
1 This work was supported by the Laboratory Directed Research and Development (LDRD) program within the Savannah River National

Laboratory (SRNL). This document was prepared in conjunction with work accomplished under Contract No. 89303321CEM000080 with the

U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Detecting Neural Trojans Through Merkle Trees

Joshua Strubel

Savannah River National Laboratory1, Joshua.strubel@srnl.doe.gov

Abstract - Deep neural networks are utilized in a growing

number of industries. Much of the current literature focuses

on the applications of deep neural networks without

discussing the security of the network itself. One security

issue facing deep neural networks is neural trojans.

Through a neural trojan, a malicious actor may force the

deep neural network to act in unintended ways. Several

potential defenses have been proposed, but they are

computationally expensive, complex, or unusable in

commercial applications. We propose Merkle trees as a

novel way to detect and isolate neural trojans.

Index Terms – Neurons, Perturbation Methods, Biological

Neural Networks

I. Introduction

A deep neural network (DNN) is a neural network

organized into different layers of neurons. A common

DNN architecture includes multiple layers consisting of

input, hidden, and output layers respectively. The input

layer is responsible for receiving the input of training,

testing, or validation data. In the context of a DNN

classifier, each neuron in the output layer corresponds to

an individual classification label. Appended to the output

layer is an activation function, often a SoftMax function,

which can be modeled by (1.1).

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.1 𝜎 (𝑧)
𝑒 𝑧𝑖

∑ 𝑒 𝑧𝑗𝐾
𝑗=1

𝑤ℎ𝑒𝑟𝑒 𝑧 = 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟,

 𝑒 𝑧𝑖 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟,

 𝐾 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠,

𝑒 𝑧𝑗 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

The largest 𝑒 𝑧𝑗 is the selected output label of the

classifier. Because of the inherent architecture of DNNs,

it has been shown that a malicious actor through neural

trojans can force a DNN to behave in a manner of the

malicious actor’s choosing [1], [2]. A neural trojan, much

like a traditional trojan, embeds itself within the neural

network and masquerades as benign parameters within the

network. A malicious actor may alter either the hardware
or the software to insert a neural trojan into the DNN [1],

[2]. The software neural trojan often takes the form of

either a single-bias attack or a gradient-descent style

attack [1]. A gradient-descent style attack is more

complex and resembles the training process of an

uncompromised DNN [1]. Through gradient descent, a

malicious actor will force the DNN to behave erroneously

on a small, selected subset of data [1]. Inserting this type

of neural trojan without detection is difficult; but if

successfully inserted, is very difficult to detect and

remediate in the future.

The single-bias attack is much simpler and easier to

insert. A single-bias attack works by adding a bias, 𝜀, to a

single neuron [1]. Because of the precision of this attack,

it is less noisy and more difficult to detect. The
effectiveness of this attack consists of the ability of the

malicious actor to force the desired behavior of the DNN

without overly degrading the model’s performance,

drawing attention to the presence of the neural trojan.

Because of the vulnerability of DNNs to neural

trojans, there have been several proposed defenses. These

defenses include monitoring neuron’s activation on select

input [3], comparing DNN’s behavior to an ensemble of

similar benign DNNs [4], and lastly, custom checkpoints

to compare the hashes of model parameters [5]. Each

defense has its merits, but none of them consists of a

commercially viable defense. There is a need for a neural

trojan defense that is both computationally inexpensive

and easy to implement. We propose Merkle trees as a

novel and computationally inexpensive and easy to

implement defense against neural trojans

In this paper, we will discuss the theory behind both

the single-bias neural trojan and the proposed Merkle tree

defense in the methods section. We will then demonstrate

the effectiveness of this defense in the section on

experimentation, which will be followed by a discussion

2

of the results. Lastly, we will conclude with a discussion

of the implications and importance of the results.

