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In a recent review, it was suggested that much larger cohorts are needed to prove the 

diagnostic value of neuroimaging biomarkers in psychiatry. While within a sample, an 

increase of diagnostic accuracy of schizophrenia (SZ) with number of subjects (N) has 

been shown, the relationship between N and accuracy is completely different between 

studies. Using data from a recent meta-analysis of machine learning (ML) in imaging SZ, 

we found that while low-N studies can reach 90% and higher accuracy, above N/2 = 50 

the maximum accuracy achieved steadily drops to below 70% for N/2 > 150. We inves-

tigate the role N plays in the wide variability in accuracy results in SZ studies (63–97%). 

We hypothesize that the underlying cause of the decrease in accuracy with increasing 

N is sample heterogeneity. While smaller studies more easily include a homogeneous 

group of subjects (strict inclusion criteria are easily met; subjects live close to study site), 

larger studies inevitably need to relax the criteria/recruit from large geographic areas. 

A SZ prediction model based on a heterogeneous group of patients with presumably 

a heterogeneous pattern of structural or functional brain changes will not be able to 

capture the whole variety of changes, thus being limited to patterns shared by most 

patients. In addition to heterogeneity (sample size), we investigate other factors in�u-

encing accuracy and introduce a ML effect size. We derive a simple model of how the 

different factors, such as sample heterogeneity and study setup determine this ML effect 

size, and explain the variation in prediction accuracies found from the literature, both in 

cross-validation and independent sample testing. From this, we argue that smaller-N 

studies may reach high prediction accuracy at the cost of lower generalizability to other 

samples. Higher-N studies, on the other hand, will have more generalization power, but 

at the cost of lower accuracy. In conclusion, when comparing results from different ML 

studies, the sample sizes should be taken into account. To assess the generalizability of 

the models, validation (by direct application) of the prediction models should be tested 

in independent samples. The prediction of more complex measures such as outcome, 

which are expected to have an underlying pattern of more subtle brain abnormalities 

(lower effect size), will require large samples.
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FIGURE 1 | Prediction accuracy versus sample size for the 

schizophrenia machine learning studies using structural MRI. Data are 

taken from the reviews by Zarogianni et al. (9) and Kambeitz et al. (1) and 

some (recent) studies (4, 14–18). Sample size N/2 was calculated as the 

mean of the patient and control sample sizes. Different symbols mark 

cross-validation accuracy from studies on chronic/mixed patients (circles) 

and �rst-episode patients (diamonds). Soft colors were used to indicate 

studies that included only females (pink) or males (blue). Train accuracy 

without cross-validation is marked by squares. Lines connect train–test 

studies, where the accuracy in the independent test sample is marked with 

solidly �lled symbols. “3T” and “7T” mark the study by Iwabuchi (19), using 

the same subjects scanned at different �eld strengths. Curved dashed line: 

heterogeneous-sample theory. Horizontal dashed line: stretched range of 

homogeneous samples.
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INTRODUCTION

Since the recent development and application of machine learn-
ing (ML) techniques in neuroimaging data for classi�cation and 
prediction of psychiatric disorders, dozens of studies have been 
published on the use of (structural and functional) MRI scans for, 
e.g., classi�cation of schizophrenia (SZ) [for a recent overview, 
see Ref. (1)], autism (2), ADHD (3), the separation of bipolar 
disorder from SZ (4), prediction of outcome/illness course in SZ 
and related psychotic disorders (5, 6), transition to psychosis (7), 
and distinguishing prodromal from �rst-episode psychosis (8) at 
the level of the individual. �e published values of the prediction 
accuracy, the standard measure of the performance, of the binary 
classi�cation models, range from a little above 50% (rolling the 
dice) up to (and including!) 100% (1, 9, 10). �e sample sizes used 
in these studies vary between 15 and 198 per diagnostic group. 
Although, such as in group-level statistics, it has been shown 
that sample size matters and that classi�cation accuracy in small 
samples show large variation (11), a substantial number of stud-
ies with low N has been published. While this is usually justi�ed 
for pilot studies, proof of principle studies, and studies on “dif-
�cult” samples (di�cult inclusion or using challenging imaging 
techniques), they do not support conclusions about the potential 
of the technique to be used in a clinical setting. It has recently 
been suggested that ML studies with larger samples should be 
conducted in order to be of diagnostic value (12) and we think 
the time has come to make the step toward a next “generation” of 
ML studies, using large samples and/or independent validation 
samples and (re)use (smaller) studies. In this work, we will try 
to interpret the variations in performance seen in published ML 
neuroimaging studies. To do this, we will introduce the ML e�ect 
size as a measure of the predictive power of a model and develop 
a theoretical model to quantify the relationship between sample 
heterogeneity and prediction accuracy. We will conclude with a 
number of recommendations for psychiatric neuroimaging ML 
studies in the future.

Machine Learning Studies in Psychiatric 
Imaging: Schizophrenia
We base our approach on the observations from published 
sMRI-ML studies on SZ summarized in Figure  1. �e �gure 
clearly illustrates two phenomena: (1) published ML models 
from smaller samples yield higher classi�cation accuracies and 
the observed accuracies appear to lie on (and below) a line that 
divides the diagram in two and (2) replications in independent 
validation samples yield lower accuracies, also decreasing with 
(training) sample size. �ese e�ects may be explained by (at least) 
two reasons: sample homogeneity and publication bias. Poorer 
performing models in small samples may remain unpublished, 
while this variation in accuracy may be due to chance (11) as 
well as better performance in homogeneous (small) samples. �e 
lower accuracy in the larger samples can be ascribed to increased 
within-sample heterogeneity; these models may better capture the 
“complete picture” of SZ patterns. �ese models generalize better 
to other samples drawn from di�erent populations at the cost of 
a lower accuracy. From all applications of ML in neuroimaging, 

those in psychiatry seem to be a�ected most severely by the e�ects 
of small samples, given the heterogeneous nature of the disorders, 
both in appearance and in underlying brain features (13). In 
the following, we will setup a simple theoretical framework to 
describe the di�erent factors that a�ect a prediction model’s per-
formance. �e resulting formulas can be used to (1) quantitatively 
relate the observed fall in classi�cation accuracy for increasing 
sample size to within-sample heterogeneity and (2) determine 
the between-sample heterogeneity, i.e., the non-overlap in sample 
characteristics from the accuracy di�erence in a test/retest study. 
�ese tools can also be applied to (post hoc) multicenter ML stud-
ies to unravel the heterogeneity of the brain biomarker structure 
related to psychiatric disorders.

