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ABSTRACT

We use a large N-body simulation to examine the detectability of H I in emission at redshift

z ≃ 1, and the constraints imposed by current observations on the neutral hydrogen mass

function of galaxies at this epoch. We consider three different models for populating dark

matter haloes with H I, designed to encompass uncertainties at this redshift. These models

are consistent with recent observations of the detection of H I in emission at z ≃ 0.8. Whilst

detection of 21-cm emission from individual haloes requires extremely long integrations with

existing radio interferometers, such as the Giant Meter Radio Telescope (GMRT), we show

that the stacked 21-cm signal from a large number of haloes can be easily detected. However,

the stacking procedure requires accurate redshifts of galaxies. We show that radio observations

of the field of the Deep Extragalactic Evolutionary Probe 2 (DEEP2) spectroscopic galaxy

redshift survey should allow detection of the H I mass function at the 5–12σ level in the mass

range 1011.4 h−1 M⊙ ≤ Mhalo ≤ 1012.5 h−1 M⊙, with a moderate amount of observation time.

Assuming a larger noise level that corresponds to an upper bound for the expected noise for

the GMRT, the detection significance for the H I mass function is still at the 1.7–3σ level.

We find that optically undetected satellite galaxies enhance the H I emission profile of the

parent halo, leading to broader wings as well as a higher peak signal in the stacked profile of a

large number of haloes. We show that it is in principle possible to discern the contribution of

undetected satellites to the total H I signal, even though cosmic variance limitation make this

challenging for some of our models.

Key words: galaxies: evolution – large-scale structure of Universe – radio lines: galaxies.

1 IN T RO D U C T I O N

Observations show that the cosmic star formation rate (SFR)

has declined by more than an order of magnitude since z ≃ 1

(Hopkins 2004). However, a combined census of the cold gas, the

fuel for star formation and stellar components is still largely miss-

ing in observations. The cold gas fraction of a halo is a crucial

ingredient in models of galaxy formation and constitutes the link to

how galaxies obtain gas and subsequently convert it to stars. Hence,

measurements of H I in the post-reionization era can place tight

constraints on different models of galaxy formation (Putman et al.

2009).

After the epoch of reionization, the neutral hydrogen (H I) sur-

vives in dense clouds, e.g. damped Lyman α systems (DLAs) and

⋆E-mail: nkhandai@andrew.cmu.edu

Lyman limit systems, that are high-redshift equivalents of the H I-

rich galaxies that we see at the present epoch. The baryon frac-

tion locked up in H I, �H I, in star-forming galaxies in the post-

reionization epoch can be determined from the study of DLAs

in absorption for 0.5 ≤ z ≤ 5 (Prochaska, Herbert-Fort & Wolfe

2005; Rao, Turnshek & Nestor 2006; Noterdaeme et al. 2009). Even

though these observations give clues about aggregate behaviour of

star formation as a function of redshift, they cannot be used to infer

the total H I mass of these systems because they are seen in ab-

sorption. At z ≃ 1, even the detection of H I in DLA has not been

easy as the Lyman α frequency is not accessible to ground-based

telescopes. At this redshift, constraints on the global H I fraction

come from associated MgII systems, Hubble Space Telescope ob-

servations (for details see Rao et al. 2006, and references therein)

and the absorption of 21-cm radiation from bright background ra-

dio sources (Kanekar et al. 2009), but with significant uncertainties

on the estimated H I fraction. Direct observation of H I in emission
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H I at z ≃ 1 2581

and its detailed modelling has only been possible at z ≃ 0 thus far

(Zwaan et al. 2005).

Direct observation in 21-cm emission of 10 massive galaxies

have been reported for 0.17 < z < 0.25, with the Arecibo Telescope

(Catinella et al. 2008). At higher redshifts, the H I emission from

individual clouds is too weak to be detectable with present radio

instruments (Bagla, Khandai & Datta 2010). A long integration

time is required for detecting even the brightest objects since the

peak signal is a few tens of µJy, whereas the system noise is of

the order of hundreds of µJy. A possible approach to circumvent

the difficulty of detecting individual clouds lies in stacking the H I

emission of galaxies with known redshifts. This approach has been

attempted for both cluster galaxies and the field galaxies in the

recent past (Lah et al. 2007, 2009). In particular, a similar line of

study has resulted in the recent detection of H I at z ≃ 0.8 (Chang

et al. 2010). An alternative approach rests on the possible detection

of the fluctuation in the redshifted H I emission from high redshifts

(Bharadwaj & Sethi 2001; Chang et al. 2008; Bharadwaj, Sethi &

Saini 2009).

On the theoretical side, semi-analytical models of galaxy for-

mation have looked at the evolution of cold gas (both in atomic

and molecular form) in galaxies and their results match with ob-

servations at z = 0 (Obreschkow & Rawlings 2009a; Obreschkow

et al. 2009a,b; Obreschkow & Rawlings 2009b; Fu et al. 2010; Kim

et al. 2011; Power, Baugh & Lacey 2010). However, observations

at higher redshifts are needed to better constrain the evolution of

cold gas predicted by these models.

Given the importance of connecting cold gas and stars at z ≃ 1

over a wide range of galaxy environments, it is crucial to make

predictions for various detection strategies for current and upcom-

ing telescopes. In this work we focus on the stacking method of

individual galaxies with known redshifts to predict how well the H I

mass function at z = 1 can be constrained with existing surveys and

telescopes [in particular, the DEEP21 survey and the Giant Meter

Radio Telescope (GMRT);2 but note that our method is generic and

can be extended to future surveys and instruments]. By stacking we

can also study the contribution of small satellite galaxies, which

are undetected in an optical survey but (as we shall show) contain

non-negligible amounts of H I, to the total 21-cm signal in emission

and also examine the constraints that one can put on the H I mass

function.

We model the H I in dark matter (DM) haloes in a large N-body

simulation by refining the model of Bagla et al. (2010). Given the

paucity of observations at the redshifts under consideration, and

our limited understanding of how H I populates DM haloes at these

redshifts, we consider a variety of models. These are constrained by

observations of H I at low redshift, simulations of DLAs in small vol-

umes at high redshift, as well as by some results of semi-analytical

models of galaxy formation at intermediate redshifts. In particular,

the models that we consider are consistent with recent observations

of H I in emission at z ≃ 0.8 (Chang et al. 2010).

Our paper is organized as follows. We present our large DM sim-

ulation in Section 2, and describe our model for the H I distribution

in the simulation along with specifications of the DEEP2 survey as

well as the GMRT in Section 3. We discuss our stacking procedure

of individual galaxies and the contribution of undetected satellites

to the stacked H I spectra in Section 4. In Section 5, we present our

results and discuss the prospects of detection with the GMRT, and

1 http://deep.berkeley.edu
2 http://gmrt.ncra.tifr.res.in

Table 1. Basic simulation parameters for our DM run.

The columns list the size of the simulation box, Lbox, the

number of DM particles used in the simulation, Npart, the

mass of a single DM particle, m
DM

, and the gravitational

softening length, ǫ. All length-scales are in comoving

units.

Lbox Npart m
DM

ǫ

(h−1 Mpc) (108 h−1 M⊙) (h−1 kpc)

400 24483 3.1 6.5

the constraints that one can put on the H I mass function. We revisit

the issue of undetected satellites and its effect on the H I mass func-

tion and discuss whether their presence can be detected. Finally, we

present our conclusions in Section 6.

2 N- B O DY SI M U L AT I O N

We have used P-GADGET, a significantly upgraded version of GADGET2

(Springel 2005) which we are developing for upcoming petascale

supercomputer facilities, for running a large DM simulation in a

� cold DM (�CDM) cosmology. The cosmological parameters

used were σ 8 = 0.8, ns = 0.96, �� = 0.74 and �m = 0.26. The

initial conditions were generated with the Eisenstein and Hu power

spectrum at an initial redshift of z = 159. Table 1 lists the basic

simulation parameters: the size of the box Lbox, the number of

particles Npart, the mass of a DM particle m
DM

and the softening

length ǫ. Note for reference, our simulation volume is roughly half

that of the Millennium Simulation (Springel et al. 2005), but our

mass resolution is about a factor of 3 better.

