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Abstract - Deep neural networks are utilized in a growing 

number of industries. Much of the current literature focuses 

on the applications of deep neural networks without 

discussing the security of the network itself.  One security 

issue facing deep neural networks is neural trojans.  

Through a neural trojan, a malicious actor may force the 

deep neural network to act in unintended ways.  Several 

potential defenses have been proposed, but they are 

computationally expensive, complex, or unusable in 

commercial applications.  We propose Merkle trees as a 

novel way to detect and isolate neural trojans. 

Index Terms – Neurons, Perturbation Methods, Biological 

Neural Networks  

 

I. Introduction 

A deep neural network (DNN) is a neural network 

organized into different layers of neurons.  A common 

DNN architecture includes multiple layers consisting of 

input, hidden, and output layers respectively. The input 

layer is responsible for receiving the input of training, 

testing, or validation data.  In the context of a DNN 

classifier, each neuron in the output layer corresponds to 

an individual classification label. Appended to the output 

layer is an activation function, often a SoftMax function, 

which can be modeled by (1.1). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.1 𝜎 (𝑧)
𝑒 𝑧𝑖

∑ 𝑒 𝑧𝑗𝐾
𝑗=1

  

𝑤ℎ𝑒𝑟𝑒 𝑧 = 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 

 𝑒 𝑧𝑖 =  𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 

  𝐾 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 

𝑒 𝑧𝑗 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟        

The largest 𝑒 𝑧𝑗 is the selected output label of the 

classifier.  Because of the inherent architecture of DNNs, 

it has been shown that a malicious actor through neural 

trojans can force a DNN to behave in a manner of the 

malicious actor’s choosing [1], [2].  A neural trojan, much 

 
 

like a traditional trojan, embeds itself within the neural 

network and masquerades as benign parameters within the 

network.  A malicious actor may alter either the hardware 
or the software to insert a neural trojan into the DNN [1], 

[2].  The software neural trojan often takes the form of 

either a single-bias attack or a gradient-descent style 

attack [1].  A gradient-descent style attack is more 

complex and resembles the training process of an 

uncompromised DNN [1]. Through gradient descent, a 

malicious actor will force the DNN to behave erroneously 

on a small, selected subset of data [1].  Inserting this type 

of neural trojan without detection is difficult; but if 

successfully inserted, is very difficult to detect and 

remediate in the future.  

The single-bias attack is much simpler and easier to 

insert.  A single-bias attack works by adding a bias, 𝜀, to a 

single neuron [1]. Because of the precision of this attack, 

it is less noisy and more difficult to detect.  The 
effectiveness of this attack consists of the ability of the 

malicious actor to force the desired behavior of the DNN 

without overly degrading the model’s performance, 

drawing attention to the presence of the neural trojan.  

Because of the vulnerability of DNNs to neural 

trojans, there have been several proposed defenses.  These 

defenses include monitoring neuron’s activation on select 

input [3], comparing DNN’s behavior to an ensemble of 

similar benign DNNs [4], and lastly, custom checkpoints 

to compare the hashes of model parameters [5]. Each 

defense has its merits, but none of them consists of a 

commercially viable defense.  There is a need for a neural 

trojan defense that is both computationally inexpensive 

and easy to implement.  We propose Merkle trees as a 

novel and computationally inexpensive and easy to 

implement defense against neural trojans 

In this paper, we will discuss the theory behind both 

the single-bias neural trojan and the proposed Merkle tree 

defense in the methods section.  We will then demonstrate 

the effectiveness of this defense in the section on 

experimentation, which will be followed by a discussion 
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of the results. Lastly, we will conclude with a discussion 

of the implications and importance of the results. 

 

II. Methods 

Because of their simplicity, precision, and difficulty to 

detect, we selected the single-bias attack for our research.  
For the rest of this paper, we will limit our discussion of 

neural trojans to the single-bias attack on a DNN 

classifier.  This attack is modeled by (1.2) and (1.3).   

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.2  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑎𝑑𝑣(∅𝑛 − 𝜀) 

𝑤. 𝑟. 𝑡. |𝜀|  ≤  |𝐿|  

𝑤ℎ𝑒𝑟𝑒 𝑓𝑎𝑑𝑣(∅) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝑖𝑛𝑔 

 𝑖𝑛𝑝𝑢𝑡 𝑎𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑖𝑛𝑘 𝑐𝑙𝑎𝑠𝑠, 

 𝜀 𝑖𝑠 𝑎 𝑏𝑖𝑎𝑠 𝑣𝑎𝑙𝑢𝑒, 𝑎𝑛𝑑 𝐿 is the change  

In the accuracy of the baseline model.  