II. Methods

Because of their simplicity, precision, and difficulty to

detect, we selected the single-bias attack for our research.
For the rest of this paper, we will limit our discussion of

neural trojans to the single-bias attack on a DNN

classifier. This attack is modeled by (1.2) and (1.3).

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.2 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑎𝑑𝑣(∅𝑛 − 𝜀)

𝑤. 𝑟. 𝑡. |𝜀| ≤ |𝐿|

𝑤ℎ𝑒𝑟𝑒 𝑓𝑎𝑑𝑣(∅) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝑖𝑛𝑔

 𝑖𝑛𝑝𝑢𝑡 𝑎𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑖𝑛𝑘 𝑐𝑙𝑎𝑠𝑠,

 𝜀 𝑖𝑠 𝑎 𝑏𝑖𝑎𝑠 𝑣𝑎𝑙𝑢𝑒, 𝑎𝑛𝑑 𝐿 is the change

In the accuracy of the baseline model.

By adding a significantly large bias to a specific

parameter, a malicious actor can force a DNN classifier to

misclassify an entire sink class. The effectiveness of this

attack is measured by both the probability of correctly

classifying a targeted sink class and the change in the

model’s accuracy. A model with sudden large

degradation in performance is likely to be closely

examined, potentially exposing the inserted single-bias

attack. A sink class as mentioned in (1.2) is defined by

(1.3).

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.3 𝑆𝑖𝑛𝑘 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 ∅𝑛 = 𝑓(∅𝑛 + 𝜀)

𝑤ℎ𝑒𝑟𝑒 𝑓(∅)𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑎 𝐷𝑁𝑁 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑜 0,

𝑎𝑛𝑑 𝜀 𝑖𝑠 𝑎 𝑏𝑖𝑎𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 1

Per (1.1), a DNN with a SoftMax function will select

the output label associated with the largest neuron of the

output layer. For DNN classifiers with a SoftMax

function, the effect of the single-bias attack is not uniform

for every layer [1]. Because of this, the attack is most

effective on the output layer, which contains a neuron for

each corresponding sink class. A visible representation of

a single-bias attack can be seen in Figure 1.1. In this

figure, we see a simplification of a single-bias attack on a
DNN classifier of handwritten images. By adding a

perturbation to one of the output layer parameters, the

malicious actor is able to force the misclassification of the

sink class of “three.”
Because of the limited number of classes and

neurons, detecting and locating a single-bias attack on a

classifier such as an MNIST classifier is trivial; but for

larger more complex deep learning models such as BERT,

with its 110,000,000 parameters, detecting a single-bias

attack is a considerable task. One computationally cheap

and novel way of detecting the presence of a trojan would

be using training checkpoints to compare the hashes of

the DNN’s weights [5]. This method is effective at

detecting the presence of a trojan, but it does not give any

indication of the location of the single-bias attack [5].

Commercial DNNs can be very large and expensive

to replace. It would be commercially expedient to be able

to isolate and remedy a trojaned DNN. A naïve solution

would be to run through every neuron to look for

modification, but this is not an efficient or scalable

solution. We propose Merkle trees are an efficient
solution to this problem. Merkle trees were originally

made popular in the 1980s in digital signature research

because the security of a Merkle-tree-based signature was

not dependent upon the difficulty of a specific

mathematical equation [6]. Merkle trees were revisited in

the 2000s because of Bitcoin network’s reliance on

recorded transactions [7].

A Merkle tree is a unique data structure made up of a

tree of hashes. As seen in (1.4), at the root of the tree is

the root hash, which consists of a hash of its leaves and

their subsequent children. Any change in any part of the

data will propagate to the root hash, allowing the

identification and location of where the change took

place.