METHODS AND RESULTS

Accuracy of Machine Learning Models: 
Effect Size
Figure 2A summarizes the process of applying ML to imaging 
data and the resulting classi�cation performance. Every subject 
is represented by a so-called feature vector x that contains the 
features, or measures, that will be used to separate the two groups. 
�ese features can consist of any set of (neuroimaging) measures, 
for instance, a set of atlas-based regional brain volumes (low-
dimensional feature space), or voxelwise gray matter densities 
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FIGURE 2 | Overview of the statistical side of machine learning in neuroimaging data and the different factors that in�uence prediction accuracy. 

(A) 1. An ML algorithm is trained on a set of labeled, preprocessed, MRI scans, resulting in a model M that classi�es patients and controls based on a discriminative 

subset of the features (feature vector). 2. The classi�cation is done by an (optimal) separating hyperplane in the (high-dimensional) feature space. Application of the 

model to an individual scan yields an output value y that is proportional to the distance of the subject’s feature vector to the plane: blue (HC) and red (Pat) dots. The 

y-values of all subjects form two distributions with widths σy and means separated by a distance Δy. 3. A threshold halfway the distributions separates the two 

groups; the overlapping parts below and above the threshold represent the false negatives and false positive, respectively. For symmetrical distributions, the 

accuracy can be estimated from the ML effect size, dML = Δy/σy. (B) 1, 2. Heterogeneity of the disease and (normal) variation in brain measures lead to lower Δy and 

larger σy and, thus, smaller effect sizes and classi�cation accuracies. 3, 4. Sampling effects and noise and imperfect expert labeling cause uncertainties in the 

positions of the subjects and affect the separating hyperplane and (test) accuracy.
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(high-dimensional feature space) (Figure  2A-1). �e features 
{xi} are distributed around a mean x with SD σx. In group-wise 
statistics, e�ect size Cohen’s d is de�ned as d = (x1 − x0)/σx, which 
is a measure indicating how large the group-e�ect in this feature 
is in relation to the variation observed in this feature between 
subjects. �e signi�cance of this di�erence can be expressed by 
t = d√N that can be converted to a p-value. From this formula, it 
is clear that, even for very small e�ect sizes d, a group di�erence 

can become “signi�cant” by increasing N. �is, however, has 
of course no e�ect on the overlap between the distributions. 
Suppose we would use this feature to separate the individuals of 
the two groups, we would draw a line as indicated in Figure 2A-2: 
the overlap of the distributions shaded in the Figure indicates 
the wrongly classi�ed individuals. �e non-overlap re�ects the 
fraction of individuals that is correctly classi�ed [Cohen’s non-
overlap measure U2, see Ref. (20)]. Under the assumption that 
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TABLE 2 | Factors that in�uence the ML effect size and classi�cation accuracy.

Source Relevant factor Acting on Effect in study:

Training + LOOCV Train → test

Reference: homogeneous 

sample (“0”)

Separation strength, Δy0 – dML0 = Δy0/σy0 –

Spread, σy0 acc0 = Φ(dML0/2)

Heterogeneity of the 

diseasea

f Separation strength, 

Δy → dML

dML = √[(1 + f)/2] dML0 dML = fdML0

Heterogeneity: biological 

variation

σBIOL broadening, σy → dML dML = (σy0/σy)dML0 dMLT = (σy/σyT)dML

Measurement noise σEXP broadening, σy → dML dML = (σy0/σy) dML0 dMLT = (σy/σyT)dML

Sampling effects (�nite N) N, σy uncertainty in accuracy  ≤ SD(acc) in train/test case SD(acc) = √(acctrue × (100%−acctrue)/N)

Gold → silver standard Intra-class kappa, κ ceiling of accuracy acc = κ × acc0 +(1−κ)/2

ai.e., related to the prediction model.

f = cos(θ), the relative amount of heterogeneity;σ2
y = σ2

BIOL + σ2
EXP; acc = accuracy; subscripts “T” refer to values in the Test sample.

TABLE 1 | Effect sizes, statistical and machine learning.

Effect size Cohen’s quali�cation t/p Machine learning

N = 50 N = 200 Accuracy (U2, %) Proposed quali�cation

0 – 0 0 50

0.4 “Small” 1.41/0.16 2.83/0.005 58 “Small”

0.6 “Medium” 2.12/0.04 4.24/3.10−5 62 “Modest”

0.8 “Large” 2.83/0.01 5.66/<10−5 66 “Modest”

1.05–1.68 – 3.71/5.10-4 7.42/<10−5 70–80 “Medium”

>1.68 – 5.94/<10-5 11.9/<10−5 >80 “Large”

N is the total sample size; calculations assuming normally distributed data.
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the distributions of the feature are normal and equal for the two 
groups, this fraction may be estimated as Φ(d/2), where Φ(.) is 
the cumulative normal distribution (Figure 2A-3). While e�ect 
sizes of 0.8 and larger are commonly referred to as “large” (20) 
and would give rise to a “very signi�cant” group di�erence t = 8 
for N = 100, only 66% of the individuals would be assigned to 
the correct class in this case. �is shows the fundamental di�er-
ence between parameters that are signi�cantly di�erent between 
groups and their use for making individual predictions. �is is 
one of the reasons that univariate prediction models are rare 
and that multivariate techniques are invoked to make use of the 
combined predictive power of many variables.

Machine Learning Effect Size
In the following, we will expand the univariate e�ect size to an 
e�ect size related to the output of multivariate ML models. Under 
application of a prediction model, a subject’s feature set {xi} is 
transformed into a single value y, representing the outcome of 
the classi�er (Figure  2A-1). For a binary classi�er, values of 
y > 0 indicate a subject is classi�ed as belonging to group “+1” 
(for instance, the patient group), and values of y  <  0 indicate 
group “−1” membership (for instance, the control group). �e 
distribution of x ± σx is transformed accordingly, yielding y ± σy 
(Figure  2A-2). In analogy to the group-level e�ect size, a ML 
e�ect size can be de�ned as dML = Δy/σy. Here, Δy = y1 − y0 is the 
“separation strength,” i.e., the distance between the mean clas-
si�cation output values of the two groups, y0 and y1, respectively; 
the spread of the classi�er’s output around the group means is 

represented by σy, estimated as the pooled SD, √( +1
2 0

2 1
2 1

2s sy y ). 
�e larger σy with respect to Δy, the more subjects will be wrongly 
classi�ed (Figure 2A-3). �e classi�cation accuracy, de�ned as the 
fraction of correctly classi�ed subjects, may, again, be estimated 
as Φ(dML/2) (Figure 2A-3). As we saw in the previous paragraph, 
“large” e�ect sizes (>0.8) will produce only moderate prediction 
accuracies (66% for dML = 0.8), which, from a diagnostic point 
of view, is not considered as being “large.” A new scale should 
be de�ned for interpretation of ML e�ect sizes. For binary clas-
si�cation models, we suggest to label accuracies <60% (d = 0.50) 
as small; 60–70% (d = 1.05) as “modest”; 70–80% (d = 1.68) as 
“medium”; and >80% as “large” (see Table 1). In the following, 
we will identify the sources that in�uence prediction accuracy 
(via dML) that play a role in (neuroimaging) ML studies. �is will 
help understanding the meaning of a certain published model 
together with its prediction accuracy.

