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Abstract— We present a novel and real-time method to detect
object affordances from RGB-D images. Our method trains
a deep Convolutional Neural Network (CNN) to learn deep
features from the input data in an end-to-end manner. The CNN
has an encoder-decoder architecture in order to obtain smooth
label predictions. The input data are represented as multiple
modalities to let the network learn the features more effectively.
Our method sets a new benchmark on detecting object affor-
dances, improving the accuracy by 20% in comparison with
the state-of-the-art methods that use hand-designed geometric
features. Furthermore, we apply our detection method on a
full-size humanoid robot (WALK-MAN) to demonstrate that
the robot is able to perform grasps after efficiently detecting
the object affordances.

I. INTRODUCTION

Humans have an astonishing capability to detect object

affordances using vision [1], as well as to using this infor-

mation to complete daily tasks such as picking up objects.

This capability has been studied by multiple disciplines such

as neuroscience and cognitive robotics. For instance, there is

neuroscientific evidence [2] which suggests that humans can

easily determine, from a priori experience, which is the best

way of grasping by selecting the appropriate grasp surface.

On the other hand, cognitive robotics such as imitation

learning [3] focuses on developing an architecture that allows

a robot to learn and reason about affordances and generate

complex intelligent behaviors.

In robotics, detecting object affordances is an essential ca-

pability that allows a robot to understand and autonomously

interact with objects in the environment. Most of the prior

works on affordances detection have focused on grasp de-

tection using RGB-D images [4] or point cloud [5] data.

While these methods can lead to successful grasping actions,

their failures in detecting other types of object affordances

prevents robots from completing real world human-like tasks,

such as using a tool. Man-made objects usually have many

parts, where each one has its own functionality. Thus, an

object may have more than one affordance (e.g. a knife

usually has two affordances, one for cutting and another

for grasping). Therefore, to achieve a human-like object

manipulation, the robot should be able to detect and localize

all the affordances in order to choose the right action for a

real world scenario.

From the visual perception point of view, however predict-

ing affordances from an image is not a trivial task, because

of variations in the shape, orientation, and appearance of
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Fig. 1. Affordance detection and its application. From left to right: Our
system uses an RGB-D image to detect object affordances. An example
of detection results for the grasp affordance. A grasp is defined as a
rectangular box based on the detected grasp affordance.

the objects in the environment. The problem becomes even

harder for cluttered scenes due to occlusions. However, an

efficient affordance detection method could enable the robot

to interact with an extensive variety objects, including novel

unseen ones, given that man-made objects often have a

similar set of affordances.

This paper addresses the problem of learning visual fea-

tures for affordance detection in RGB-D images as shown

in Fig. 1. Our goal, which is similar to the recent state-of-

the-art work in [6], is to detect affordances for object parts.

However, unlike [6] where hand-designed features are used,

we treat this problem as a pixel-wise labeling task and use

Convolutional Neural Networks (CNN) to learn deep features

from RGB-D images. We show that a large CNN can be

trained to detect object affordances from rich deep features.

Since the detection stage of our method runs in real-time, we

apply it to a real robotic grasping application using a full-size

humanoid robot (WALK-MAN), and show that by extracting

object affordances the robot can successfully perform grasp

actions in the environment.

The rest of the paper is organized as follows. We start with

a review of the related work in Section II, followed by the

description of our methodology in Section III. In Section IV

we present our experimental results on an affordance dataset.

Then, we describe a grasping method based on the detected

affordances and apply it on a real full-size humanoid robot

(WALK-MAN) in Section V. Finally, we present the future

work and conclude the paper in Section VI.



II. RELATED WORK

The affordance detection problem has been extensively

studied in robotics and computer vision over the last few

years. Many works have focused on localizing grasp location

on objects using vision [7] [8]. In [9] the authors proposed

a method to detect grasp affordances by learning a mapping

from local visual descriptors to grasp parameters. In [10] a

set of the so-called 0-ordered affordances is detected from

the full 3D object mesh models. The authors in [11] proposed

a method to learn tool affordances by clustering the effects

of robot’s actions and applied it to a humanoid platform.