The frequency and redshift widths corresponding to Lbox =
400 h−1 Mpc at z = 1 are �νbox = 75.8 MHz and �zbox = 0.239.

The high resolution and large volume of our simulation enable us

to resolve the smallest groups expected to host H I, as well as to

look for effects of cosmic variance on observables like the H I mass

function. Furthermore, we are able to resolve subhaloes in the larger

haloes. In fact, we will use the distribution of subhaloes in redshift

space to make predictions on how these subhaloes affect the total

H I signal.

We use the SUBFIND code (Springel et al. 2001) to find the subhalo

catalogue and to measure properties like central coordinate, pecu-

liar velocity, bound mass, maximum circular velocity and velocity

dispersion for every subhalo. Groups of particles are retained as a

subhalo when they have at least 20 bound particles, which corre-

sponds to a minimum group mass of Mhalo = 6.3 × 109 h−1 M⊙.

This mass is slightly larger than the mass of the smallest halo which

is capable to host H I, as discussed in Section 3. The largest subhalo

in a friends of friends (FOF) halo is generally characterized by SUB-

FIND as the central halo, and the other bound structures as satellites.

Since the central halo contains most of the mass of the halo, we will

loosely refer to it as the halo, and to the smaller ones in its vicinity

as subhaloes or satellites, where appropriate.

3 M O D E L L I N G TH E H I DI STRI BU TI ON

Our knowledge of the H I distribution in the Universe out to z ≃ 5

is derived mainly from quasi-stellar object absorption spectra, where

the gas absorbs in the Lyman α transition of the hydrogen atom. We

know from observations that much of the intergalactic medium is

highly ionized and does not contain a significant amount of neutral

hydrogen. Instead, most of the neutral hydrogen resides in relatively

C© 2011 The Authors, MNRAS 415, 2580–2593

Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
1
5
/3

/2
5
8
0
/1

0
5
0
5
1
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



2582 N. Khandai et al.

rare DLAs (Wolfe, Gawiser & Prochaska 2005). DLAs and other

high column density absorption features are believed to arise due to

gas within galaxies (Haehnelt, Steinmetz & Rauch 2000; Gardner

et al. 2001). It is possible to make an estimate of the total neutral hy-

drogen content in DLAs and study the evolution of the total neutral

hydrogen content of the Universe (Storrie-Lombardi, McMahon &

Irwin 1996; Rao & Turnshek 2000; Péroux et al. 2005; Prochaska,

Herbert-Fort & Wolfe 2005; Rao, Turnshek & Nestor 2006;

Noterdaeme et al. 2009). Interestingly, these observations suggest

that the neutral hydrogen content of the Universe is almost con-

stant in the redshift range 0.5 ≤ z ≤ 5, with a density parameter of

�H I ≃ 0.001.

At low redshifts, the H I content can be estimated more directly

through emission in the hyperfine transition. Observations of the

HIPASS3 galaxies (Zwaan et al. 2005) in the local universe indicate

a much lower neutral hydrogen content [�H I(z = 0) ≃ 4.6 × 10−4]

than seen at z ≥ 1. These authors observed H I in emission of

≃ 4000 galaxies in the local Universe to estimate the H I mass func-

tion. At higher redshifts, observations in the DEEP2 survey (Gerke

et al. 2007) indicate that the fraction f b of blue galaxies (gener-

ally associated with late-type gas-rich galaxies with significant star

formation activity) in groups is much higher at redshifts 0.75 ≤
z ≤ 1.3, increasing from f b = 0.84 at z = 0.75 to f b = 0.94 at z =
1.3, than what is observed in the local Universe. These observations

also suggest that f b for group and field galaxies approaches the same

value by z = 1.3. We use these observations to motivate our model

of assigning H I to DM haloes at z = 1.

Here we use the observations of H I in emission at z = 0 (Zwaan

et al. 2005) to match the H I mass function to the DM halo mass

function. We remind the reader that the halo catalogue consists

of both centrals and satellites. The Zwaan et al. (2005) H I mass

function is given in a Schechter-like form:


 (MH I) = θ∗
(

MH I

M∗
H I

)−α

exp

(

−
MH I

M∗
H I

)

, (1)

where θ∗ = 6 × 10−3 h3
75 Mpc−3 is the normalization factor,

log(M∗
H I

/M⊙) = 9.8 h−2
75 is the characteristic mass that defines

the kink in the function, and α = 1.37 is the slope at the low-mass

end. h75 = 0.75 is the dimensionless Hubble constant. We vary the

other models around it.

Marı́n et al. (2010) took a similar approach to compute the H I

bias out to redshifts z = 4. They also incorporated the fraction of

blue galaxies in the local Universe, which is much smaller than

what is seen at z = 1 in their model. For this study we take this

fraction to be unity. Additionally, we use some input from semi-

analytical models and simulations of high-redshift DLAs to moti-

vate our model. Semi-analytical models (Power et al. 2010; Kim

et al. 2011) suggest that the shape of the H I mass function does

not evolve considerably, but shifts toward the high-mass end with

redshift, assuming a constant molecular to atomic hydrogen ratio,

H2/H I; though these results may change if this ratio is not a con-

stant (Obreschkow & Rawlings 2009a; Obreschkow et al. 2009a,b;

Obreschkow & Rawlings 2009b). This shift may be due to the higher

H I content at high redshift, e.g. �H I(z = 1) ≃ 10−3 as compared to

�H I(z = 0) ≃ 4.6 × 10−4. However, these models do not match the

low end of the Zwaan et al. mass function, due to finite resolution

effects of their merger trees.

Hydrodynamic simulations of DLAs at z = 3 by Pontzen et al.

(2008) yield a mapping from halo mass to H I mass, which can be

3 H I Parkes All Sky Survey: http://www.parkes.atnf.csiro.au.

Table 2. Model parameters: mapping of H I mass to halo (centrals

and satellites) mass for the three models that we consider. See

equation (2) for the functional form of the mapping from H I mass

to halo mass.

Model Mmin Mmax m n p

(1010 h−1 M⊙) (1010 h−1 M⊙)

1 12 143 1.8 1.36 1.8

2 12 143 2.0 1.36 2.0

3 5 143 1.6 1.15 1.7

described by

MH I ∝
(

M
halo

)m

1 +
(

M
halo

Mmin

)n

+
(

M
halo

Mmax

)p . (2)

These authors found that there is a tight monotonic relation be-

tween the virial mass and the H I mass of haloes with some scat-

ter. They further found that the MH I–Mhalo relation has a break at

Mhalo/M⊙ ≃ 1010.5, suppressing H I in haloes larger than this mass

and a still stronger suppression in haloes with mass Mhalo/M⊙ >

1011.0. Furthermore, haloes with masses as low as Mhalo/M⊙ ≃
109.0 (or circular velocity at z = 3 of vcirc ≃ 30 km s−1) are able

to host a significant amount of H I. The gas in these haloes is able

to self-shield from the photoionizing UV background and main-

tain a significant amount of H I even though the amount of gas is

insufficient for sustaining star formation.

The form of equation (2) contains two mass parameters, Mmin and

Mmax, for the three regimes in the MH I–Mhalo relation of Pontzen

et al. (2008). Based on their simulations, we choose the cut-off mass

for haloes not hosting any H I to be M ≃ 109.0 h−1 M⊙ or vcirc ≃
30 km s−1 at z = 3. We use the scaling relation:

Mvir ≃ 1010M⊙
( vcirc

60 km s−1

)3
(

1 + z

4

)−3/2

(3)

with vcirc = 30 km s−1 to determine the cut-off mass of haloes which

do not host significant H I. This translates to Mhalo
cut−off /M⊙ = 109.55 at

z = 1.

Table 2 summarizes all the parameters for our three models for

the H I distribution over haloes. Our reference model (model 1)

matches the Zwaan et al. mass function but is renormalized to

�H I(z = 1) = 10−3. We also consider two alternative models

around the reference model. In model 2, we allow a larger fraction

of H I in large mass haloes and suppress H I in lower mass haloes.