Accuracy of ML Models: Gold Standard, 
Training, Testing, and Heterogeneous 
Samples
We will show that there are basically four “channels” through 
which the performance of a classi�er is in�uenced (subsections 
1–4; Figures 2B-1–4; Table 2). Depending on the kind of study 
and the way performance is assessed, di�erent sources play a role. 
We present the ideas and some resulting formulas and numerical 
results for simple cases here. �e derivation of the formulas is 
given in the Datasheet S1 in Supplementary Material. �e results 
are then related to the observations made from Figure  1. To 
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investigate the in�uence of the di�erent sources, we will consider 
two types of ML prediction studies: (i) the single-sample study, 
where a model is trained and tested using (k-fold; leave-one-out) 
cross-validation (CV) in the same sample and (ii) the two-sample 
study where a model trained on one sample (the discovery sam-
ple) is tested in an independent second sample (the validation 
sample).

1. Heterogeneity of the Disease
Heterogeneity of the disease shows up as di�erent parts of the 
brain being a�ected by the disease in di�erent patients. �is has 
a direct in�uence on the set of discriminating features and thus 
on Δy. Examples of source of disease heterogeneity are di�er-
ences in: subtypes of the disorder (e.g., by symptoms, see Ref. 
(21)), disease status of the patients: illness severity (outcome) and 
course [age-of-onset and illness duration (�rst-episode patients 
versus chronic patients) and number of psychoses, etc.]; medica-
tion use [type and (cumulative) dose], etc.; di�erences in genetic 
background (as far as they in�uence the disease). However, much 
of the heterogeneity will not be attributable to clear factors. 
Disease heterogeneity has an e�ect in both the training sample 
(within-sample heterogeneity) and an independent test sample 
(between-sample heterogeneity).

1a. Testing a Model’s Accuracy in an Independent 

Validation Sample: Heterogeneity in the Population, Causing 

between-Sample Heterogeneity
We start with training a disease prediction model in a homogene-
ous training sample (s1, see Figure 2B-1). More precisely, strict 
inclusion criteria on the demographic and clinical parameters 
(e.g., age, gender, duration of illness) will lead to a clinically 
homogeneous sample. In such a sample, the disease-underlying 
brain abnormalities may be assumed to be as homogeneous 
as possible too. �e prediction model (M1) will �nd a “clear” 
discriminative pattern in these brain abnormalities and be 
able to transform the features {xi} into a decision value y that 
can separate the patients from the controls with high accuracy. 
Suppose we now wish to test the model’s validity in an independ-
ent sample (s2) that is derived from a di�erent population and/or 
with di�erent inclusion criteria (e.g., it has a di�erent duration of 
illness or genetic background of the disease). Sample 2 is, thus, 
heterogeneous with respect to sample 1. Put di�erently, part of 
the (clinical) parameters is the same, but another part is di�erent. 
�e samples are said to be mutually heterogeneous, i.e., exhibit 
between-sample heterogeneity. We expect that this clinical het-
erogeneity is re�ected by a heterogeneity of the underlying brain 
patterns too (Figure 2B-1). �e model M1 will not be sensitive 
to any brain abnormalities present in s2 but not in s1, and the 
part of the model that is based on abnormalities present in s1 
but not in s2 will not contribute to the separation of cases and 
controls in s2. �us, only the pattern of shared abnormalities (the 
homogeneous part) will be of use for the classi�cation of sample 
2. For a linear prediction model M1 and samples s1 and s2 that 
share a fraction f12 of discriminative features we can show that 
the separation strength in s1, Δy, is in s2 lowered according to this 
fraction: f12Δy. �e ML e�ect size is lowered by the same factor: 
dML →  f dML. In the range of 70–90% prediction accuracies for 

M1, the resulting drop in accuracy in s2 is approximately given 
by: Δacc ≈ 53% × 10log f12 (see Datasheet S1 in Supplementary 
Material). For example, a 50% overlap in discriminative features 
between the samples (f12 = 0.5) will result in a drop of 16% classi-
�cation accuracy in the test sample as compared to that obtained 
in the training sample.

1b. (Cross-Validation) Accuracy of the Model: Heterogeneity 

within Larger Training Samples
In Section “Testing a Model’s Accuracy in an Independent 
Validation Sample: Heterogeneity in the Population, Causing 
between-Sample Heterogeneity,” we considered the case of 
homogeneous samples. Such samples will be relatively small 
in practice. Larger samples will inevitably be heterogeneous 
because of the di�culty to include a large amount of subjects 
ful�lling the strict inclusion criteria. In the following, we will 
assume that this heterogeneous sample is constituted of two or 
more homogeneous subsamples. Part of the properties is shared 
between the subsamples, but other properties di�er (e.g., dura-
tion of illness). For the case of two subsamples, the situation 
is the same as described in the previous section (Figures 2B-1 
and 3A), but now a model M12 is trained on the combined 
s1  +  s2 sample. �e model will be a weighted average of the 
(hypothetical) models from the homogeneous subsamples. 
�e amount of within-sample heterogeneity is determined by 
both the number of homogeneous subsamples the sample can 
be divided into and the overlap between the discriminative 
feature sets (Figures  2B-1 and 3A,B). �e larger the within-
sample heterogeneity, the lower the separation strength Δy 
will be (cf, see Testing a Model’s Accuracy in an Independent 
Validation Sample: Heterogeneity in the Population, Causing 
between-Sample Heterogeneity). Furthermore, di�erent sets of 
discriminative features will generally also lead to a larger pool of 
discriminative features that will not contribute to the discrimi-
nation in most subjects but will have random e�ects (a�ecting 
σy). �e net e�ect is a decrease of the e�ect size dML. Training 
(CV) accuracy will be lower as compared to a (hypothetical) 
homogeneous sample (of the same size) and depend on the 
within-sample heterogeneity, which, for a two-subsample case 
is de�ned by the fraction of shared features, f12. �e e�ect size 
is attenuated as follows: √((1  +  f12)/2). (See section C of the 
Datasheet S1 in Supplementary Material for the derivation of 
this formula and section F for numerical simulations to test it.) 
When applied to an independent sample, the test accuracy of the 
model depends on the between-sample heterogeneity (as dis-
cussed in Section “Testing a Model’s Accuracy in an Independent 
Validation Sample: Heterogeneity in the Population, Causing 
between-Sample Heterogeneity”). For a sample consisting of 
two homogeneous subsamples s1 and s2, the accuracy drop is 
in the range 70–90% approximately given by: Δacc  ≈  26%  × 
10log((1 +  f12)/2), as compared to the accuracy in sample s1 or 
sample s2 alone.