The work in [12] proposed a method to identify color,

shape, material, and name attributes of objects selected in

a bounding box from RGB-D data, while in [13] the authors

introduced the concept of relational affordances to search for

objects in occluded environments.

Deep learning methods have shown impressive results in

computer vision. The authors in [14] applied a CNN for

image classification, while in [15] a deep CNN and fully

connected CRF were combined to segment images. Similarly

to [15], the authors in [16] proposed a deep convolutional

encoder-decoder architecture for semantic image segmen-

tation. The success of deep learning methods in computer

vision, has led recently to an interest in understanding their

feature learning capabilities for the grasp detection problem.

For example, deep learning has been used in [4] to detect

grasp affordances, while a rectangle-based grasp technique

was applied for real robotic applications. A similar grasping

concept has been also used in [17] for object reorientation.

In [6], the authors used a traditional machine learning

approach to detect the affordances of tool parts from RGB-

D images. The extracted features were geometrically mean-

ingful and were learned using the classifiers. Additionally,

the authors released the RGB-D Affordance dataset, which

we subsequently use in this work. The main challenge with

this approach is to decide which visual cues should be used

as features. Designing features, however, is not a trivial

task and all hand-designed ones can only capture low-level

information from the data [18]. More recently, the work

in [19] used human pose as the context to weekly supervised

learn the affordances using a deep CNN. Both approaches

in [6] [19] were visually tested over the dataset, but were

never applied in a real-world robotic application.

Unlike the work in [6], which focuses on choosing hand-

designed features to detect affordances and then generalize

this knowledge for novel objects, we focus on detecting affor-

dances from deep features and in this way aim to understand

the relationship between each part of the object. Similar

to [19], our method uses a deep CNN to automatically

learn depth features from the training data, however we use

the novel encoder-decoder architecture and remove the fully

connected layer in our network to enable real-time inference.

Based on the detected affordances, we develop a grasping

application to be tested with a full-size humanoid robot,

showing that object affordances can be used in real-world

robotic applications such as grasping.

III. AFFORDANCE DETECTION

Inspired by the results from the computer vision commu-

nity, we train a large CNN on RGB-D images to generate

rich features for affordance detection. To allow the network

to effectively learn the features from the input data, we

represent them as multiple modalities. Next, we explain in

details the introduced data representation and architecture, as

well as the way to train the network.

A. Data Representation

Recently, many works in computer vision and machine

learning have investigated the effectiveness of using multiple

modalities as inputs to a deep network, such as video and

audio [20] or RGB-D data [21]. However, the problem of

picking the best combination of these modalities for a new

task is still an open problem. Ideally, they should represent

important properties of the data so that the network can

effectively learn deep features from them.

Fig. 2. Data representation. Top row: The original RGB image, its depth
image, and the ground-truth affordances, respectively. Bottom row: The
HHA representation of a depth image.

In this paper, we focus on detecting affordances from

RGB-D images. Intuitively, we can either use only RGB im-

ages or combine both RGB and their associated depth images

as the input to our network. In this work we also investigate

other ways of data representation that may improve further

the performance. In [21], the authors showed that when the

training data is limited (which is true in our case since

the affordance dataset [6] that we use for training has only

30,000 images, compared to other ones that are deep learning

oriented with million of images [14]), it is unlikely that the

CNN would automatically learn important depth properties.

To deal with this problem a new method [21] was proposed

to encode the depth images into three channels at each pixel:

the horizontal disparity, the height above the ground, and

the angle between each pixel’s surface normal and direction

of inferred gravity (denote as HHA). The HHA encoder

is calculated based on an assumption that the direction

of gravity would impose important information about the

environment structure. We adapted this representation since

the experimental results in [21] have shown that the features

can be learned more effectively for object recognition tasks

in indoor scenes. We show an example of different data

representations for our network in Fig. 2.
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Fig. 3. An illustration of our affordance detection method. From left to right: The input data are represented as multiple modalities and learned by
a CNN with an encoder-decoder architecture. The CNN produces a k channel image of probabilities, where k is the number of affordance classes. Each
channel is visualized as an image in this figure.

