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Abstract

We use the smaller alignment index (SALI) to distinguish rapidly and with

certainty between ordered and chaotic motion in Hamiltonian flows. This

distinction is based on the different behaviour of the SALI for the two cases:

the index fluctuates around non-zero values for ordered orbits, while it tends

rapidly to zero for chaotic orbits. We present a detailed study of SALI’s

behaviour for chaotic orbits and show that in this case the SALI exponentially

converges to zero, following a time rate depending on the difference of the

two largest Lyapunov exponents σ1, σ2 i.e. SALI ∝ e−(σ1−σ2)t . Exploiting the

advantages of the SALI method, we demonstrate how one can rapidly identify

even tiny regions of order or chaos in the phase space of Hamiltonian systems

of two and three degrees of freedom.

PACS numbers: 05.45.−a, 05.45.Jn, 05.45.Ac

1. Introduction

Knowing whether the orbits of a dynamical system are ordered or chaotic is fundamental for the

understanding of the behaviour of the system. In the dissipative case, this distinction is easily

made as both types of motion are attracting. In conservative systems, however, distinguishing

between order and chaos is often a delicate issue (e.g., when the chaotic or ordered regions are

small) especially in systems with many degrees of freedom where one cannot easily visualize

the dynamics. For this reason it is of great importance to have quantities that determine if an

orbit is ordered or chaotic, independent of the dimension of its phase space.
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The well-known and commonly used method for this purpose is the evaluation of the

maximal Lyapunov characteristic exponent (LCE) σ1. If σ1 > 0 the orbit is chaotic.

Benettin et al [1] studied theoretically the problem of the computation of all LCEs and

proposed in [2] an algorithm for their numerical computation. In particular, σ1 is computed

as the limit for t → ∞ of the quantity

Lt = 1

t
ln

| �w(t)|
| �w(0)| i.e. σ1 = lim

t→∞
Lt (1)

where �w(0), �w(t) are deviation vectors from a given orbit, at times t = 0, and t > 0,

respectively. The time evolution of �w is given by solving the so-called variational equations

(see section 3). Generally, for almost all choices of initial deviations �w(0), the limit for

t → ∞ of equation (1) gives the same σ1.

In practice, of course, since the exponential growth of �w(t) occurs for short time intervals,

one stops the evolution of �w(t) after some time T1, records the computed LT1
, normalize vector

�w(t) and repeats the calculation for another time interval T2, etc obtaining finally σ1 as an

average over many Ti, i = 1, 2, . . . , N as

σ1 = 1

N

N
∑

i=1

LTi
.

The basic problem of the computation of σ1 is that, after every Ti , the calculation starts

from the beginning and may yield an altogether different LTi
than the T(i−1) interval. Thus,

since σ1 is influenced by the whole evolution of �w(0), the time needed for Lt (or the LTi
)

to converge is not known a priori and may become extremely long. This makes it often

difficult to tell whether σ1 finally tends to a positive value (chaos) or converges to zero

(order).

In recent years, several methods have been introduced which try to avoid this problem

by studying the evolution of deviation vectors, some of which are briefly discussed in

section 5. In this paper, we focus our attention on the method of the smaller alignment

index (SALI) [3], performing a systematic study of its behaviour in the case of autonomous

Hamiltonian systems with two (2D) and three (3D) degrees of freedom. This method has

been applied successfully to several two-dimensional (2d) and multi-dimensional maps [3],

where SALI was found to converge rapidly to zero for chaotic orbits, while it exhibits small

fluctuations around non-zero values for ordered orbits. It is exactly this ‘opposite’ behaviour

of the SALI which makes it an ideal indicator of chaoticity: unlike the maximal LCE,

it does not start at every step a new calculation of the deviation vectors, but takes into

account information about their convergence on the unstable manifold from all the previous

steps. The method has already been used successfully as a chaos detection tool in some

specific Hamiltonian systems [4–9], although some authors [8, 9] use different names for

the SALI.

This paper is organized as follows: in section 2 we recall the definition of the SALI and

present results distinguishing between ordered and chaotic motion in two and three degrees

of freedom (2D and 3D) Hamiltonians, comparing also the efficiency of the SALI with the

computation of σ1. In section 3 we explain the behaviour of the SALI for ordered and chaotic

orbits, showing that in the latter case SALI converges exponentially to zero following a rate

which depends on the difference of the two largest Lyapunov exponents σ1 and σ2. In section 4

we demonstrate the ability of the method to reveal the detailed structure of the dynamics in

the phase space. In section 5 we compare the SALI method with some other known methods

of chaos detection and in section 6 we summarize our results.
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2. Application of the SALI in Hamiltonian systems

The basic idea behind the success of the SALI method [3] is the introduction of a simple

quantity that clearly indicates if a deviation vector is aligned with the direction of the

eigenvector which corresponds to the maximal LCE. In general, any two randomly chosen

initial deviation vectors �w1(0), �w2(0) will become aligned with the most unstable direction and

the angle between them will rapidly tend to zero [2]. Thus, we check if the two vectors have the

same direction in phase space, which is equivalent to the computation of the above-mentioned

angle.