�ese formulas can be extended to samples with H-fold 
within-sample heterogeneity (H ≥ 2, see Figure 3C) leading to 
larger drops in accuracy. �e reader is referred to the Datasheet 
S1 in Supplementary Material for the corresponding formu-
las. Note that thus far we treated the heterogeneity as being 
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FIGURE 3 | Petal model to describe disease heterogeneity within and between samples. (A) Two-fold heterogeneity sample consists of blue and yellow 

subsamples that have shared (white) and unique (colored) brain abnormalities. (B) H-fold heterogeneity sample consists of H = 5 subsamples that have shared 

(white) and unique (colored) brain abnormalities. (C) Train/test heterogeneity The model trained on sample B (H = 5; black sector) is tested on a sample with Hʹ-fold 

heterogeneity (Hʹ = 4; grey sector). The overlap is T-fold (T = 2; yellow and orange petals).
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discrete (H  =  2,3,…). While this may be a good description 
for disease heterogeneity related to, e.g., gender, in general 
the heterogeneity will probably have a continuous nature. For 
instance, �rst-episode versus chronic is not a hard cut, but is 
described by the continuous parameter illness duration. �is 
can be incorporated in the formulas by allowing H to assume 
non-integer values.

2. Variation

2a. Non-Disease-Related Heterogeneity
Heterogeneity with respect to factors not related to the disease 
gives rise to variation in brain measures (Figure 2B-2). �is bio-
logical variation is present in both healthy subjects and patients. 
�e more heterogeneous a sample is, the larger the variation 
in feature values. Examples are as follows: including males and 
females (as opposed to single-gender); including subjects with 
a wide age or IQ range; genetic background (but for genetic 
disease-related genetic factors, see Heterogeneity of the Disease). 
Relaxing the inclusion criteria of a study will thus increase the 
variation in feature values {xi}.

Matching of subjects with respect to nuisance variables: Confounding 
the classi�er
A special form of increased variation arises when subjects are not 
well-matched with respect to nuisance variables. If the distribu-
tions of factors such as age and gender are not well-matched 
between train and test samples, (parts of) the classi�er’s output 
distribution (y) may shi�, causing a change in the sensitivity/
speci�city balance. Within-sample mismatch with respect to 
nuisance variables between patients and controls will confound 
the classi�er: part of the discrimination between the two groups 
will be based on brain abnormalities unrelated to the disease. 
For instance, if the patients are on average older than the con-
trols, brain volume decreases related to normal aging may be 
used by the classi�er to separate the groups. When applied to a 
test sample with a di�erent demographic composition, this part 

of the model will not contribute to the separation of the groups, 
and the e�ect size will be lowered by a factor f < 1 (see Testing 
a Model’s Accuracy in an Independent Validation Sample: 
Heterogeneity in the Population, Causing between-Sample 
Heterogeneity).

2b. Measurement Noise
�e second factor that increases the variation in feature values 
{xi} is measurement noise (Figure  2B-3). Features are derived 
from measurements done by, e.g., an MRI scanner, which inher-
ently involves noise. Random noise, such as, e.g., physiologic 
and electronic noise and noise due to subject movements, leads 
to an uncertainty in the feature values. Systematic (and interac-
tion) e�ects, due to di�erences in, e.g., scanner brand and type, 
�eld strength, and acquisition protocols, play a role when two or 
more samples with di�erent origin are combined, e.g., in a train/
test study. �ese e�ects can result in biased sensitivity/speci�city 
(e.g., when certain parts of the brain show up di�erently between 
two scanners) or in changes in the prediction accuracy (which 
will be lower for noisier scans, but could even go up if test scans 
were acquired with less noise, e.g., on a scanner with higher �eld 
strength).

While variation due to inclusion of biologically heterogeneous 
subjects (see Non-Disease-Related Heterogeneity) and Section 
“measurement noise” is completely di�erent in nature, their 
e�ects on the ML accuracy run via the same channel: increased 
variation in the features {xi}, which is carried over to the variance 
of the prediction model’s output: σy. �e total variance is given by: 
σ2

y = σ2
BIOL + σ2

EXP. Lower or higher variance (σy) in the test set 
as compared to the training set can cause increases or decreases 
(respectively) in the test accuracy, according to the same formula 
as used in Section “Testing a Model’s Accuracy in an Independent 
Validation Sample: Heterogeneity in the Population, Causing 
between-Sample Heterogeneity,” since it is determined by the 
e�ect size dML = fΔy/σy. A twice as large noise will have the same 
e�ect as a 50% overlap.
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3. Sampling Effects (Finite N)
In samples of �nite size, random variations in�uence both the mod-
eling (training phase) and the testing. Two e�ects play a role here.