By adding a significantly large bias to a specific 

parameter, a malicious actor can force a DNN classifier to 

misclassify an entire sink class.  The effectiveness of this 

attack is measured by both the probability of correctly 

classifying a targeted sink class and the change in the 

model’s accuracy.  A model with sudden large 

degradation in performance is likely to be closely 

examined, potentially exposing the inserted single-bias 

attack.  A sink class as mentioned in (1.2) is defined by 

(1.3). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.3 𝑆𝑖𝑛𝑘 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 ∅𝑛 = 𝑓(∅𝑛 + 𝜀)  

𝑤ℎ𝑒𝑟𝑒 𝑓(∅)𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑎 𝐷𝑁𝑁 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 

 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑜 0,  

𝑎𝑛𝑑 𝜀 𝑖𝑠 𝑎 𝑏𝑖𝑎𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 1 

Per (1.1), a DNN with a SoftMax function will select 

the output label associated with the largest neuron of the 

output layer.  For DNN classifiers with a SoftMax 

function, the effect of the single-bias attack is not uniform 

for every layer [1].  Because of this, the attack is most 

effective on the output layer, which contains a neuron for 

each corresponding sink class.  A visible representation of 

a single-bias attack can be seen in Figure 1.1. In this 

figure, we see a simplification of a single-bias attack on a 
DNN classifier of handwritten images. By adding a 

perturbation to one of the output layer parameters, the 

malicious actor is able to force the misclassification of the 

sink class of “three.” 
Because of the limited number of classes and 

neurons, detecting and locating a single-bias attack on a 

classifier such as an MNIST classifier is trivial; but for 

larger more complex deep learning models such as BERT, 

with its 110,000,000 parameters, detecting a single-bias 

attack is a considerable task.  One computationally cheap 

and novel way of detecting the presence of a trojan would 

be using training checkpoints to compare the hashes of 

the DNN’s weights [5].  This method is effective at 

detecting the presence of a trojan, but it does not give any 

indication of the location of the single-bias attack [5]. 

Commercial DNNs can be very large and expensive 

to replace.  It would be commercially expedient to be able 

to isolate and remedy a trojaned DNN. A naïve solution 

would be to run through every neuron to look for 

modification, but this is not an efficient or scalable 

solution.  We propose Merkle trees are an efficient 
solution to this problem. Merkle trees were originally 

made popular in the 1980s in digital signature research 

because the security of a Merkle-tree-based signature was 

not dependent upon the difficulty of a specific 

mathematical equation [6].  Merkle trees were revisited in 

the 2000s because of Bitcoin network’s reliance on 

recorded transactions [7].  

A Merkle tree is a unique data structure made up of a 

tree of hashes. As seen in (1.4), at the root of the tree is 

the root hash, which consists of a hash of its leaves and 

their subsequent children.  Any change in any part of the 

data will propagate to the root hash, allowing the 

identification and location of where the change took 

place.  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.4 𝑅𝑜𝑜𝑡 𝐻𝑎𝑠ℎ = 𝑀𝐻𝑇(∅1, … , ∅𝑛) = 𝐻( 

𝐻( 

𝐻(𝐻(∅1), 𝐻(∅2)), 𝐻(𝐻(∅3), 𝐻(∅4)) 

 ), 

𝐻( 

𝐻(𝐻(∅𝑛−3), 𝐻(∅𝑛−2)), 𝐻(𝐻(∅𝑛−1), 𝐻(∅𝑛)) 

 ) 

)  

𝑤ℎ𝑒𝑟𝑒 ∅𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑛𝑒𝑢𝑟𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝐷𝑁𝑁 

Figure 1.1 Single-Bias Attack on DNN Classifier 
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In addition to their change locating capability, 

Merkle trees are incredibly efficient to traverse.  Merkle 

trees have a search complexity of O(log(n)), making them 

ideal for searching through the neurons of large 

commercial DNNs. In our proposed Merkle tree of DNN 

neurons, as seen in Figure 1.2, the root of the tree is the 

root hash, and each parent in the tree is the hash of its 

children (neurons).  This data structure will allow us both 
to detect a neural trojan through the root hash and then to 

locate the trojaned neuron efficiently by traversing the 

tree.   

 

 

 

III. Experimentation  

To test the viability of Merkle trees as a neural trojan 

detection technique, we created three steps in the 

experiment.  The first step was to train a DNN classifier. 