More specifically, we follow simultaneously the time evolution of an orbit with initial

condition �x(0) and two deviation vectors with initial conditions �w1(0), �w2(0). As we are only

interested in the directions of these two vectors we normalize them, at every time step, keeping

their norm equal to 1. This controls the exponential increase of the norm of the vectors and

avoids overflow problems. Since, in the case of chaotic orbits the normalized vectors point to

the same direction and become equal or opposite in sign, the minimum of the norms of their

sum (antiparallel alignment index) or difference ( parallel alignment index) tends to zero. So

the SALI is defined as

SALI(t) = min

{
∥

∥

∥

∥

�w1(t)

‖ �w1(t)‖
+

�w2(t)

‖ �w2(t)‖

∥

∥

∥

∥

,

∥

∥

∥

∥

�w1(t)

‖ �w1(t)‖
− �w2(t)

‖ �w2(t)‖

∥

∥

∥

∥

}

(2)

where t is the time and ‖·‖ denotes the Euclidean norm. From the above definition it is

evident that SALI(t) ∈ [0,
√

2] and when SALI = 0 the two normalized vectors have the

same direction, being equal or opposite.

In order to apply the SALI method to Hamiltonian systems, we shall use here two simple

examples with two and three degrees of freedom: the well-known 2D Hénon–Heiles system

[10], having the Hamiltonian function

H2 = 1
2

(

p2
x + p2

y

)

+ 1
2
(x2 + y2) + x2y − 1

3
y3 (3)

with equations of motion

ẍ = −x − 2xy ÿ = −y − x2 + y2 (4)

and the 3D Hamiltonian system

H3 = 1
2

(

p2
x + p2

y + p2
z

)

+ 1
2
(Ax2 + By2 + Cz2) − ǫxz2 − ηyz2 (5)

with equations

ẍ = −Ax + ǫz2 ÿ = −By + ηz2 z̈ = −Cx + 2z(ǫx + ηy) (6)

studied in [11, 12]. We keep the parameters of the two systems fixed at the energies H2 = 0.125

and H3 = 0.007 65, with A = 0.9, B = 0.4, C = 0.225, ǫ = 0.56 and η = 0.2.

A simple qualitative way of studying the dynamics of a Hamiltonian system is by plotting

the successive intersections of the orbits with a Poincaré surface of section (PSS) [13]. This

method has been extensively applied to 2D Hamiltonians, as in these systems the PSS is a two-

dimensional plane. In 3D systems, however, the PSS is four dimensional and the behaviour

of the orbits cannot be easily visualized. One way to overcome this problem is to project the

PSS to spaces with lower dimensions (see, e.g., [14, 15]). However, even these projections

are often very complicated and difficult to interpret.

In order to illustrate the behaviour of the SALI in 2D and 3D systems we first consider

some representative ordered and chaotic orbits. In figure 1(a) we plot the intersection points

of an ordered and a chaotic orbit of equations (4), with a PSS defined by x = 0. The points

of the ordered orbit lie on a torus and form a smooth closed curve on the PSS. On the other
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(a) (b)

Figure 1. (a) The PSS of an ordered and a chaotic orbit with initial conditions x = 0,

y = 0.1, px ≃ 0.490 58, py = 0 and x = 0, y = −0.25, px ≃ 0.420 81, py = 0, respectively,

for the Hénon–Heiles system (3). The ordered orbit corresponds to a closed (solid) elliptic curve,

while the chaotic one is represented by the dots scattered over the PSS. (b) The time evolution of

the SALI for the two orbits of panel (a) in log–log scale. The solid line corresponds to the ordered

orbit while the dashed line corresponds to the chaotic orbit.

hand, the points of the chaotic orbit appear randomly scattered. The time evolution of the

SALI for these two orbits is plotted in figure 1(b). In the case of the ordered orbit (solid line)

the SALI remains different from zero, while in the case of the chaotic orbit (dashed line), after

a small transient time, the SALI falls abruptly to zero. At t ≈ 800 the SALI becomes zero

as it has reached the limit of the accuracy of the computer (10−16), which means that the two

deviation vectors have the same direction. Thus, after t ≈ 800 the two normalized vectors

are represented by exactly the same numbers in the computer and we can safely argue, that to

this accuracy the orbit is chaotic. Actually, we could conclude that the orbit is chaotic even

sooner, considering that the directions of the two vectors practically coincide when the SALI

reaches a small value, e.g. 10−8 after some 400 time units. Entirely analogous behaviour of the

SALI distinguishes between ordered and chaotic orbits of the 3D Hamiltonian (5), as shown

in figure 2.