The third model is one in which the H I content in high-mass haloes

is suppressed and the H I is redistributed to lower mass haloes. Given

our lack of knowledge about how H I populates DM haloes, these

three models should encompass a reasonable range of possibilities.

All models are normalized to the fiducial value of �H I = 10−3. The

form of the mapping from DM halo mass, Mhalo, to H I mass, MH I,

is given in equation (2), which is a more generalized form of the

mapping considered by Wyithe & Brown (2010). Note that the ratio

of the indices m and p determines the H I content of haloes with

mass Mhalo > Mmax. In models 2 and 3, m/p = 1, which means that

the H I content in haloes larger than Mmax approaches a constant.

On the other hand, the value m/p < 1 for model 3 suppresses H I in

larger haloes.

The model mass functions for all the three models are shown

in the left-hand panel of Fig. 1. The fiducial mass function (solid

line) is the one whose shape matches that of the Zwaan et. al mass

function, but is normalized to �H I = 10−3. The mass function of

model 2 (dashed line) has comparatively more H I in larger haloes

C© 2011 The Authors, MNRAS 415, 2580–2593
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H I at z ≃ 1 2583

Figure 1. Left: the mass function for the three models that we consider. Model 1 (solid line) is the Zwaan et al. (2005) mass function but normalized to

�H I = 10−3. Models 2 (dashed) and 3 (dot–dashed) are variations around model 1 (see Table 2 and equation (2) for details of the model parameters). Right:

the neutral mass fraction fH I = MH I/Mhalo as a function of halo mass for the three models. The (dotted) horizontal line is the baryon mass fraction.

while the H I in smaller haloes is suppressed. On the other hand, the

mass function of model 3 (dot–dashed line) suppresses H I in larger

haloes, with the H I being redistributed to lower mass haloes.

In the right-hand panel of Fig. 1, we plot the mass fraction of H I

(fH I = MH I/Mhalo) as a function of the mass of the host halo. In all

three cases, the H I fraction is peaked around haloes of mass in the

range 6 × 1010 h−1 M⊙ < Mhalo < 2 × 1011 h−1 M⊙, and the peak

value is 14 per cent of the baryon mass fraction f bar =�b/�m = 0.17.

Lower and higher mass haloes have a suppressed H I fraction, which

is due to the ratio of slopes (m/n) and (m/p) being smaller or equal

to unity in equation (2). The dependence of the H I mass on halo

mass is again reflected by the three models. At lower halo masses,

model 3 has a higher H I fraction followed by model 1 and model

2, however, at the higher mass end the situation is reversed. This

is also illustrated in Fig. 2, where we show the distribution of DM

particles at z = 1 in a thin slice through our simulation enclosing the

largest halo. The bottom panels zoom-in to a region of dimension

50 × 50 × 4 (h−1Mpc)3 centred on the largest halo and showing the

H I fraction fH I for haloes only, for the three models (left to right).

As discussed earlier, the smaller mass haloes in model 3 have a

higher neutral fraction in comparison to the other two models. In

all models the largest haloes have a smaller neutral fraction, with

model 2 dominating over the other two models.

Before proceeding, it is worthwhile to point out the advantages of

using a numerical N-body simulation over a halo model based ap-

proach. In the latter, properties like halo (and subhalo) abundances,

halo profiles, velocity dispersions and the halo-to-halo scatter are

typically calibrated from simulations such as ours (even so often

based on much smaller ones). Once appropriate fitting functions are

determined, they can be used to predict the signal to a certain accu-

racy. However, the approach cannot be used to construct a mock map

with which the efficiency of signal extracting can be studied. The

clustered distribution of haloes in a volume is crucial for properly

describing the signal. Haloes often occupy common pixels in a map

and may add in various combinations to the total signal of a given

pixel. The noise in a pixel is a fixed random value irrespective of

how many haloes contribute to the signal in that pixel. Techniques

for extracting the signal from a map need to be explored when pre-

senting results for its detectability with instruments. A halo model

is generally not able to account for these effects accurately and as a

result tends to overpredict the significance of detection. This issue

will become clearer when we discuss how the signal is extracted

from a mock map for the noise levels that we consider, in Sections 4

and 5.

3.1 A common field of view for DEEP2 and the GMRT

In this section, we describe our fiducial choices for volume and

haloes based on the specifications of the DEEP2 survey and the

GMRT. The GMRT is a radio interferometer, consisting of 30 45-

m diameter antennas spread over 25 km. Half of the antennas are

spread over a central compact array of diameter 1 km, and the re-

maining half are spread on three arms of length 14 km in a Y-shaped

distribution. The longest baseline is 26 km and the shortest 100 m.

The GMRT operates on five central frequencies (151, 235, 325, 610,

1420 MHz). For this work our focus is on the 610-MHz frequency

which corresponds to a redshift of z = 1.3 for the 21-cm line. The

operational redshift at this frequency is 1.18 ≤ z ≤ 1.44. The an-

gular resolution (corresponding to the largest effective baseline) is

5 arcsec, this translates to a comoving scale of d = 67 h−1 kpc.

The system temperature is Tsys = 102 K and the antenna sensitivity

K = 0.32. The GMRT has a full bandwidth of 32 MHz over 256

channels.

The DEEP2 survey is a redshift survey with spectra for ≃40 000

galaxies in the redshift range 0.7 ≤ z ≤ 1.4. The survey covers

four strips of dimensions 0.◦5 × 2◦ of the sky which corresponds to

20 × 80 h−1 Mpc (comoving) at z = 1. The total comoving volume

of DEEP2 is 6 × 106(h−1 Mpc)3. The spectral resolution of DEEP2

is ≃ 68 km s−1, and targets were pre-selected to a limiting magnitude

of R = 24.1. The DEEP2 spectroscopically targets ≃60 per cent of

C© 2011 The Authors, MNRAS 415, 2580–2593
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2584 N. Khandai et al.

Figure 2. Top: a thin slice of our simulation enclosing the largest halo (square box), showing the distribution of DM particles. Bottom: a zoom-in for a region

of dimension 50 × 50 × 4(h−1 Mpc)3 centred on the largest halo in our simulation, showing the haloes which host H I, colour-coded with the neutral fraction

fH I. The panels from left to right are for the three models.

the objects that pass the apparent magnitude limit. We hence take

the completeness of DEEP2 to be ≃60 per cent.

The overlapping redshift range between DEEP2 and GMRT is

1.18 ≤ z ≤ 1.4, which corresponds to 288 h−1 Mpc in depth, or

nearly a quarter of the DEEP2 volume. Our H I model is at the fixed

redshift z = 1 of the simulation output, and not exactly matched

to the redshift range of the GMRT, which would require a light

cone simulation. Our results should however be a good approxi-

mation to redshift averaged quantities such as the mass function.

We choose our analysis volume to be of dimension 50 × 80 ×
400 (h−1 Mpc)3, which is a quarter of the DEEP2 volume. In order

to match the required number density of galaxies in DEEP2 (and ac-

count for its finite completeness), we choose a minimum threshold

mass of M > 1011.4 h−1 M⊙. Conroy et al. (2007) compute the mass-

to-light (B magnitude) ratios for haloes in the DEEP2 survey for

M > 1012.0 h−1 M⊙. These results can in principle be used to relate

the mass of the halo to its luminosity.4 However, one will need to

extrapolate them to lower masses such as considered here in order to

get an estimate of the luminosities of haloes with 1012.0 h−1 M⊙ >

M > 1011.4 h−1 M⊙. Owing to the large errors in these estimates of

mass-to-light ratio, we will stick to a mass cut rather than a lumi-

nosity cut for selecting galaxies. Above this threshold mass, there

are 16 388 haloes in the subvolume which we identify as galaxies.

We also adopt two larger threshold masses for testing our detection

strategy; these are M > 1012.0 h−1 M⊙ and M > 1012.5 h−1 M⊙.

For these mass cuts there are 3835 and 1031 haloes, respectively.