3a. Train/Test Case
First, if we assume that a theoretical, population-based, model 
exists, then in practice a model will depend on the actual training 
sample taken from “the population.” Di�erences in the amount 
and kind of heterogeneity in the selected subjects will cause 
both di�erences in prediction accuracy and “positioning” of the 
model [optimal separation hyperplane (OSH)] with respect to 
the population-based model. Models “further away” from this 
population-based model will more likely perform worse (i.e., 
producing lower accuracies) in a second, independent test sample 
from the same population. �e accuracy in test samples is, thus, 
hit twice by the sampling e�ect: once due to �uctuations in the 
test sample’s composition itself (having a lucky or an unlucky 
drawing of subjects with respect to the population distribution) 
and a second time because of the composition of the training 
sample, on which the model was built (relative position of the 
two samples). �is e�ect is larger in smaller (training and test-
ing) samples. �e observed accuracies o�cially follow a binomial 
distribution, but can be approximated by a normal distribution 
with mean acctrue and an SD of √(acctrue  ×  (100%−acctrue)/N). 
For an acctrue of 80%, SD = 40%/√N, thus in a sample of N = 50 
(25 + 25 per group), SD = 5.7%, giving a chance of 95% that the 
observed acc lies between 68.6 and 91.4%. For four times as large 
sample, N = 200, this range is 74.3−85.7%. Note that the sampling 
e�ect, thus, does not systematically lower the accuracy, but that it 
gives rise to variation in it. It is true, however, that the lower the 
N, the larger the chance of observing a low accuracy (as well as a 
high accuracy).

3b. Cross-Validation Case
Second, if performance is tested within the training set, CV 
will induce small perturbations in this set during each step of 
the leave-one(or more)-out procedure, accounting for further 
�uctuations around the “theoretical” OSH (Figure  2B-3). �e 
e�ect on the (CV) accuracy is di�cult to estimate, since it will 
depend on the type of classi�er used. For example, a support vec-
tor machine (SVM) model is based on only part of the training 
subjects [the so-called support vectors (SV)], who are recognized 
as lying close to the OSH during the training phase. Leaving-out 
a non-SV subject will not in�uence the model, while leaving out 
a SV subject probably will change the placement of the OSH and, 
thus, the classi�cation of subjects nearby the OSH. If the number 
of support vectors (NSV) is known, a reasonable estimate of the 
SD of the accuracy could be made by the formula for SD in the 
previous paragraph, using NSV instead of N.

Note that sampling e�ects induce spread in accuracy, but not 
a reduction of it per se (although the spread distribution becomes 
asymmetric for population-based accuracies above 50%, the 
expectation value of the accuracy in a sample always equals the 
accuracy in the population). However, since the spread is larger 
for lower N and (accidently) low accuracies are less likely to be 
published, the sampling e�ect may add to the on average higher 
accuracies in low-N studies.

An illustration of the sampling e�ect as a function of training 
sample size N can be found in Ref. (11). In their Figure 3, the 
rise of the mean accuracy with N re�ects a training sample-based 
OSH that lies closer to the population-based OSH [see Train/Test 
Case]. �e lower spread in observed accuracies with increasing N 
(light blue circles) re�ects the decreasing SD [see Cross-Validation 
Case]. Of course, the fact that these e�ects occur is a re�ection 
of the disease heterogeneity (see Heterogeneity of the Disease) 
and biological variability (see Variation) present in the sample: 
without variability sampling e�ects do not play a role.

4. Training: From Gold to Silver Standard
Last but not least, in a supervised learning study, the quality of 
the expert labeling of the subjects in the training set (and, in 
fact, in the test set too) in�uences the highest possible accuracy. 
Unfortunately, especially for prediction problems in psychiatry, 
the reliability of the experts may not always be that high [see 
Ref. (22), for a study on reliability of DSM-5 diagnoses, using 
interclass kappa (23)]. �is means that, in many cases, we have, 
unfortunately, not a gold, but rather a silver standard (Figure 2B-
4). �e quality of the standard is di�erent for di�erent classi�ca-
tion problems, and may be close to 0 in certain situations, but 
for diagnosis of SZ and bipolar disorder using SCID-I inter-rater 
reliabilities of 80–94% has been found (24) and using DSM-5 
interclass kappa’s of 0.46–0.56 (22). In general, a drop of ~10% 
can safely be assumed. Of course, 100% accurate training models 
can still be obtained, but there is a hidden inaccuracy due to sub-
jects wrongly labeled by the expert. While this inaccuracy goes 
unnoticed in the training results, it will at any rate be revealed 
in the test phase, either by CV or in a test sample. Although 
mislabeling by the expert may be linked to the more di�cult 
cases, ignoring this leads to a simple formula for a two-class test 
case: acc = κ × acc0 + (1 − κ)/2, which is smaller than the true 
accuracy (acc0) for acc0 > 50%; κ is the interclass kappa, which, 
for a two-class/two-rater case can be related to the fraction of 
cases mislabeled by the experts: (1 − κ)/2. �is formula could 
even be extended for estimating the loss of accuracy in the CV 
in the training sample, but this depends on the type of classi�er. 
�e CV procedure is hit twice by errors in the expert labeling: 
when the le�-out subject is predicted (as described above), but 
also when the model is built. If all subjects in�uence the model, 
the e�ect is about the same as in the test phase. If, however, as 
e.g., SVM, only part of the subjects (NSV) actually in�uences the 
model, a mislabeled non-SV subject has no in�uence. On the 
other hand, probably the subjects close to the separation border, 
the SVs, are also the ones that are most di�cult to be classi�ed 
by the expert.

Summary
To summarize (see Figures 4A–E), imperfection of the gold stand-
ard (Figure 4A) will lower the ceiling of the training accuracy 
(ideally, 100%) in the training set [silver standard (Figure 4B)]. 
(Within-sample) disease-pattern heterogeneity will introduce the 
impossibility to capture all discriminating brain abnormalities 
needed for the classi�cation of all subjects, thus reducing the 
accuracy (Figure 4C). Finite sample sizes and biological variation 
and measurement noise will lower the (k-fold; leave-one-out) CV 
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accuracy further (Figure  4D). In an independent test sample, 
when the model is applied to a new data set, this negative e�ect of 
(between-sample) heterogeneity on the prediction accuracy will 
be magni�ed, and sampling e�ects will cause further spread in 
the test accuracy (Figure 4E). �e loss will depend on the overlap 
in discriminative features between train and test sample, or, the 
between-sample disease-pattern heterogeneity.