The initial deviation vectors, �w = (dx, dy, dpx, dpy), used for both orbits of figure 1

are �w1(0) = (1, 0, 0, 0), �w2(0) = (0, 0, 1, 0), but in general any other initial choice leads

to similar behaviour of the SALI. The validity of the above statement is supported by the

following computations: focusing our attention on the more interesting case of chaotic motion

we study the chaotic orbit of figure 1 by fixing one of the initial deviation vectors, keeping

it, e.g., �w1(0) = (0, 1, 0, 0) and varying the second one �w2(0). For every different pair of

initial vectors �w1(0), �w2(0) we compute the time T needed for the SALI to become smaller

than a very small value e.g. 10−12 and check if the value of T depends on the particular choice

of initial deviation vectors. We choose �w2(0) in two different ways. Firstly, we consider

the two initial vectors to be on the PSS of figure 1 having an angle θ between them so that

�w2(0) = (0, cos θ, 0, sin θ). In figure 3(a) we plot T as a function of θ for θ ∈ [0, π ]. As

expected T = 0 for θ = 0 and θ = π since the two vectors are initially aligned. The maximum

value of T for θ ≈ 0.405π corresponds to the case of �w2(0) being almost perpendicular to

the unstable manifold which passes near the initial condition of the orbit. In this case the
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Figure 2. The time evolution of the SALI for an ordered (solid line) and a chaotic orbit

(dashed line) of the 3D Hamiltonian (5), with initial conditions x = 0.010 54, y = 0.050 60,

z = 0, px = 0, py = 0, pz ≃ 0.119 06 and x = −0.073 10, y = 0, z = 0, px = 0.076 95,

py = 0, pz ≃ 0.067 60, respectively.

(a) (b)

Figure 3. The time T needed for the SALI to become less than 10−12 in the case of the

chaotic orbit of figure 1 when we use as initial deviation vectors �w1(0) = (0, 1, 0, 0) and

(a) �w2(0) = (0, cos θ, 0, sin θ), and (b) �w2(0) being a random vector. T is plotted as a function of

θ in (a), and as a function of a counter i of the randomly generated vectors in (b).

component of �w2(0) along the unstable direction is almost zero and thus, the time needed for

the vector to develop a significant component along this direction, which will eventually lead

it to align with the other deviation vector, is maximized. We remark that for all θ ∈ (0, π)T

does not change significantly, as it practically varies between 400 and 500 time units. As

there is no reason for �w1(0), �w2(0) to be on the PSS the second test we perform is to compute
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(a) (b)

Figure 4. The time evolution of (a) the Lt and (b) the SALI for the chaotic orbit x = 0,

y = −0.015 97, px ≃ 0.499 74, py = 0 of the 2D system (3).

T for 1000 �w2(0) whose coordinates are randomly generated numbers (figure 3(b)). From

the results of figure 3 we see that T practically does not depend on the choice of the initial

deviation vectors.

On the other hand, the computation of the maximal LCE, using equation (1), despite

its usefulness in many cases, does not have the same convergence properties over the same

time interval. This becomes evident in figure 4 where we plot the evolution of the Lt

(panel (a)) and the SALI (panel (b)) for a chaotic orbit of equations (4). At t ≈ 1900 the

SALI reaches the value 10−16 and no further computations are needed. Of course we could

be sure for the chaotic nature of the orbit before that time, for example at t ≈ 1000 (where

the SALI ≈ 10−8). On the other hand, the computation of the Lt (figure 4(a)) up to t ≈ 1000

or even up to t ≈ 1900, still shows no clear evidence of convergence. Although figure 4(a)

suggests that the orbit might probably be chaotic, it does not allow us to conclude its chaotic

nature with certainty, and so further computations of Lt are needed. Thus, it becomes evident

that an advantage of the SALI, with respect to the computation of Lt , is that the current

value of the SALI is sufficient to determine the chaotic nature of an orbit, in contrast to the

maximal LCE where the whole evolution of the deviation vector affects the computed value

of Lt .