4 We find that a halo of mass M = 1012.0 h−1 M⊙ at z = 1.0 has an apparent

R-magnitude of mR = 23.2 ± 0.3 from the results of Conroy et al. (2007).
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H I at z ≃ 1 2585

We wish to point out that in the overlapping volume that we con-

sider here there are ∼1300 galaxies per DEEP2 field or ∼5200

galaxies in total. The number of objects in the lowest mass bin of

1012.0 h−1 M⊙ > M > 1011.4 h−1 M⊙ is more strongly affected by

selection effects. Observational results need to take into account the

effect of the selection function when comparing theoretical results

presented here.

The primary beam of the GMRT corresponds to around 50 Mpc

at z ∼ 1.3. However, sensitivity drops rapidly from the centre of the

beam. This means that only roughly half of the primary beam might

be usable to attain maximum sensitivity. We note that the selection

function of DEEP2 is falling at z > 1.3. If observers were to target

the four DEEP2 fields up to z ∼ 1.3, then one would require 12-16

GMRT pointings (or 300-400 h in total for a single pointing of 24 h).

This number would double if one were to target the entire field of

DEEP2 under consideration.

3.2 Comparison with observations

Recently, Chang et al. (2010) reported the first detection of H I in

emission from z ≃ 0.8. They cross-correlated the optical galaxy

density field (from DEEP2) with the signal from the redshifted

H I line using the Green Bank Telescope (GBT) to obtain a 4σ

detection. At z ≃ 0.8, the GBT’s angular resolution corresponds to

a full width at half-maximum (FWHM) of 9 h−1 Mpc (comoving),

but the frequency resolution ≃2 h−1 Mpc is much finer. Owing to

the much poorer angular resolution, Chang et al. (2010) computed

the cross-correlation along the line-of-sight direction.

To make a detailed comparison with these observational results,

we convolve our simulation box with the angular and frequency

resolution to match the analysis of Chang et al. (2010). We also

follow Chang et al. (2010) in assuming pixels of size (2 h−1 Mpc)3.

Note that our density field is at z ≃ 1, whereas the observations are

at z ≃ 0.8. This should not pose a serious problem while comparing

results, since the only quantity which changes is the mass function

of haloes and this variation can be absorbed within the models that

we consider. We first compute the fluctuating component of both the

H I and the galaxy density field on a pixel of size (2 h−1 Mpc)3. We

then convolve these two fields with GBT’s point spread function,

modelled as a Gaussian with FWHM of 9 h−1 Mpc in the transverse

direction and a top-hat of width 2 h−1 Mpc in the redshift direction.

In order to mimic the optical-H I observations, we only assign

haloes with M > 1011.4 h−1 M⊙ in the volume while constructing

the galaxy density field. We do not use such a threshold when

constructing the H I density field. The cross-correlation as a function

of relative displacement, rz, along the line-of-sight direction, can be

expressed as (Chang et al. 2010)

ξHI,opt(rz) = 〈�Tb(d + rz)δopt(d)〉

= 284µK〈δH I(d + rz)δopt(d)〉
(

�H I

10−3

) (

h

0.72

)

×
(

�m + (1 + z)−3��

0.37

)−0.5 (

1 + z

1.8

)0.5

. (4)

Here Tb = 284 µK is the 21-cm mean sky brightness temperature,

δopt is the optical density field and δH I is the neutral hydrogen density

field. They are related by δH I = brδopt, where b = 〈δ2
H I

〉1/2/〈δ2
opt〉1/2

is the bias and r = 〈δH Iδopt〉/(〈δ2
H I

〉〈δ2
opt〉)1/2 is the stochasticity. By

construction |r| ≤ 1. Inserting this into equation (4), one can see

that the amplitude of the cross-correlation function determines the

degenerate combination br�H I. Chang et al. (2010) put a constraint

on this combination of parameters, obtaining br�H I = (5.5±1.5)×

Figure 3. Normalized cross-correlation function of the DEEP2 optical

galaxy density field and the H I intensity field along the line-of-sight di-

rection (Chang et al. 2010) (data points), and the models 1 (solid line), 2

(dashed line) and 3 (dot–dashed line) that we consider. Note that the cross-

correlation function is normalized by the zero-lag autocorrelation function

δ2
opt(0) of the DEEP2 optical galaxy density field.

10−4. In our simulation we can break this degeneracy. Note that r

and b are both dimensionless and do not depend on �H I. We find for

the three models, b = (0.578, 0.641, 0.538) and r = (0.923, 0.945,

0.916), respectively. Using the product rb we put a constraint on �H I

for all the three models, �H I = (1.03 ± 0.28, 0.95 ± 0.26, 1.12 ±
0.30) × 10−3. These values are consistent with the value of �H I =
10−3 taken in our study.

Chang et al. (2010) also computed the cross-correlation along the

line-of-sight direction and normalized it by 〈δ2
opt(0)〉. We plot the

normalized cross-correlation function in Fig. 3 for the three models

(solid, dashed and dot–dashed) and compare with the observations

of Chang et al. (2010). We find that all the three models are con-

sistent with the observations. Note that model 2 is the most biased

of the three models, followed by models 1 and 3. This is expected

since the largest haloes have a considerably larger H I fraction in

model 2, and the largest haloes cluster more strongly at smaller

scales. A suppression of H I in the largest haloes will translate to a

lower small-scale bias. The large-scale bias is further discussed in

the following section.

3.3 Finite volume effects on �H I

In Fig. 4, we look at finite volume effects in the estimation of �H I.

The size of the subvolume is chosen so as to match the overlapping

fields of DEEP2 and the GMRT. In our full simulation volume we

have 40 such subvolumes. We look at the variations in H I mass

in a subvolume with respect to the average H I mass in the entire

volume for the three models. These variations are shown for all three

models in Fig. 4 with the same line styles as in Fig. 1. We also plot

the variation in �halo
DM (dotted line). The rms fluctuation in �H I for

the three models is ≃6.8, 7.6 and 6.2 per cent respectively, whereas

the rms fluctuation in �halo
DM is 8.9 per cent. Given that the neutral

mass fraction is not uniform but rather peaked around halo masses
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2586 N. Khandai et al.

Figure 4. Fluctuations in �H I for the three models for a subvolume of

dimension 50 × 80 × 400 (h−1 Mpc)3 that we consider. We have a total of

40 such subvolumes. The subvolumes considered for computing fluctuations

in �H I were the same for all three models. The 1σ fluctuations for the three

models are 6.8, 7.6 and 6.2 per cent respectively, for DM this value is 8.9

per cent.

in the range of 6 × 1010 h−1 M⊙ < Mhalo < 2 × 1011 h−1 M⊙ and

suppressed for larger and smaller masses (Fig. 1), the DM haloes

are more strongly biased than H I. This is consistent with Bagla

et al. (2010) who showed that the large-scale H I bias increases with

a higher neutral fraction in larger haloes. Indeed we see that the

fluctuation in �H I in model 2, which has more H I in larger haloes,

is closer to that of DM haloes than the other two models, with model

3 having the least fluctuations. The final volume for our analysis is

picked based on the consideration that it should have the smallest

fluctuations in H I mass with respect to the mean for the reference

model 1.

4 TH E 2 1 -cm EMISSION SIGNAL

Since the 21-cm line has much larger wavelength than any optical

line, the resolution of a radio image is generally much poorer com-

pared to an image made in the optical. Especially at high redshift,

a typical radio observation will be looking at most at a few coarse

pixels enclosing the target object rather than resolving it with a large

number of finer pixels.

In order to create a simulated radio data cube we create a mesh

out of the box with each pixel corresponding to an angular width of

125 h−1 kpc (comoving), and frequency depth of 125 kHz (this is the

width per channel of the GMRT for a single pointing and matches

the spectral resolution of DEEP2). The angular resolution is chosen

to match that corresponding to the largest baseline of the GMRT.

The H I mass in every pixel is computed by integrating the H I

mass profiles of haloes in the pixels they cover, where a Gaussian

profile with a width given by the velocity dispersion of the halo

is assumed in redshift or frequency space. Since observations are

done in redshift space, we have added the line-of-sight component

of the peculiar velocity of the halo to its real space line-of-sight

z-coordinate to obtain its redshift space coordinate.