B. Architecture

In 2012, the authors of [14] used CNN for classifying RGB

images and showed substantially higher accuracy over the

state-of-the-art. Many works have applied CNN to different

vision problems since then [22] [23]. Nonetheless, the design

of a CNN for image segmentation still remains challenging.

More recently, the work of [24] proposed an encoder-decoder

architecture for pixel-wise image labeling. However, the

encoder of this work includes the fully connected layers

that make the training very difficult due to a huge amount

of parameters (approximately 134M), and also significantly

increases the inference time. The authors in [16] pursued

the same idea but they discarded the fully connected layers

to reduce the number of parameters. They showed that the

encoder-decoder architecture without fully connected layers

can still be trained end-to-end effectively without sacrificing

the performance and enabling real-time reference.

In this paper, we use the state-of-the-art deep convolutional

network described in [16]. In particular, the network contains

two basic components: the encoder and the decoder network.

The encoder network has 13 convolutional layers that were

originally designed in the VGG16 network [22] for object

classification. Each encoder has one or more convolutional

layers that perform batch normalization, ReLU non-linearity,

followed by a non-overlapping max-pooling with a 2 × 2

window to produce a dense feature map. Each decoder layer

is associated with an encoder one, ending up in a 13 layers

decoder network. In each one, the input feature map is

upsampled using the memorized pooled indices and convoled

with a trainable filter bank. The final decoder layer produces

the high dimensional features that are fed to a multi-class

soft-max layer, which classifies each pixel independently.

The output of the softmax layer is a k channel image of

probabilities, where k is the number of classes.

We adapt the above architecture to detect object affor-

dances at pixel level. Fig. 3 shows an overview of our

approach. The data layer is modified to handle multiple

modalities as input, while each image in the training set is

center cropped on all channels to 240 × 320 size from its

original 480 × 640 size. In testing step, we don’t crop the

images but use the sliding window technique to move the

detected window over the test images. The final predicted

result corresponds to the class with the maximum probability

at each pixel over all the sliding windows. Finally, since the

dataset that we use has a large variation in the number of

pixels for each class in the training set, we weigh the loss

differently based on this number.

C. Training

For the training, we generally follow the procedure de-

scribed in [16] using the Caffe library [25]. Given that the

gradient instability in the deep network can stall the learning,

the initialization of the network weights is very important.

In particular, we initialized the network using the technique

described in [23]. The network is end-to-end trained using

stochastic gradient descent with a fixed 0.1 learning rate

and 0.9 momentum. The cross-entropy loss [26] is used as

the objective function for the network. The batch size was

set to 10 while the learning rate was initialized to 0.001,

and decreased by a factor of 10 every 50, 000 iterations.

The network is trained from scratch until convergence with

no further reduction in training loss. The training time is

approximately 3 days on an NVIDIA Titan X GPU.

IV. EXPERIMENTS

A. Dataset and Baseline

Fig. 4. Example images from the UMD dataset [6].

We used the UMD dataset that was recently introduced

in [6] for our experiments. This dataset contains around

30,000 RGB-D image pairs of 105 kitchen, workshop, and

garden tools. The tools were collected from 17 different

categories, while the ground-truth images are annotated with

7 affordance labels: contain, support, cut, w-grasp,

scoop, grasp, and pound. Fig. 4 shows some example

images from this dataset.
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Fig. 5. Detection results on UMD dataset using our CNN-RGBD method. Top row: The original input image. Bottom row: The prediction results of an
object affordance.

TABLE I

PERFORMANCE OVER UMD DATASET

HMP SRF DeepLab
CNN-
RGB

CNN-
RGBD

CNN-
RGBHHA

grasp 0.367 0.314 0.620 0.719 0.714 0.673

w-grasp 0.373 0.285 0.730 0.769 0.767 0.652

cut 0.415 0.412 0.600 0.737 0.723 0.685

contain 0.810 0.635 0.900 0.817 0.819 0.716

support 0.643 0.429 0.600 0.780 0.803 0.663

scoop 0.524 0.481 0.800 0.744 0.757 0.635

pound 0.767 0.666 0.880 0.794 0.806 0.701

Average 0.557 0.460 0.733 0.766 0.770 0.675

As a comparison, we baseline our approach with the

hand-designed features approach combined with Hierarchical

Matching Pursuit (HMP) and Structured Random Forests

(SRF) classifiers as described in [6]. We followed the training

and testing procedures described in this work for a fair com-

parison. To train our network three different kinds of input

data are used. First, we use only the RGB images (CNN-

RGB), then we use both the RGB and their corresponding

depth images (CNN-RGBD), and last we encode the depth

images into the HHA representation and use them with their

RGB ones (CNN-RGBHHA) as input to our deep network.