3. The behaviour of the SALI for ordered and chaotic motion

As we have seen for ordered orbits the SALI remains different from zero fluctuating around

some non-zero value. The behaviour of the SALI for ordered motion was studied and explained

in detail in the case of a completely integrable 2D Hamiltonian [16], in which no chaotic orbits

exist. It was shown that any pair of arbitrary deviation vectors tend to the tangent space of

the torus, on which the motion is governed by two-independent vector fields, corresponding

to the two integrals of motion. Thus, since �w1(t) and �w2(t) in general have one component

‘along’ and one ‘across’ the torus, there is no reason why they should become aligned and

thus typically end up oscillating about two different directions. This explains why the SALI

does not go to zero in the case of ordered motion.
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Now let us investigate the dynamics in the vicinity of chaotic orbits of a Hamiltonian

system of n degrees of freedom. An orbit of this system is defined by �x = (q1, q2, . . . ,

qn, p1, p2, . . . , pn), with qi, pi , i = 1, . . . , n being the generalized coordinates and the

conjugate momenta, respectively. The time evolution of this orbit is given by Hamilton’s

equations of motion

d�x
dt

= �V (�x) =
(

∂H

∂ �p ,−∂H

∂ �q

)

. (7)

Solving the variational equations about a solution of (7), �x(t), which represents our reference

orbit under investigation,

d �w
dt

= M(�x(t)) �w (8)

where M = ∂ �V /∂�x is the Jacobian matrix of �V , we obtain the time evolution of an initial

deviation vector �w(t0), for sufficiently small intervals [t0, t0 + �t]. Note now that, in this

context, the eigenvalues λ1 � λ2 � · · · � λ2n of M, at t = t0, may be thought of as

local Lyapunov exponents, with ê1, ê2, . . . , ê2n the corresponding unitary eigenvectors. These

eigenvalues in fact oscillate about their time averaged values, σ1 � σ2 � · · · � σ2n, which are

the global LCEs of the dynamics in that region. As is well known in Hamiltonian systems,

the Lyapunov exponents of chaotic orbits are real and are grouped in pairs of opposite sign

with at least two of them being equal to zero [13]. Thus, the evolution of any initial deviation

vector �w1(0) is given by

�w1(t) =
2n

∑

i=1

c
(1)
i eλi t êi (9)

where the c
(1)
i are in general complex numbers and λi, êi depend on the specific location

in phase space, �x(t0), through which our orbit passes. Note that we consider here only real

eigenvalues and hence real c
(1)
i . If some of the λi are complex, their corresponding contribution

to (9) will be oscillatory and will not affect the argument that follows.

To obtain a first rough idea of the way the SALI evolves, we now make some

approximations on the evolution of this deviation vector. First let us assume that the λi

do not fluctuate significantly about their averaged values and hence can be approximated by

them, i.e. λi ≈ σi . Secondly, we consider that the major contribution to �w1(t) comes from the

two largest terms of equation (9), so that

�w1(t) ≈ c
(1)
1 eλ1t ê1 + c

(1)
2 eλ2t ê2 ≈ c

(1)
1 eσ1t ê1 + c

(1)
2 eσ2t ê2. (10)

In this approximation, we now use (10) to derive a leading order estimate of the ratio

�w1(t)

‖ �w1(t)‖
≈ c

(1)
1 eσ1t ê1 + c

(1)
2 eσ2t ê2

∣

∣c
(1)
1

∣

∣ eσ1t
= s1ê1 +

c
(1)
2

∣

∣c
(1)
1

∣

∣

e−(σ1−σ2)t ê2 (11)

and an entirely analogous expression for a second deviation vector

�w2(t)

‖ �w2(t)‖
≈ c

(2)
1 eσ1t ê1 + c

(2)
2 eσ2t ê2

∣

∣c
(2)
1

∣

∣ eσ1t
= s2ê1 +

c
(2)
2

∣

∣c
(2)
1

∣

∣

e−(σ1−σ2)t ê2 (12)

where si = sign
(

c
(i)
1

)

, i = 1, 2.