The stacking of haloes is done in the following manner. Haloes

are first sorted according to their mass. We then identify the central

pixel of the halo corresponding to its redshift and its centre in the

image plane. Given the location of haloes as well as their angular

and frequency widths, we first select pixels along a line of sight

(in frequency) and passing through the central pixel. Stacking is

done on the central or zero-reference frequency. For every halo i

the frequency range stacked is ±(4 × �ν i) around the halo centre.

Once stacked pixels are flagged so as to avoid double counting.

After this is done for every target halo, we repeat this procedure for

lines of sight not passing through the centre but neighbouring pixels

in cases where the halo is spread across more pixels. Finally, the

search for pixels in frequency space is increased in order to stack

the wings of the signal.

In case two target haloes whose centres lie within the same line of

sight are overlapping within ±(4 × �ν) of each other, parts of the

smaller target halo may appear on the wings of the stacked spectra.

However, the order of stacking ensures that two haloes along the

same line of sight are stacked in an optimal manner. If we had

chosen to stack around the first halo with the entire frequency range

(corresponding to the box), then the second halo would appear on

the wing of the first halo. We have checked that with a frequency

width of the pixel finer than 64 kHz we are able to recover the signal

reasonably well with this method, similar to what one would get

from just stacking analytically (as in a halo model) the flux, Sν , of

selected haloes of mass MH I located at a luminosity distance DL(z)

with a line profile φ(ν):

Sν =
3

4

A12MH Ihν

mH

1 + z

4πDL(z)2
φ(�ν). (5)

Here ν is the redshifted frequency ν = ν0/(1 + z), A12 is the Einstein

coefficient for spontaneous transition from the upper to the lower

level, h is Planck’s constant and mH is the mass of the hydrogen

atom. φ(�ν) is the line profile which we take to be a Gaussian of

width �ν = ν(�v/c), with �v being the velocity dispersion of the

halo.

Uncertainties in the redshifts of the DEEP2 galaxies can dilute the

stacked 21-cm signal. Repeated observations of the DEEP2 galaxies

find that the rms redshift errors are �zerr < 35 km s−1 (Coil et al.

2008). We find that when we include an error in redshift of rms

�zerr = 35 km s−1 the peak of the stacked signal is diluted by less

than 3 per cent. As will be seen in our analysis the uncertainties in

determining the global H I signal are dominated by the system noise

and cosmic variance. We therefore neglect the effect of the redshift

errors for the rest of our analysis.

4.1 Effect of subhaloes on the H I signal

The signal computed from a halo catalogue is different to that

extracted from a map. The H I content in the pixels enclosing a

target object is typically greater than the H I mass of the object since

lower mass haloes as well as interlopers (due to peculiar velocities)

add to the pixel with their own H I mass, thereby increasing the

signal. This effect is larger in redshift space. In Fig. 5 we look

at this effect for all the models and for the three mass cuts of

M ≥ 1011.4 h−1 M⊙ (left), M ≥ 1012.0 h−1 M⊙ (centre) and M ≥
1012.5 h−1 M⊙ (right). The average signal (in µJy) per halo is plotted

as a function of frequency, the zero-frequency marks the central

frequency where we have stacked spectra of individual haloes. We

compare the signal a mock observation would measure (dashed line)

when targeting objects with masses above a threshold mass, with

the theoretical or modelled expectation (solid line). The modelled
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H I at z ≃ 1 2587

Figure 5. The modelled H I emission signal per halo (solid) and the mock signal (dashed), recovered from the radio data cube by stacking, for the three mass

cuts M ≥ 1011.4 h−1 M⊙ (left), M ≥ 1012.0 h−1 M⊙ (centre) and M ≥ 1012.5 h−1 M⊙ (right). The excess signal in the mock data is due to haloes and subhaloes

below the mass thresholds, which were not identified for stacking. The second row is the same as the first but replotted on a logarithmic y-axis to better illustrate

the broader wings due to subhaloes.

signal was constructed by assigning only those haloes above the

mass cuts in the data cube. Haloes below the threshold mass were

not assigned to the data cube. In the mock observation, all haloes

were assigned to the radio data cube and the spectra were stacked

for haloes above the threshold mass. The contribution of lower mass

haloes can be seen in Fig. 5 where the plots in the second row are

the same as those in the first row, but replotted on log-y scale. This

is done so as to better illustrate the difference in the wings of the

stacked signal, with and without the subhaloes. The average signal

decreases with decreasing mass cut since lower mass haloes have on

average a lower peak signal. There is also scatter in the relationship

between halo mass (hence H I mass) and peak signal since both

the velocity dispersion and the H I mass determine the shape of the

signal.

In the mock spectra, we find an enhanced peak and broader wings

for all the three mass cuts and models. The enhanced signal being

larger for the larger mass cuts. The enhancement is as much as 31

per cent for a mass cut of M ≥ 1012.5 h−1 M⊙, decreasing to 9 per

cent for a mass cut of M ≥ 1011.4 h−1 M⊙ in model 3 where there is

relatively more H I in lower mass haloes. The numbers for model 2

are smallest where the H I mass is dominated by larger mass haloes,

decreasing from 10 per cent for M ≥ 1012.5 h−1 M⊙ to 4 per cent

for M ≥ 1011.4 h−1 M⊙. For model 1, the intermediate model, the

contribution of subhaloes is 22 per cent for M ≥ 1012.5 h−1 M⊙ and

decreases to 7 per cent for M ≥ 1011.4 h−1 M⊙.

The larger haloes have more substructure as well as interlopers

in redshift space, both of which lead to an enhanced signal. To

illustrate this point we pick one of the larger haloes in the data

cube and compute the signal from the pixels that it covers. This is

shown in Fig. 6 for the three models (left to right). This particular

halo has a mass of M = 2 × 1014 h−1 M⊙. The black solid line is

the (theory) spectrum of the large halo. The blue data points are

the theoretical spectra computed from equation (5) of all subhaloes

within the pixels covered by the large halo, the height and error

bar being the peak signal and its width. These subhaloes are below

the mass threshold M < 1011.4 h−1 M⊙ and will not be identified

in an optical survey. If a threshold mass of M > 1011.4 h−1 M⊙
is chosen then the contribution from this large halo to the stacked

spectra is the blue solid line since the more massive subhaloes with

M > 1011.4 h−1 M⊙ (red data points) will be separately picked for

stacking. This excess signal from these less massive subhaloes can

be as much as 50 per cent of the total signal in model 3, 13 per cent

in model 2 and 35 per cent in model 1. The enhanced signal due

to these undetected subhaloes is within a 2�ν width of the large

halo. If one were to resolve all subhaloes and stack them in this

case, then one would get a peak signal in excess of ≃140 µJy across

models; instead since these are unresolved within the pixel width

and are spread across the parent halo we get a peak signal in the range

of ≃22–55 µJy across models. The red data points are larger haloes,

also within the pixels covered by the targeted halo, which are above

the minimum mass threshold and would be identified in the optical

survey. If one were to target the large halo only, then we would get

an even larger signal (red dot–dashed line). The effect of subhaloes

will show up when we recover the cumulative H I mass from the

stacked signal in a later section.

One limitation of our model is that we assign an equal amount of

H I to both satellite and distinct field haloes of the same mass. It is

known that gas is stripped from a halo when it merges into a larger

halo. Our models hold if an equal fraction of cold gas and DM is

stripped from a halo during a merger. Conroy, Wechsler & Kravtsov

(2006) argue that the mass of a halo at the time of a merger, Minfall, is

a better predictor of stellar mass (hence luminosity) than the mass of

the halo, Mobs, when it is already a satellite. By doing an abundance

matching of the luminosity function to the halo mass function with

their new definition of mass for satellites, their model reproduces

luminosity-dependant clustering of galaxies seen in observations.
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2588 N. Khandai et al.