We trained a trivial handwritten numeral classifier on a 

Jupyter Notebook platform. The classifier consisted of 
four layers: an input layer, hidden layers, and an output 

layer.  Additionally, we implemented a SoftMax function.  

The DNN was trained and tested using the MNIST 

dataset. This dataset consisted of 70,000 images and 

labels of handwritten numerals ranging from 0 - 9.  This 

dataset was divided into a 60,000-training dataset and a 

10,000-testing dataset.  Upon completion of training the 

model was saved to its checkpoint.  

The second step was inserting the neural trojan. A 

malicious actor seeking to insert a neural trojan would 

require white-box access. To simulate this white-box 

access, it is assumed the malicious actor has gained access 

and elevated privileges through our stolen credentials.  

With their elevated privileges, the malicious actor is able 

to insert the single-bias trojan and save the trojaned model 

to the checkpoint.  To test the validity of our single-bias 

attack, we attempted ten different single-bias attacks, each 

targeting a different sink class of the DNN. 

The last step was the creation of a custom 

checkpoint.  Upon loading the model from its checkpoint, 

two Merkle trees were created. The first was a Merkle 

tree of the saved model.  The second was a Merkle tree of 

the model currently being used. If the root hashes did not 

match, the user would be alerted to the presence of the 

single-bias trojan, and the location of the neuron with the 

single bias would be reported by traversing both Merkle 

trees to discover the point of departure in node values.  

 

IV. Results and Discussion 

Because the performance of the single-bias attack is based 

upon the probability of misclassifying a selected sink 

class and in the overall change in model accuracy, we 

recorded both the sparse categorical accuracy of each 

model and the probability of misclassifying the selected 

sink class. The baseline model had a sparse categorical 

accuracy of 0.9928, and the biased models’ accuracies 

ranged from 0.8804 to 0.9025.  

 

Figure 1.3 Change in Model Accuracy 

At first glance, the reported change in accuracy 

appears unacceptable.  Models with a ~10% degradation 

in accuracy are likely to be closely examined, resulting in 

the potential discovery of the single-bias attack.  This 

large degradation in model accuracy is due to the small 

number of sink classes.  The MNIST dataset is made up 

of ten different classes, and each class makes up between 

9.04% and 11.24% of the data.  If the trojaned model 

misclassifies the selected sink class with 100% accuracy, 

there will be a significant degradation of model 

performance because of the large proportion of a targeted 

sink class to the possible classes.  For a DNN with a 
larger number of sink classes, such as facial recognition 

DNN, a trojaned DNN will experience a much smaller 

degradation in model accuracy, because there are many 

more possible sink classes to choose from.  

The second criterion for the size of 𝜀 in (1.2) was 

minimizing the probability of classifying input as the 

targeted sink class. By adding a significantly large 𝜀, we 

were able to minimize the probability by 100%. This level 
of certainty is achievable because of the properties of the 

SoftMax function as described in (1.1).  By ensuring that 

the neuron corresponding to the targeted sink class was 

Figure 1.2 Merkle Tree of DNN's Parameters 
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the smallest in the output layer, the SoftMax function 

would never correctly label the targeted sink class.  

To determine the effectiveness of the Merkle tree 

defense, we selected two criteria.  First, for each of the 10 

singl- bias attacks on the model, the Merkle tree defense 

must alert the user to the presence of a neural trojan.  

Second, for each of the 10 single bias attacks on the 

model, the Merkle tree defense must accurately report the 

location of the single-bias attack.  For each of the 10 

single bias attacks, the custom checkpoint with the 

Merkle tree accurately reported both the presence and 

location of the infected neuron.  

V. Conclusion 

As DNNs are used in an increasing number of 

applications, a comprehensive look at defending DNNs is 

warranted.  Comprehensive security of DNNs looks 

beyond solely defending against adversarial examples and 

data poisoning [8],[9].  It also includes defending against 

neural trojans.  The current literature on defending DNNs 

from neural trojans is novel and interesting, but the 

proposed solutions are computationally expensive, not 

scalable, or commercially applicable.  This research 

builds upon the capability of the hash-based alert system 

developed at the Naval Postgraduate School [5].  The 

Merkle tree defense can both alert the user to the presence 

of neural trojans and efficiently identify the infected 
neuron for future remediation. We hope this work will 

help lay the foundation for future researchers to develop 

comprehensive defenses of DNNs.  
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