synthetically added some anomalies in the data, so as to be able
to correctly interpret the offered results.

Tables 1 and 2 respectively report the results achieved by our proposed system
and by the “classical” HC-based system [5]. Note that the tables have been obtained

3



Threshold Total Anomalies Synthetic Anomalies
th1 310 154
th2 256 152
th3 199 148
th4 179 144
th5 172 142
th6 167 137
th7 163 133
th8 151 123
th9 135 111
th10 115 94
th11 99 80
th12 80 31

Table 1: Experimental Results: our method
Threshold Total Anomalies Synthetic Anomalies

tha 1969 154
thb 1920 48
thc 1381 28
thd 1269 23

Table 2: Experimental Results: HC-based method

varying the values of the threshold. The real values of such threshold are not reported
since are not significant in themselves, just consider that the first values (namely th1
and tha) correspond to the highest threshold value for which the two systems detect all
the 154 synthetic anomalies.

From the tables we can see that both the systems are able to obtain a 100% de-
tection rate (revealing all the 154 synthetic anomalies). Nevertheless, the two systems
present very different performance, indeed our system, when detecting all the synthetic
anomalies, only detects 156 more anomalies (see table 1). In this case, after a man-
ual verification of the data set, we can conclude that most of them are real anomalies
already present in the traces. Note that, in any case, event though all of these would
not be “real” anomalies they’d correspond to a maximum false alarm rate of 8.3% that
could be considered as “acceptable”.

Regarding the HC-based method, instead, we can easily see (Table 2) that for de-
tecting all the synthetic anomalies, we have to accept a total number of detection equal
to 1969, which is not acceptable.

Moreover we can easily notice, by comparing the two tables, that our system is
much easier to tune, indeed the number of total/synthetic anomalies varies quite uni-
formly when changing the value of the threshold. On the other hand, in the HC-based
method the number of detected synthetic anomalies suddenly decreases when increas-
ing the threshold, while the number of total detected anomalies remains quite stable.

4



References
[1] C. Callegari, L. Gazzarrini, S. Giordano, M. Pagano, and T. Pepe, “When ran-

domness improves the anomaly detection performance,” in Proceedings of 3rd In-
ternational Symposium on Applied Sciences in Biomedical and Communication
Technologies (ISABEL), 2010.

[2] M. Charikar, K. Chen, and M. Farach-colton, “Finding frequent items in data
streams,” in Proc. VLDB Endow., pp. 693–703, 2002.

[3] B. Claise, “Cisco Systems NetFlow Services Export Version 9.” RFC 3954 (Infor-
mational), Oct. 2004.

[4] “The Internet2 Network.” http://www.internet2.edu/network/.

[5] B. K. Subhabrata, E. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based
change detection: Methods, evaluation, and applications,” in In Internet Measure-
ment Conference, pp. 234–247, 2003.

5