Figure 6. Contribution of subhaloes and interlopers to the H I signal of a single large halo for the three models (left to right). Height and error bars of each

data point denote the peak and width of the theoretical signal of each subhalo or halo. The red data points are for subhaloes M > 1011.4 h−1 M⊙ and will be

identified in an optical survey, whereas the blue data points are for subhaloes with M < 1011.4 h−1 M⊙ and will not be identified in the optical survey. If a

threshold mass of M > 1011.4 h−1 M⊙ is chosen, then the contribution from this large halo to the stacked spectra is the blue solid line since the more massive

subhaloes (red data points) will be separately picked for stacking. However, an observation targeting the large halo only would see an excess emission signal

(red dot–dashed line) compared to the expected (modelled) signal (black solid line) of the large halo. This excess signal is from all subhaloes (red and blue

data points). This particular halo has a mass of M = 2 × 1014 h−1 M⊙. The second row is the same as the first but replotted on a logarithmic y-axis to better

illustrate the broader wings due to subhaloes.

However, their new definition of mass of a satellite seems to affect

results more strongly at z = 0 than at z = 1 or higher. If we assume

cold gas to trace stars and be more concentrated in the centre of the

halo, then based on the results of Conroy et al. (2006) at z = 1, our

model should not be sensitive to the environment of small haloes.

However, if cold gas is not concentrated in the centre of haloes and

is largely stripped during a merger then our model may overpredict

the contribution of undetected satellites to the total signal of a large

halo.

5 R ESULTS: D ETECTING H I IN EMISSION IN

THE D EEP 2 FIELD WITH THE G MRT

We now focus our attention to detecting H I in emission in the

common field of DEEP2 and the GMRT. We start with a discussion

of noise in the GMRT and then proceed to recover the stacked H I

emission signal by adding noise to the radio data cube.

5.1 Noise in images

The point source (or angular scales smaller than the synthesized

beam of the interferometer) sensitivity, σ rms, for an interferometer

is given by (assuming two polarizations) (Thompson, Moran &

Swenson 2001):

σrms =
Tsys

K

1
√

�ν�t
√

2 N (N − 1)
, (6)

where K (in units of K Jy−1) is the antenna sensitivity, Tsys is the

system temperature and N is the number of antennas, �ν is the

channel bandwidth and �t is the integration time. The GMRT has a

full bandwidth of 32 MHz with 256 channels, or 125 kHz channel−1

for the maximum bandwidth in a single pointing. For this bandwidth

and N = 30, the noise per channel is ≃71 µJy for 24 h of obser-

vation, where K = 0.32 and Tsys = 102 K at the redshifts under

consideration.

We need to make several other assumptions to bring the results

of our simulation closer to the possible observational outcome. For

our stacking approach, we need to co-add signal from sources occu-

pying different pixels in the three-dimensional data cube. However,

the noise in neighbouring pixels is not uncorrelated for a radio

interferometer; only the noise in different frequency channels is

uncorrelated. To take this complication into account, we assume

here that the noise is uncorrelated for the spatially separated haloes.

However, for all neighbouring pixels enclosing a target object at a

fixed frequency we choose the same noise. To take into account this

uncertainty in estimating the noise level and other complications

owing to extraction of continuum point sources, etc., we assume

two different noise levels: σrms = 420 µJy, which is an estimate of

an upper limit, or conservative, noise level on GMRT (see e.g. Lah

et al. 2007, for a similar study at a neighbouring frequency), and

σrms = 71 µJy, which corresponds to the theoretical (optimistic)

noise level computed for 24 h of observation.

Both noise levels correspond to a pixel of size 125 h−1 kpc ×
125 h−1 kpc (comoving), which is matched to the approximate

synthesized beam of the GMRT at ν ≃ 700 MHz, and depth

125 kHz for 24 h of observation. To every pixel we add a Gaus-

sian random noise with an rms of the two levels of noise that we

consider.
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H I at z ≃ 1 2589

5.2 Recovering the stacked H I emission spectra

Having added noise to the radio data cube we attempt to recover

the stacked emission spectra by doing a χ 2 analysis. We model the

stacked spectra by a Gaussian with three parameters:

Sbf = Nbf exp

[

−
(

ν − νbf

�νbf

)2
]

, (7)

where Nbf , νbf , �νbf are the best-fitting height, centre and width,

respectively. We vary these three parameters over a large range, and

the best-fitting values are obtained by minimizing χ 2. We illustrate

this analysis for the fiducial model 1 in Fig. 7 for the three mass

cuts (columns) discussed earlier and the two noise levels (rows) we

consider. For a better illustration of the fits, we have changed the

scales on the y-axis for the three mass cuts. Note that this is done for

the mock spectra, where all subhaloes have been added to the radio

data cube. In all cases, the reduced χ 2
red ≃ 1 which is not a good

indicator of the quality of the fit. For the optimistic noise (top row)

we are able to correctly recover the centre for all the three mass

cuts. Visually the best fit (solid blue) seems to match the expected

signal (black dashed) extremely well for this case, but note that

noise has not been included here. The red line is the mock spectra

where noise has been added. For the case of the conservative noise,

this is true for a mass cut of M > 1011.4 h−1 M⊙ where we are able

to recover the centre at the zero-reference frequency. For a mass cut

of M > 1012.0 h−1 M⊙ the best-fitting centre is not the zero centre

but slightly shifted to the left at νbf = 25 kHz. For a mass cut of M >

1012.5 h−1 M⊙, the best-fitting centre is incorrect and is identified at

150 kHz. We also find that the deviation from the expected spectra

is the largest for this case, where both the height and the width of

the spectra are considerably different than the expected curve. The

quality of fits is similar for the other two models.

We now move on to quantify the quality of the recovered spec-

tra by doing a likelihood analysis, where we marginalize over the

centre νbf and plot the 1σ , 2σ and 3σ contours for the remaining

two parameters, the width �νbf and the height Nbf of the stacked

spectra. This is shown in Fig. 8. The columns represent the models

and the rows are for the three mass cuts. The dotted circle is the

best-fitting value of the width and height. The black contours are

for the conservative noise of 420 µJy and the blue contours are for

the optimistic noise of 71 µJy. The filled diamond is the expected

value of the mock spectra without noise, whereas the open square

is the same without subhaloes. In all cases, the width and height

for the spectra without subhaloes are smaller than for the ones with

subhaloes, as was discussed in Section 4.1. This is shown again

for reference. For both noise levels, we see that the contours are

oriented in a manner showing an anticorrelation between height

and width. This is expected since the product of the two deter-

mines the mass of the object. This degeneracy which determines

the mass of the object is shown in the solid ochre line passing

through the expected value of the mock spectra. An incorrect com-

bination of the two would give the same average H I mass per

halo.

We find that for the optimistic noise, the quality of the fit is

extremely good and the best-fitting values are within 1σ of the ex-

pected values for the smallest mass threshold of M > 1011.4 h−1 M⊙
and is within 3σ for the other two mass cuts. However, satellites

below the threshold mass and contributing to the H I mass of the

target halo can be more strongly discriminated with the larger mass

cut. The difference being the largest for model 3 and the least for

model 2 as discussed in Section 4.1. We indeed find that the stacked

spectra with and without features of satellite galaxies can be dis-

criminated by more than 7σ for the two larger mass cuts and by 4σ

for the smaller mass cut, in our model. The contribution of satellites

Figure 7. Best-fitting spectra for model 1 by fitting a Gaussian to the mock spectra with rms noise of 71 µJy (top) and 420 µJy (bottom), for the three mass

cuts M ≥ 1011.4 h−1 M⊙ (left), M ≥ 1012.0 h−1 M⊙ (centre) and M ≥ 1012.5 h−1 M⊙ (right). All three fits have χ2
red ≃ 1.
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2590 N. Khandai et al.

Figure 8. Confidence contours for width and height of the fitted Gaussians for the three models (columns) and the three mass cuts M ≥ 1011.4 h−1 M⊙,

M ≥ 1012.0 h−1 M⊙ and M ≥ 1012.5 h−1 M⊙ (rows). The 1σ , 2σ and 3σ contours are shown for both the conservative noise of 420 µJy (black) and for the

optimistic noise of 71 µJy (blue). The dotted circles are the best-fitting values from the mock spectra. The open square is the expected point without subhaloes,

and the diamond is the expected point with subhaloes, i.e. mock spectra without noise. The solid ochre line shows the combinations of height and width which

give the same mass as the expected average H I mass of the halo from the mock spectra.

in the lowest mass cut corresponds to objects missing in the optical

survey.