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.4 𝑅𝑜𝑜𝑡 𝐻𝑎𝑠ℎ = 𝑀𝐻𝑇(∅1, … , ∅𝑛) = 𝐻(

𝐻(

𝐻(𝐻(∅1), 𝐻(∅2)), 𝐻(𝐻(∅3), 𝐻(∅4))

),

𝐻(

𝐻(𝐻(∅𝑛−3), 𝐻(∅𝑛−2)), 𝐻(𝐻(∅𝑛−1), 𝐻(∅𝑛))

)

)

𝑤ℎ𝑒𝑟𝑒 ∅𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑛𝑒𝑢𝑟𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝐷𝑁𝑁

Figure 1.1 Single-Bias Attack on DNN Classifier

3

In addition to their change locating capability,

Merkle trees are incredibly efficient to traverse. Merkle

trees have a search complexity of O(log(n)), making them

ideal for searching through the neurons of large

commercial DNNs. In our proposed Merkle tree of DNN

neurons, as seen in Figure 1.2, the root of the tree is the

root hash, and each parent in the tree is the hash of its

children (neurons). This data structure will allow us both
to detect a neural trojan through the root hash and then to

locate the trojaned neuron efficiently by traversing the

tree.

III. Experimentation

To test the viability of Merkle trees as a neural trojan

detection technique, we created three steps in the

experiment. The first step was to train a DNN classifier.

We trained a trivial handwritten numeral classifier on a

Jupyter Notebook platform. The classifier consisted of
four layers: an input layer, hidden layers, and an output

layer. Additionally, we implemented a SoftMax function.

The DNN was trained and tested using the MNIST

dataset. This dataset consisted of 70,000 images and

labels of handwritten numerals ranging from 0 - 9. This

dataset was divided into a 60,000-training dataset and a

10,000-testing dataset. Upon completion of training the

model was saved to its checkpoint.

The second step was inserting the neural trojan. A

malicious actor seeking to insert a neural trojan would

require white-box access. To simulate this white-box

access, it is assumed the malicious actor has gained access

and elevated privileges through our stolen credentials.

With their elevated privileges, the malicious actor is able

to insert the single-bias trojan and save the trojaned model

to the checkpoint. To test the validity of our single-bias

attack, we attempted ten different single-bias attacks, each

targeting a different sink class of the DNN.

The last step was the creation of a custom

checkpoint. Upon loading the model from its checkpoint,

two Merkle trees were created. The first was a Merkle

tree of the saved model. The second was a Merkle tree of

the model currently being used. If the root hashes did not

match, the user would be alerted to the presence of the

single-bias trojan, and the location of the neuron with the

single bias would be reported by traversing both Merkle

trees to discover the point of departure in node values.

IV. Results and Discussion

Because the performance of the single-bias attack is based

upon the probability of misclassifying a selected sink

class and in the overall change in model accuracy, we

recorded both the sparse categorical accuracy of each

model and the probability of misclassifying the selected

sink class. The baseline model had a sparse categorical

accuracy of 0.9928, and the biased models’ accuracies

ranged from 0.8804 to 0.9025.

Figure 1.3 Change in Model Accuracy

At first glance, the reported change in accuracy

appears unacceptable. Models with a ~10% degradation

in accuracy are likely to be closely examined, resulting in

the potential discovery of the single-bias attack. This

large degradation in model accuracy is due to the small

number of sink classes. The MNIST dataset is made up

of ten different classes, and each class makes up between

9.04% and 11.24% of the data. If the trojaned model

misclassifies the selected sink class with 100% accuracy,

there will be a significant degradation of model

performance because of the large proportion of a targeted

sink class to the possible classes. For a DNN with a
larger number of sink classes, such as facial recognition

DNN, a trojaned DNN will experience a much smaller

degradation in model accuracy, because there are many

more possible sink classes to choose from.

The second criterion for the size of 𝜀 in (1.2) was

minimizing the probability of classifying input as the

targeted sink class. By adding a significantly large 𝜀, we

were able to minimize the probability by 100%. This level
of certainty is achievable because of the properties of the

SoftMax function as described in (1.1). By ensuring that

the neuron corresponding to the targeted sink class was

Figure 1.2 Merkle Tree of DNN's Parameters

4

the smallest in the output layer, the SoftMax function

would never correctly label the targeted sink class.