Relationship between the Heterogeneity Factor “f” 

and the (Feature) Weight Vectors, Cos(θ): The Angle 

of Heterogeneity
In linear models, such as, e.g., the linear SVM, the model can 
be represented by a set of coe�cients, β, or weight vector w, 
indicating the features’ relative importance. �e decision value y 
is the dot product of this vector and the feature vector: y = wT.x 
(o�set b is not relevant here). When comparing two models, the 
dot product of the (normalized) weight vectors can be informa-
tive: it provides a summary statistic of the comparability of the 
two models. It can be shown (see Datasheet S1 in Supplementary 
Material) that the disease heterogeneity factor f = cos(θ), the dot 
product of the normalized weight vectors. θ is the angle between 
the two vectors (or, equivalently, the separating hyperplanes): 
the angle of heterogeneity. In this context, it should be noted that 
disease heterogeneity can arise in two forms. �us far we split 
discriminative features in a part shared by subgroups of patients 
and in features speci�c to each of the subgroups (and, thus, 
absent in the other subgroups). It is, however, also possible that 
certain features are discriminative in more than one subgroup, 
but in di�erent directions: for instance, a piece of the cortex 
that is either too thin or too thick could be disadvantageous 
and, thus, related to having the disease. Such manifestations of 
heterogeneity of the disease could lead to angles larger than 90° 
and, thus, negative f. �e values f can assume are, thus, between 
−1 and +1. While f, or cos(θ), thus provide an indication of the 
global comparability between two models, detailed information 

needs to be obtained by comparison on a weight-by-weight 
basis, e.g., by comparing projections of the weight vectors on 
brain maps.

Application to the Published sMRI-ML 
Schizophrenia Studies
Figure 1 shows the derived e�ects in relation to the published 
sMRI-ML studies in SZ.

�e heterogeneous-sample model has been “�tted” to the 
data points representing CV studies, using parameter values of 
(d0 = 2.00; f12 = 0; N = H × N0; N0 = 50). Note that this “�t” is 
descriptive (i.e., no rigorous optimization of the goodness-of-�t 
with optimal parameter estimates and con�dence intervals was 
carried out): the line is an indication of how the fall of the accuracy 
with sample size can be explained by increasing within-sample 
heterogeneity. We assumed constant values for the homogeneous-
sample ML e�ect size d0, the (within-sample) heterogeneity factor 
f12, and the homogeneous-subsample size N0, but these values can, 
of course, vary between the studies. For smaller samples (up to 
N≈60), the accuracy seems to lie at a plateau (~90%). �is could 
indicate that researchers have been able to stretch the maximum 
sample size that allows the inclusion of patients with homogene-
ous disease-related brain abnormalities. �e ~90% ceiling of the 
accuracy probably re�ects the maximum possible accuracy that 
can be obtained with imperfect gold standard (see Training: From 
Gold to Silver Standard).

Four studies tested their HC/SZ classi�cation model in an 
independent validation sample. Two small studies obtained test 
accuracies that were even higher than the train accuracies, which 
is probably due to the e�ect of sampling [having a lucky drawing 
in the test sample; Section “Sampling E�ects (Finite N)”], which 
is larger for low N. �e 7% jump in accuracy (from 77% in the 
training set to 84% in the test set) found by Kawasaki et al. (25) 
is of the order of the uncertainty in the accuracy, SD = 5–7%, for 
these sample sizes (N = 30 + 30 and N = 16 + 16, respectively). 
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�e other possible cause, better image quality in the test set, 
seems not applicable here, since both sets were drawn from the 
same cohort. �e study by Iwabuchi et al. (19), on the other hand, 
clearly shows the e�ect of scan quality: Using the same sample, 
they built two classi�cation models: one based on 3-T scans and 
one based on 7-T scans. While increasing �eld strength does not 
automatically lead to improved scan quality, higher resolution 
or better contrast-to-noise ratio is usually obtained. Indeed, the 
accuracy increased from 67% in the 3-T models to 77% in the 7-T 
models. (Note that sampling e�ects do not play a role here, since 
the same subjects were used for both models.)

Two other (smaller-sized) studies displayed a large drop 
(>10%) of accuracy in the test sample as compared to the train 
sample; note that the N/2 = 66 study used a test set acquired at 
di�erent �eld strength (3 T versus 1.5 T). �is can be explained by 
the fact that low-N training samples can be more homogeneous, 
giving rise to (i) the higher CV accuracies (>88%) seen here [see 
(Cross-Validation) Accuracy of the Model: Heterogeneity within 
Larger Training Samples] and (ii) a larger mutual, or between-
sample, heterogeneity with the test sample, yielding larger drops 
in accuracy (see Testing a Model’s Accuracy in an Independent 
Validation Sample: Heterogeneity in the Population, Causing 
between-Sample Heterogeneity). Of course, sampling e�ects 
could also add to the large di�erences here. �e only large train/
test study (N/2 = 120) showed almost no (1%) drop in accuracy 
between train and test sample. �is is in agreement with the 
theory that larger studies automatically capture more (within-
sample) disease heterogeneity and, thus, better generalize – at the 
cost of lower accuracy. For three train–test studies, the overlap 
in discriminative features could be estimated, with relatively low 
values of f12 = 0.6, for the smaller studies, and a high value for the 
larger study: f12 = 0.95.

�e study by Nieuwenhuis et  al. (11) reported a full model 
(presented in Figure 1) and two sub-models. �e �rst sub-model 
excluded the striatum, known for being a�ected by typical 
antipsychotics (26), from the feature set. Half of the patients in 
the training sample were on typical antipsychotics, and as could 
be seen from their Figure 2, the discrimination between patients 
and controls was in part based on gray matter di�erences in 
the striatum. Excluding the striatum leads to a 4% reduction in 
classi�cation accuracy. �is drop could be attributed to less dis-
criminative information being present in the sample and, thus, 
a drop in “separation strength” Δy (see Heterogeneity of the 
Disease) and ML e�ect size dML and accuracy for the discovery 
sample. However, since hardly any patients (8%) of the valida-
tion sample were on typical antipsychotics, the part of the model 
based on the medicated striatum was of no discriminating value 
for this sample and, thus, nothing changed for the validation 
performance (+0.2%). [�e striatum features were located in 
the s1-petal (Figure 3A).] �e second sub-model was trained on 
the top-10% features with the largest absolute weights. �e CV 
accuracy of this model increased to 86.8%, probably because 
the other 90% of the features did not contribute much to the 
discrimination (separation strength Δy hardly changed) but did 
add quite some noise: the spread in predictions, σ2, decreased 
and the ML e�ect size dML, thus, increased. �is model, however, 

was apparently more tuned (“over�tted”) to the speci�c consti-
tution of the training sample with respect to its disease hetero-
geneity (i.e., the petals in Figure 3 had become relatively large 
as compared to the core), and thus the improved prediction 
accuracy was not found again in the validation sample, which 
had an almost unchanged accuracy of 69.1%.