To compare with other deep learning methods, we benchmark

our method with DeepLab [15]. This method was recently

applied by [19] for the affordance detection problem.

B. Evaluation Metric

We evaluate our experimental results using the Fw
β metric.

This metric was recently introduced in [27] to extend the

well-known F 1

β measure. The novelty of this measure is that

it weighs the errors of the pixels by taking into account their

location and neighborhood information to overcome three

flawed assumptions: interpolation, dependency and equal

importance of the prediction map.

C. Results

Table I summarizes the Fw
β results on the UMD dataset for

single objects. We notice that the detection results are signif-

icantly improved using the deep learning approach compared

to the baseline. In particular, our CNN-RGBD achieves

the highest average detection accuracy, outperforming the

HMP and SRF method by 21.3% and 31.0%, respectively. It

demonstrates that our deep network is able to learn deep fea-

tures from the data and therefore boost the performance sig-

nificantly over the baseline methods that used hand-designed

features. Moreover, we notice that another limitation of the

hand-designed features method is that it only performs well

with some specific classes, while in others it fails to capture

important properties of the data. For instance, the HMP

method showed good results for the contain, pound, and

support classes (Fw
β = 0.810, 0.767, 0.643, respectively),

while its accuracy was dramatically dropped for the grasp,

w-grasp, and cut classes (Fw
β = 0.367, 0.373, 0.415,

respectively). This limitation does not occur in our approach

since the deep network learns the features of all classes

through its layers independently, and hence there is not

much fluctuation in our results. We also achieve the same

improvement in cluttered scenes.

Within deep learning methods, while our CNN-RGBD

gives the highest accuracy on average, DeepLab also achieves

better results in 3 classes. We notice that even though

DeepLab combined a fully connected CRF at the final layer

of the network, its results seem to be more fluctuated than

ours. Surprisingly the CNN-RGB performance is close to that

for the CNN-RGBD and outperforms the CNN-RGBHHA.

We also notice that even though the CNN-RGBHHA gives

reasonable results, it turns out that encoding the depth

image to HHA representation doesn’t improve the accuracy

compared to the original depth one. This is because the HHA

encoding process mainly depends on the step that estimates

the gravity direction from a single depth image. Due to the

nature of the UMD dataset, where all the objects lie on

a tabletop, it appears that the introduced algorithm [21] is

unable to estimate the gravity direction using only the depth

image in many scenes. Therefore, the HHA representation

fails to capture important properties from the depth image.

Fig. 5 shows some detection results on UMD dataset using

our CNN-RGBD method.

To conclude, our approach outperforms the baseline meth-

ods and the results show that integrating multimodal informa-

tion improves the resultant accuracy. The depth information

is very useful in challenging scenarios, but at the same time

its representation plays a significant role in the performance.

Our method is suitable for real-time robotic application since

the testing time for an input image is approximately 90

milliseconds on an NVIDIA Titan X GPU.
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Fig. 6. A pipeline of our grasping method. From left to right: The RGB-D image is captured by the vision system of the robot and a CNN-RGBD is
used to detect the affordances in the image (e.g. the grasp affordance as in the second image). All the points of the detected affordances are then grouped
into clusters using the Mean Shift algorithm to eliminate the noisy points. Finally, a grasp is represented as a rectangular box [4] by fitting a minimum
rectangle to each cluster.

V. ROBOTICS APPLICATION

In order to evaluate the performance of our affordance

detection method in real world scenarios, we train our CNN-

RGBD network on both the RGB-D Affordance dataset and

our additional data, and then run an extensive series of

experiments on WALK-MAN, a full-size humanoid robot.