To determine the effectiveness of the Merkle tree

defense, we selected two criteria. First, for each of the 10

singl- bias attacks on the model, the Merkle tree defense

must alert the user to the presence of a neural trojan.

Second, for each of the 10 single bias attacks on the

model, the Merkle tree defense must accurately report the

location of the single-bias attack. For each of the 10

single bias attacks, the custom checkpoint with the

Merkle tree accurately reported both the presence and

location of the infected neuron.

V. Conclusion

As DNNs are used in an increasing number of

applications, a comprehensive look at defending DNNs is

warranted. Comprehensive security of DNNs looks

beyond solely defending against adversarial examples and

data poisoning [8],[9]. It also includes defending against

neural trojans. The current literature on defending DNNs

from neural trojans is novel and interesting, but the

proposed solutions are computationally expensive, not

scalable, or commercially applicable. This research

builds upon the capability of the hash-based alert system

developed at the Naval Postgraduate School [5]. The

Merkle tree defense can both alert the user to the presence

of neural trojans and efficiently identify the infected
neuron for future remediation. We hope this work will

help lay the foundation for future researchers to develop

comprehensive defenses of DNNs.

References

[1] Y. Liu, L. Li, B. Luo, and Q. Xu, “Fault injection attack on deep

 neural network,” IEEE Xplore, Accessed: May 2023, [Online].

 Available: https://ieeexplore.ieee.org/abstract/document/8203770

[2] J. Clements and Y. Lao, “Hardware trojan attacks on neural

 networks,” arXiv, Accessed: May 2023, [Online]. Available:

 https://arxiv.org/abs/1806.05768

[3] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-Pruning: defending

 against backdooring attacks on deep neural networks,” arXiv,

 Accessed: May 2023, [Online]. Available:

 https://arxiv.org/abs/1805.12185

[4] M. Zou, Y. Shi, C. Wang, F. Li, W. Song, and Y. Wang,

 “PoTrojan: powerful neural-level trojan designs in deep learning

 models,” arXiv, Accessed: May 2023, [Online]. Available:

 https://arxiv.org/abs/1802.03043

[5] J. Strubel, “Securing Machine Learning Supply Chains,” Naval

 Postgraduate School, 2021. Accessed: May 2023. [Online].

 Available: https://apps.dtic.mil/sti/pdfs/AD1164482.pdf

[6] R. C. Merkle, “A digital signature based on a conventional

 encryption function,” Advances in Cryptology — CRYPTO ’87, pp.

 369–378, 1988. doi:10.1007/3-540-48184-2_32

[7] S. Dhumwad, M. Sukhadeve, C. Naik, M. K.N., and S. Prabhu, “A

 Peer to Peer Money Transfer Using SHA256 and Merkle

 Tree,” 2017 23RD Annual International Conference in Advanced

 Computing and Communications (ADCOM), Sep. 2017, doi:

 https://doi.org/10.1109/adcom.2017.00013.

[8] Goodfellow, I., J., Shlens, J., & Szegedy, C. (2014). Explaining

 and harnessing adversarial examples, presented at the ICLR,

 Mountain View, 2015.

[9] M. Goldblum et al., “Dataset security for machine learning: data

 poisoning, backdoor attacks, and defenses,” arXiv, Accessed: May

 2023, [Online]. Available: https://arxiv.org/abs/2012.10544

Author Information

Joshua Strubel is a Sr. Computer Security Engineer at Savannah River

National Laboratory, Ph.D. student at Liberty University, and adjunct

instructor at Southern Wesleyan University.

https://ieeexplore.ieee.org/abstract/document/8203770
https://arxiv.org/abs/1806.05768
https://arxiv.org/abs/1805.12185
https://arxiv.org/abs/1802.03043
https://apps.dtic.mil/sti/pdfs/AD1164482.pdf
https://arxiv.org/abs/2012.10544