DISCUSSION

In this work, we examined the various sources that in�uence 
the performance of ML classi�cation and prediction studies 
in psychiatric neuroimaging. �e published studies on the 
prediction of SZ using sMRI display a wide variation in clas-
si�cation accuracies. From a plot of accuracy versus sample size 
(Figure 1), we showed that the accuracy of these classi�cation 
studies drops from a plateau at about 90% in smaller samples 
(N/2 < ~60) to (below) 70% for studies with larger N. A simple 
heterogeneous-sample model was able to follow this drop in 
(maximum) accuracy with increasing sample size. Smaller stud-
ies are better capable of including homogeneous samples, which 
allow for the discovery of discriminative brain features that 
apply to all patients, yielding models with high accuracy. Larger 
studies inevitably need to relax the inclusion criteria, yielding 
heterogeneous samples in which no discriminative pattern of 
brain abnormalities can be found that is shared by all patients. 
As a result, only part of the subjects will be correctly classi�ed, 
resulting in lower accuracy.

Application of these classi�cation models to independent 
validation samples allows for testing their generalizability. From 
the few studies that performed such a test, it was observed that 
accuracy can drop as much as 10–15% or even can increase for 
the smaller studies. �e only study with large train/test samples 
showed a much more stable accuracy (a drop of only 1%). Patients 
in a test sample will most likely display a di�erent pattern of 
brain abnormalities as compared to those in the training set, i.e., 
the two samples are mutually heterogeneous. �e accuracy in 
the replication sample will be (much) lower, depending on the 
amount of shared features between the two samples. �e drop 
in accuracy will presumably be smaller for studies with a large 
training sample, since it will automatically cover more disease 
features from the set of all possible features.

An additional advantage of larger studies is that they are less 
prone to sampling e�ects. �e larger variability in accuracy, 
which is observed for smaller studies, could be explained by 
lucky/unlucky drawings from the patient population.

Summarizing, sample size in�uences the trade-o� between 
accuracy and generalizability. Smaller, homogeneous, samples are 
able to produce classi�cation models with high accuracy, at the 
cost of low generalizability, whereas larger, heterogeneous sam-
ples produce models that better generalize, but at the cost of lower 
accuracy. We argue here that, with the current approaches, high 
accuracy cannot be reached in larger, heterogeneous samples – in 
psychiatry. From an evaluation of the ML literature on neuro-
logical diseases (10), it is noted that ML studies on Alzheimer’s 
disease seem to reach high accuracy from small N till very large 
N. �is may be attributed to the more precise characterization of 
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this disease, thus leading to a more homogeneous population and 
thus samples. Studies on mild cognitive impairment, on the other 
hand, do show a substantial drop in accuracy with N, probably 
because this class of patients is less well de�ned, and thus leading 
to increased (within-sample) heterogeneity.

�e spread in accuracy seen in �rst-episode SZ (FE-SZ) ML 
studies could have two causes. On the one hand, the FE-SZ class 
of patients does show some variability in presentation and clinical 
course, but is, compared to a chronic/mixed group of patients, 
more homogeneous [shorter duration of illness; less variability 
in age and disease course; less (variation in) (cumulative) medi-
cation (dose); etc.] allowing for higher accuracy. On the other 
hand, the disease e�ects in the brain may be smaller in these 
patients than in chronic patients, lowering the separability of the 
groups. Both e�ects in�uence the ML e�ect size and, thus, the 
model’s performance. Spread in inclusion criteria between stud-
ies, for instance, with respect to illness duration, can have led to 
di�erences in e�ect sizes between the FE-SZ studies. Given the 
di�culty to include large number of FE-SZ subjects, all FE-SZ 
ML studies were relatively small (N/2  <  65). Sampling e�ects 
could also contribute to the large variation in accuracies, for these 
relatively low numbers of subjects.

�ere are many possible sources of heterogeneity. Psychiatric 
disorders may be divided into subtypes (see, e.g., Ref. (21) for SZ). 
Within “homogeneous subtypes,” the disease status of patients 
plays a role: illness severity (outcome) and course (age-of-onset 
and illness duration; number of psychoses, etc.); medication use 
[type and (cumulative) dose], etc. Furthermore, even a “clinically” 
homogeneous patient group may show heterogeneity in their 
underlying brain abnormalities, because, e.g., di�erent (disease-
related) genetic factors may cause di�erent biological pathways 
to the same (subtype of the) disease. Nuisance variables also 
further increase a sample’s heterogeneity, because of (normal) 
variation in brain tissue properties related to age, gender, IQ, and 
so on. Apart from all these biological factors that in�uence “true” 
heterogeneity, experimental heterogeneity is introduced by, e.g., 
scanner e�ects.

Although we can explain the observed accuracy distributions 
both qualitatively and quantitatively to large extent by (disease) 
heterogeneity and sampling e�ects, it should be noted that there 
are other possible explanations as well. Lower (CV) accuracy 
could simply re�ect a worse model due to reasons, such as poorer 
quality of the input data, for instance, due to scan quality (acqui-
sition, subject motion), image preprocessing, or choices made 
regarding the kind of features (e.g., high-resolution gray matter 
volumes may be more discriminative than mean-FA values in the 
�ber tracts). Other possible causes include a less fortunate selec-
tion of features or suboptimal modeling methods (e.g., choice of 
ML type or parameter settings).

While from these observations the picture may arise that 
studies employing both large (training) samples and independent 
validation samples are most powerful and informative, studies 
with smaller N are as useful for the understanding of the biological 
background of the disease for several reasons. If a small N study 
included an application of the model to an independent replica-
tion sample, the drop in accuracy carries information about the 

(mutual) homogeneity of the sample. In fact, if the study has 
the disposal of two independent samples, two models should be 
trained on each sample separately, which should be tested on the 
other sample. �is cross-sample application provides informa-
tion about the within- and between-samples heterogeneity and 
allows for comparison of the separating brain patterns, yielding 
shared and sample-speci�c discriminative brain features. In a 
later stage, the results of studies could be combined for the same 
purpose: mapping the variability (in populations) of underlying 
brain patterns for classi�cation and prediction of psychiatric 
disorders. For example, ML brain patterns from medication naïve 
patients could be compared to those from medicated �rst-episode 
patients. Special populations for which it is di�cult to acquire 
large samples can provide biomarker information that is speci�c 
for that population. To get the most out of such samples, both as 
a single study and in possible later multi/cross-center studies, it is 
important to have as much as possible demographic and clinical 
information available.