The GMRT will therefore be sensitive to subhaloes that are un-

detected in the optical survey (although optical stacking would be

able to detect them). Inferring what their fractional contribution is

could be carried out in various model-dependent ways. One can

look at specific model predictions (as has been done in this paper)

to compare to the stacked signal. One could instead determine how

satellite galaxies populate the central halo, i.e. measure the halo

occupation distribution, from a different approach. The latter ap-

proach should be feasible in a statistical 21-cm survey where one

observes the 21-cm power spectrum (or the correlation function)

out to small non-linear scales and infers the halo occupation distri-

bution (HOD) from it (Wyithe & Brown 2010). This was done with

the correlation function of the HIPASS galaxies at z ≃ 0 (Wyithe

et al. 2009). Recently Bagla et al. (2010) showed that a stand-alone

statistical detection of 21-cm clustering would not be feasible with

the GMRT or the Murchison wide-field array (MWA) and will have

to wait for future instruments.

For the conservative noise of 420 µJy, the best fit and the expected

value lie within 1σ for a mass cut of M > 1011.4 h−1 M⊙. This

degrades to 2σ and 3σ for the larger mass cuts. In this case, since

the noise is larger, the error contours are also broader compared

to a noise level of 71 µJy. We also find that the best-fitting value

systematically veers off the line of constant mass in the direction

of lower mass as the threshold mass is increased. This trend is also

seen for the lower noise but in the direction of higher mass, but is

less prominent. The realization of noise decides in which direction

the best-fitting value moves when noise becomes important, since it

may underpredict or overpredict the H I mass. We cannot distinguish

the effect of satellites on the spectra with the conservative noise,

unlike the optimistic case. However, as mentioned before, since the

C© 2011 The Authors, MNRAS 415, 2580–2593

Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
1
5
/3

/2
5
8
0
/1

0
5
0
5
1
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



H I at z ≃ 1 2591

best-fitting value for the two lower mass cuts still lie near the line

of constant mass, we would not get the cumulative H I mass wrong,

even though the shape of the spectra differs from the true shape for

M > 1012.5 h−1 M⊙ as seen in the bottom right panel of Fig. 7.

A simpler approach to determine the H I mass from the stacked

spectra is to integrate it over a finite frequency range to obtain

an integrated flux. The total H I mass for the stacked galaxies is

proportional to the integrated flux. The errors in the integrated flux

can be obtained by first randomizing the positions of the haloes and

then stacking their spectra. We find that for the optimistic noise of

σrms = 71 µJy, the H I mass estimated from this method compares

well with that expected from the model. However, the errors on the

H I mass are smaller as compared to that obtained from the maximum

likelihood method discussed previously. For the conservative noise

this method is not reliable. As noted earlier, the realization of noise

for the conservative case is negatively biased in the stacked spectra

and the best-fitting value of H I mass is underpredicted. This can be

seen in the bottom panel of Fig. 7 and in Fig. 8. Due to this reason the

integrated flux in this case is negative for M ≥ 1011.4 h−1 M⊙ and

M ≥ 1012.0 h−1 M⊙ for models 1 and 3. For model 2, the H I mass

estimate is positive but a factor of 10 lower than what is expected.

In all three models, the H I mass estimate is severely suppressed

for M ≥ 1012.5 h−1 M⊙ and the errors on the H I mass are not

reliable. Since a prior of a positive definite signal is assumed in the

maximum likelihood method, the estimated H I mass and errors are

more robust and not very sensitive to the noise. On the other hand,

since the second method does not assume any priors the results are

very sensitive to the level of noise. In the following sections, we

only discuss our results in the context of the maximum likelihood

method.

The rms fluctuations in the shape of the average spectra when

considering all the subvolumes are a few per cent and below the

fluctuations in total mass. This happens because we fit the average

spectra of haloes above the mass threshold and not the total spectra.

The number of haloes above a certain mass cut fluctuates more

strongly as an increasing function of this mass cut. Therefore, the

effect of cosmic variance is larger in the mass function as compared

to the average spectra. We will revisit the issue of cosmic variance

on the estimates of the H I mass function in the next section. We do

not plot the errors due to cosmic variance in Fig. 8, since they are

smaller than the size of the symbols.

5.3 Subsamples and constraints on the cumulative H I mass

We now discuss the extent to which the cumulative H I mass can

be constrained with the GMRT and DEEP2. To obtain the H I mass

per halo, or the cumulative H I mass, we need to invert equation (5).

We assume a mean redshift z̄ and a mean luminosity distance D̄L

of our survey, which we take to be at the centre of our subvolume

along the redshift direction. The total H I mass is then proportional

to the height and the width of the fitted Gaussian and the number

of haloes above the mass threshold. The error in the H I mass is

hence dependant on both: the errors on the height and the width. To

obtain the error on either height or width, we further marginalize

our likelihood function over the other parameter and compute the

1σ errors on them.

We present the constraints on the cumulative H I mass in Fig. 9 for

both the optimistic noise of 71 µJy (left) and the conservative noise

of 420 µJy (right). The total H I mass for haloes above the cut-off

mass of the halo has been plotted as a function of cut-off mass of the

halo. The uncertainty of the best-fitting parameters due to noise as

well as fluctuations due to cosmic variance have both been included

in the error bars, and were added in quadrature. The contribution of

each is shown in Table 3. The solid line is the expected cumulative

H I mass and the dashed line is the same without satellites.

The effect of cosmic variance should be more pronounced for

rarer or more massive objects. This is indeed the case, as is seen in

Table 3, where we find that the fluctuations due to cosmic variance

increase with increasing threshold mass for all the three models, the

effect being largest for model 2 followed by model 1 and model 3,

consistent with the discussion in Section 3.3.

In the optimistic case, the cumulative H I mass can be well con-

strained over the entire range of masses that we consider. Note that

in this case the best-fitting points lie systematically above the cu-

Figure 9. The recovered cumulative H I mass for the three models with the optimistic noise of σrms = 71 µJy (left) and the conservative noise of σrms = 420 µJy

(right). The expected cumulative H I mass with subhaloes (solid line) and without subhaloes (dashed line) are also drawn for comparison. Data points were

computed from the mock spectra.
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2592 N. Khandai et al.

Table 3. Break-up of errors on the cumulative H I mass due to cosmic

variance and noise for models (columns) and the three mass cuts that we

consider. The first three rows are the per cent fluctuations due to cosmic

variance for the three mass cuts. Due to lack of space we change the notation

of masses, e.g. M11.4 ≡ 1011.4 h−1 M⊙. The next three (filled) rows are errors

in mass estimates due to the optimistic noise of 71 µJy and the final three

(filled) rows are for errors in mass estimates for the conservative noise of

420 µJy.

Errors Model 1 Model 2 Model 3

σ cosm(M > M11.4) 8.63 per cent 9.30 per cent 8.59 per cent

σ cosm(M > M12.0) 10.85 per cent 11.43 per cent 10.87 per cent

σ cosm(M > M12.5) 13.56 per cent 14.10 per cent 13.58 per cent

σrms = 71 µJy

σ
MH I

(M > M11.4) 6.47 per cent 5.23 per cent 9.37 per cent

σ
MH I

(M > M12.0) 8.55 per cent 5.91 per cent 12.11 per cent

σ
MH I

(M > M12.5) 11.41 per cent 6.87 per cent 15.34 per cent

σrms = 420 µJy

σ
MH I

(M > M11.4) 42.23 per cent 34.81 per cent 60.04 per cent

σ
MH I

(M > M12.0) 40.18 per cent 29.82 per cent 53.62 per cent

σ
MH I

(M > M12.5) 108.97 per cent 52.05 per cent 135.63 per cent

mulative H I mass from the mock spectra, which can be attributed to

the noise, as we discussed in the previous section. We had seen in

Fig. 8 that the contribution of satellites even for the lowest mass cut

could be distinguished at the 3σ level when we look at the stacked

spectra. This is not the case for the cumulative H I mass, where

the cosmic variance is often more dominant than the errors due to

noise. We find that the modelled cumulative H I mass is within 1σ

of the best-fitting cumulative H I mass with satellites for model 2

over the entire mass range. This is not so for model 3, where the

modelled cumulative H I mass is well beyond the 1σ from the mock

cumulative H I mass over the entire mass range that we consider,

since the effect of satellites is more pronounced. In model 1, the

modelled cumulative H I mass is within the 1σ errors of the mock

cumulative H I mass for M > 1011.4 h−1 M⊙ and beyond it for the

larger mass cuts. From Table 3, we compute the detection signifi-

cance (including cosmic variance) for the optimistic noise. We find

it is the highest for model 2, being 9.4σ for M > 1011.4 h−1 M⊙ and

11.6σ for M > 1012.5 h−1 M⊙. For models 1 and 3, the numbers are

(9.3σ , 5.6σ ) and (7.9σ , 4.9σ ), respectively.