We show that object affordances can be used by the robot to

perform manipulation tasks such as grasping.

A. Hardware

WALK-MAN [28] is an 1.85m high full-size humanoid

robot. It has two underactuated hands with five fingers [29]

driven by a single motor. The arm has 7DoF and the vision

sensing is equipped with a MultiSense-SL camera that can

capture point cloud and stereo vision data. The stereo vision

system returns 1024 × 1024 RGB-D images. The YARP

middleware framework [30] is used to communicate with

the robot while the OpenSoT [31] library is used to plan the

whole-body motion. The robot is controlled by a computer

with a Core i5 3.2GHz x 4 processor and 12GB RAM.

B. Grasping Objects using Affordances

Since the affordances from the dataset that we used to train

our network are manually annotated by human, it provides

meaningful information about the functionality of each object

part. For example, the grasp and w-grasp ones indicate

the region on an object that usually be grasped by human.

Based on the detected affordances, we develop a method that

allow the robot to grasp different objects. Fig. 6 shows the

details of our framework.

In particular, we use the Mean Shift algorithm [32] to

group all the points of the detected map into separated clus-

ters. Mean Shift is a centroid based clustering algorithm that

works by updating candidates for centroids to be the mean

of the points within a given region and can automatically

determine the number of clusters from the input. Given that

noisy points may exist in the detected map, we only consider

a cluster to be valid if it has more than 100 points. For

each cluster, we find its convex hull which is the smallest

polygon that encloses all the points where all internal angles

are less than 180◦, and fit a minimum rectangular bounding

box around the cluster based on this convex hull [33]. From

this rectangle, we use the rectangle-based grasp strategy

introduced in [4] to find the grasp frame on the object for

the end-effector.

Fig. 7. Objects used in our robotics experiments.

TABLE II

GRASP SUCCESS RATE (IN %)

Accuracy Affordance

Bottle 100 w-grasp

Comb 95 grasp

Cup 75 contain

Hammer 100 grasp

Headphone 80 grasp

Ruler 90 grasp

Scissors 100 grasp

Saw 90 grasp

Turner 100 support

Average 92.2

C. Grasping Results

While the detected affordance provides information about

the functionality of an object part, its rectangle bounding box

provides all the details about the grasp location, orientation,

and the physical size of the grasping region on the object.

From this information, the robot can easily determine if an

object is graspable from its affordances. For the experiments,

we selected 9 different objects as shown in Fig. 7. For each

one, we perform 20 trials and a grasp is considered successful

if the robot can grasp, raise, and hold the object in the air

for 15 seconds. Table II summarizes the success rate and

the detected affordance that the robot used to grasp for each

object. From the results, we can see that affordances usually

lead to successful grasps, but with some cases of failure.

We notice that the grasping success depends on the physical

size of the detected affordances with respect to the robotic

hand as well as the geometry of the hand-closing region. For
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Fig. 8. Example of successful grasps based on the detected affordances.

instance, if all the detected affordances are too big compared

with robotic hand limitation, the robot will unable to grasp

the object. For each object, the total execution time is around

45 seconds, and the time that is needed to detect the object

affordances and fit the rectangular box is approximately 1

second. Fig. 8 shows an example of successful grasps based

on the detected affordances. The experimental video with all

objects can be found in the following link:

https://sites.google.com/site/affordancecnn/

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel method to detect object

affordances using a deep convolutional neuron network. We

have demonstrated that a large deep network can significantly

improve the detection results compared to the state-of-the-art

methods. Moreover, we have tested our method on grasping

experiments with a full-size humanoid robot. Using our

method, the inference procedure is real-time and the robot is

able to perform grasping tasks using the detected affordances.

Currently, our grasping method based on the object af-

fordances is limited to surfaces that fit in the robotic hand.

We aim to develop a more general approach to overcome

this limitation. Another interesting problem is to study the

semantic relationship between object affordances that enables

the completion of more types of tasks. Finally, we plan to

release our new affordance dataset that has more challenging

scenes and covers more types of objects.
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