In order to interpret the published studies and value them for 
use in cross-study application, it is thus important that details of 
the analysis and results are reported. For instance, in SVM stud-
ies, the number of subjects the model is based on, i.e., the NSV, 
could be provided. As an example, the SZ classi�cation model by 
Nieuwenhuis et al. (11) was based on NSV = 257 out of N = 294 
subjects in total. �e relative large number of SVs (87%) could 
re�ect the large heterogeneity of the training sample. Likewise, in 
a (M)LDA approach (see, e.g., Ref. (27)), the number of eigenvec-
tors used in the model could be reported.

Limitations
In this work, we described the factors in�uencing ML model 
performance qualitatively and quantitatively. For the quantita-
tive description, there was only room here to treat the most 
elementary form of sample heterogeneity and its e�ect on 
linear prediction models. We believe, however, that it covers the 
principle of disease heterogeneity to “�rst-order approximation.” 
�e theory should be extended to include re�ned descriptions of 
sample heterogeneity and the e�ects in other ML setups: non-
linear models, more than two classes, prediction of continuous 
measures, such as disease course (outcome) and so on. �e ML 
e�ect size could be extended beyond the discrete, binary, case. 
Systematic (scanner etc.) e�ects were ignored, which will in�u-
ence sensitivity and speci�city in a di�erent way. �e implica-
tions of sample heterogeneity were mostly discussed within the 
framework of linear classi�ers, and in particular the linear SVM. 
�e theory should be broadened to other types of ML such as 
Gaussian Processes (28) and (M)LDA (27), and non-linear clas-
si�ers. Non-linear classi�ers might be better capable of modeling 
the heterogeneity, but are more prone to over�tting, thus possibly 
reaching higher accuracies in the training sample, but which are 
less generalizable to other samples. However, using much larger 
(multicenter) samples may (partly) overcome this drawback. 
(Group-level-based) feature selection may reduce heterogeneity 
of the features, while using lower-dimensional brain features, 
e.g., by taking ROI-based measures instead of voxel/vertex-based 
measures or by applying principal component analysis (PCA) to 
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the high-dimensional brain data, could have the same e�ect. 
While this may increase the robustness of the models, they will 
less well incorporate the variation in disease-related brain abnor-
malities, thus, probably not be able to reach high generalization 
performance.

In conclusion, the wide variation in observed prediction 
accuracy in this young �eld of research is an indication that the 
ML models are built on samples that are mutually very di�erent. 
Disease heterogeneity, (normal) biological variation, noise and 
sampling e�ects, and imperfect expert labeling in�uence the 
results. Sample size and observed accuracy can be translated into 
information about the within- and between-sample heterogene-
ity, which, in turn, could be interpreted in terms of the sample 
characteristics, if provided. �e meaning of a study’s accuracy is 
limited if it cannot be connected to the study design and charac-
teristics of the sample. Pursuing a high accuracy should not be 
a goal in its own if we aim to increase the knowledge about the 
biological background of the disease. Furthermore, one should be 
cautious with statements about the potential clinical use of some 
prediction model, even if it yielded high prediction accuracy. 
Accuracy is a relevant measure, but only in combination with a 
detailed description of the sample and design of the study it gives 
us valuable information.

For the next generation of ML studies in psychiatric imag-
ing to be as fruitful as possible, we would recommend the 
following:

 1. �e report of more details of the sample(s) and ML analysis.
 (a) Regarding the sample(s): as much as possible informa-

tion about the sample should be provided: demographic 
and clinical parameters: distribution of gender, ethnicity, 
(range and mean, SD of) age, IQ, socioeconomic status, 
geographical background, etc.; duration of illness/age of 
onset, (dose and type of) medication, scores of functio-
ning and outcome, and so on. Furthermore, neuroima-
ging parameters, such as MRI acquisition and preproces-
sing details should be provided.

 (b) Regarding the modeling: (i) inputs and settings: these de-
tails include type and number of features in the (�nal) 
model; parameter settings (e.g., C in linear SVM); (ii) re-
levant properties of the resulting model, when possible, 
such as (pictures of) weight vectors (weight maps) and 
their signi�cance, and, in SVM, e.g., the NSV.

 (c) Regarding the model’s performance: balanced (or total) 
accuracy, sensitivity and speci�city (or, equivalently, po-
sitive and negative predicted values), and the area under 
the curve (AUC) from a receiver operating curve (ROC) 
analysis, that, in itself, provides more insight into the 
balance between sensitivity and speci�city at di�erent 
thresholds. Furthermore, the resulting e�ect size (dML), 
calculated from the separation strength (Δy) and SDs of 
the mean y, for each of the classes (groups) should be re-
ported, as well as the e�ect size calculated from the AUC 
(see Datasheet S1 in Supplementary Material section G 
for formulas and a Matlab script). For ML algorithms 
that do not produce “about-normally” distributed ou-

tput (e.g., voting), the ML e�ect size could be estimated 
by calculating 2 × Φ−1(acc). Bootstrap analyses enable 
the estimation of uncertainties in the estimated dML’s 
and accuracies and resulting p-values and con�dence 
intervals.

 2. Additional modeling. �e performance of the (�nal) model 
could be improved by applying model averaging, such as (su)
bagging, lowering the variance of the model’s output (29). Sub-
modelings, e.g., with di�erent selections of features, related to 
the parameters described in point 1, could shed more light 
on the relationship between certain features and subgroups 
of subjects. An example is the modeling of males and females 
separately. Apart from these extra models, the performance 
of the �nal model on these subgroups itself already provides 
insight into possible interactions between, e.g., gender and 
classi�cation.

 3. Use large (single-center) samples to build classi�cation mod-
els: they automatically cover more variation in the disease 
features (and are less in�uenced by accidental variations 
and noise) and, thus, more robust (for application to other 
samples).

 4. Validation. If possible, always use a training sample and an 
independent replication sample. Independency here means 
that the subjects were at least not acquired as part of the �rst 
study.

 5. Apply cross-center validation. Models built in one site could 
be tested in the other, and vice versa. �is is an extension of 
point 4. Do not be afraid of substantial losses in accuracy: 
they carry information about the overlap in disease features. 
Further extending this line of thought is the possibility to build 
prediction models from multicenter data; technical (scanner) 
and clinical (diagnostic) di�erences may somewhat degrade 
the performance, but the shared disease factors will survive 
(30). Recently, multicenter consortia have recently been initi-
ated to investigate the possibility of translating neuroimaging 
�ndings into clinical practice (IMAGEMEND1 PRONIA2 and 
PSYSCAN3).
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