We now move on to the case of the conservative noise in the

right-hand panel of Fig. 9. The best-fitting points lie systematically

below the mock cumulative H I mass, in this case, due to the different

realization of noise than in the optimistic case. Here the uncertainties

due to noise are much larger than those due to cosmic variance.

The modelled cumulative H I mass is well within 1σ of the mock

cumulative H I mass, hence the effect of satellites cannot be seen. We

find a 1.7–3σ detection for mass cuts in the range 1011.4 h−1 M⊙ <

M < 1012.0 h−1 M⊙. A detection is not a possible for the larger

mass cut of M > 1012.5 h−1 M⊙ for models 1 and 3, whereas a weak

detection is possible for model 2 for this mass cut.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have studied the prospects for detecting H I in

emission at z ≃ 1. This is a crucial epoch in the study of galaxy

formation, since the cosmic SFR starts to decline around this time

and the missing link in observations is an accurate census of cold

gas, which fuels star formation, at these redshifts and beyond (for

more discussion of the importance of this issue, see e.g. Putman et al.

2009). We make a case that an existing instrument like the GMRT

can put strong constraints on the amount of cold gas contained

in galaxies, when it is combined with a survey like DEEP2. In

this work, we have only focused on the overlapping volume of

DEEP2 and GMRT, which represents a quarter of the total DEEP2

volume. Our study is representative of what might be achievable

by combining the already existing optical data and the presently

operational radio interferometers.

The H I signal is too weak in emission for the detection of in-

dividual objects at z ≃ 1. However, this can be circumvented by a

stacking strategy, similar to Lah et al. (2007, 2009), which we here

apply to look at the prospects of detection. Our conclusions are as

follows.

(i) We find that a detection of H I in emission at redshifts of

z ≃ 1 is possible even with existing instruments like the GMRT

when combined with the DEEP2 survey. Such an observation will

be able to constrain the cumulative H I mass in the halo mass range

1011.4 h−1 M⊙ ≤ M ≤ 1012.5 h−1 M⊙. The detection significance is

in the range of 5–12σ for an optimistic noise level of 71µJy. One

may need 300–400 h of observation if one were to target the DEEP2

field between 1.18 < z < 1.3, and twice this time if one were to

target up to z ∼ 1.4.

(ii) The models that we consider are consistent with recent obser-

vations of Chang et al. (2010), who computed the cross-correlation

of the density field of DEEP2 galaxies and the 21-cm intensity field

with the GBT. However, these observations allow for all the three

models that we consider. On the other hand, we find that using the

stacking technique it will be possible to discriminate between the

different scenarios with an instrument like the GMRT, at least for

the optimistic level of noise.

(iii) Combining our estimates of H I bias with the observations of

Chang et al. (2010), we put a constraint on the cosmic H I fraction

at z ≃ 0.8 to be �H I = (1.03±0.28)×10−3 for the reference model

1. The estimates on �H I for the other models that we consider are

similar and consistent with �H I = 10−3.

(iv) We find that undetected satellites in the optical produce a

non-negligible contribution to the stacked H I spectra. Their signa-

ture is better seen in the stacked spectra rather than in the cumulative

H I mass, since we integrate over one parameter, i.e. the width of the

spectra, to obtain the cumulative H I mass. For a noise of 71 µJy,

features of satellites can be seen at the 4σ level in the stacked

spectra for a mass threshold of M ≥ 1011.4 h−1 M⊙. This detec-

tion significance for satellites increases by more than 7σ for M ≥
1012.0 h−1 M⊙ (see e.g. Figs 8 and 9). In comparison, the cumulative

H I mass discriminates satellites at the ∼1σ level.

(v) We have also considered a much higher level of noise, i.e.

420 µJy, which should represent an upper bound on noise in the

GMRT. With this amount of noise, a detection of the cumulative H I

mass is possible at the 1.7–3σ level. We expect that the real detection

significance is bracketed by the optimistic and conservative noise

levels.

(vi) For the higher noise, the effect of satellites on the stacked

spectra can be seen only at the 1–3σ level across the ranges of

mass that we consider. The best-fitting parameters of the spectra

however are incorrect for the larger mass cuts when compared to

the theoretical numbers.

(vii) Cosmic variance affects the cumulative H I mass more

strongly than the average stacked spectra. For this reason, if H I

is populated in haloes according to model 2 one cannot quantify
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H I at z ≃ 1 2593

the effect of subhaloes on the cumulative H I mass due to the effect

of cosmic variance. For models 1 and 3, cosmic variance does not

swamp the errors due to noise.

One can use the stacking strategy to independently probe �H I

(Lah et al. 2009). This is not the case in the cross-correlation ap-

proach which constrains br�H I. As in Lah et al. (2007), it would be

useful to also target a subset of galaxies in DEEP2 whose SFR has

been measured. This would provide the link between the SFR and

the amount of cold gas in galaxies and provide insight into models

of galaxy formation. Since spectroscopic surveys are accurate but

expensive, it would be worthwhile to first try this stacking strategy

on future surveys like the large synoptic survey telescope (LSST),

which are designed to give photometric redshifts of ≃1010 galaxies.

Photometric redshifts are more prone to errors, but it has to be seen

if the larger sample of a photo-z survey like LSST could beat down

the noise by its sheer number of objects.

In this study, we have modelled the H I in all the haloes, cen-

trals and satellites, and we have seen how the satellite population

affects the cumulative H I mass as well as the stacked H I profile.

The possibility to see the effect of satellites missing in an optical

survey in the corresponding 21-cm survey is an exciting prospect.

On the one hand, we find that stacking can distinguish between

models, but the effect of satellites on the stacked profile is model-

dependant, and to see their effect one may need to combine it with

the cross-correlation approach. In the cross-correlation method, the

optical density field does not contain all the satellites, whereas the

H I intensity field does. If we use the same mass threshold when

constructing the H I intensity field, one naively expects a stronger

cross-correlation between the two fields. A preliminary investiga-

tion shows that this is indeed the case. We also expect that the H I

bias and stochasticity will be sensitive to subhaloes. A combination

of both approaches would shed light on both the model and the

contribution of satellites.

The other approach is to observe the autocorrelation function or

the power spectrum of H I, and to constrain the HOD of H I galaxies

(Wyithe & Brown 2010) from it. Such an inferred model of HOD

when combined with a direct detection as is done here could reveal

the contribution of the satellite population on the total signal. We

will look into these aspects of the analysis in a forthcoming paper.

Currently operational radio instruments – both single dish and in-

terferometers – have the capability to detect H I in emission at z ≃ 1,

as already demonstrated by Chang et al. (2010). We explored the po-

tential of these complementary strategies. In particular, we studied

in detail the efficiency of stacking, possible only with interferome-

ters. In the near future, we expect larger optical galaxy samples at

z ≃ 1 and radio observations with wider field of views and spectral

coverage using upcoming radio instruments (e.g. Johnston et al.

2007). This observational progress will enable a better determina-

tion of the H I signal using either of the strategies, thereby sub-

stantially improving our estimate of the H I content of galaxies at

z ≃ 1.
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