In order to compute the SALI, as defined by (2) we add and subtract equations (11) and

(12) keeping the norm of the minimum of the two evaluated quantities. Thus, ê1 does not

appear in the expression of the SALI, which becomes

SALI(t) = min

∥

∥

∥

∥

�w1(t)

‖ �w1(t)‖
± �w2(t)

‖ �w2(t)‖

∥

∥

∥

∥

≈
∣

∣

∣

∣

∣

c
(1)
2

∣

∣c
(1)
1

∣

∣

± c
(2)
2

∣

∣c
(2)
1

∣

∣

∣

∣

∣

∣

∣

e−(σ1−σ2)t‖ê2‖. (13)
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(a) (b)

Figure 5. (a) The evolution of Lt for the chaotic orbit with initial condition x = 0,

y = −0.25, px ≃ 0.420 81, py = 0 of the 2D system (3). (b) The SALI of the same orbit

(solid line) and the function e−σ1t (dashed line) for σ1 = 0.047. Note that the t-axis is linear.

Denoting by c the positive quantity on the r.h.s of the above equation and using the fact that

ê2 is a unitary vector we obtain

SALI(t) ≈ c e−(σ1−σ2)t . (14)

Equation (14) clearly suggests that the SALI for chaotic orbits tends to zero exponentially and

the rate of this decrease is related to the two largest LCEs of the dynamics.

Let us test the validity of this result by recalling that 2D Hamiltonian systems have only

one positive LCE σ1, since the second largest is σ2 = 0. So, equation (14) becomes for such

systems

SALI(t) ≈ c e−σ1t . (15)

In figure 5(a) we plot in log–log scale Lt as a function of time t for a chaotic orbit of the

2D system (3). Lt remains different from zero, which implies the chaotic nature of the

orbit. Following its evolution for a sufficiently long time interval to obtain reliable estimates

(t ≈ 10 000) we obtain σ1 ≈ 0.047. In figure 5(b) we plot the SALI for the same orbit

(solid line) using linear scale for the time t. Again we conclude that the orbit is chaotic as

SALI ≈ 10−16 for t ≈ 800. If equation (15) is valid, the slope of the SALI in figure 5(b)

should be given approximately by σ1, being actually −σ1/ ln 10, because log(SALI) is a linear

function of t. As we are only interested in the slope of the SALI, we plot in figure 5(b)

equation (15) for an appropriate value of c (here c = 1) and σ1 = 0.047 (dashed line) and

find that the agreement of the approximate formula (14) to the computed values of the SALI

is indeed quite satisfactory.

Chaotic orbits of 3D Hamiltonian systems generally have two positive Lyapunov

exponents, σ1 and σ2. So, for approximating the behaviour of the SALI by equation (14), both

σ1 and σ2 are needed. We compute σ1, σ2 for a chaotic orbit of the 3D system (5) as the long

time estimates of some appropriate quantities σ1t , σ2t by applying the method proposed by

Benettin et al [2]. The results are presented in figure 6(a). The computation is carried out until

σ1t and σ2t stop having high fluctuations and approach some non-zero values (since the orbit

is chaotic), which could be considered as good approximations of their limits σ1, σ2. Actually

for t ≈ 105 we have σ1t ≈ 0.0107, σ2t ≈ 0.0005. Using these values as good approximations
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(a) (b)

Figure 6. (a) The evolution of the two Lyapunov exponents σ1t , σ2t for the chaotic orbit with

initial condition x = 0, y = 0, z = 0, px = 0, py = 0, pz ≃ 0.123 693 of the 3D system

(5). (b) The SALI of the same orbit (solid line) and the function c e−(σ1−σ2)t (dashed line) for

σ1 = 0.0107, σ2 = 0.0005 and c = 104. Note that the t-axis is linear.

of σ1, σ2 we see in figure 6(b) that the slope of the SALI (solid line) is well reproduced by

equation (14) (dashed line). Note how much more quickly the SALI convergence to zero shows

chaotic behaviour, while the two LCEs, σ1t , σ2t , take much longer to reach their limit values.

Moreover, the results presented in figures 5 and 6 give strong evidence for the validity of

equation (14) in describing the behaviour of the SALI for chaotic motion. So we conclude that

for chaotic motion the SALI is related to the two largest Lyapunov exponents and decreases

asymptotically as SALI ∝ e−(σ1−σ2)t .

4. Distinguishing between regions of order and chaos

The SALI offers indeed an easy and efficient method for distinguishing the chaotic versus

ordered nature of orbits in a variety of problems. In the present section we use it for identifying

regions of phase space where large scale ordered and chaotic motion are both present.

In figure 7 we present a detailed plot of the x = 0 PSS of the 2D Hénon–Heiles system

(3). Regions of ordered motion, around stable periodic orbits, are seen to coexist with chaotic

regions filled by scattered points. In order to demonstrate the effectiveness of the SALI

method, we first consider orbits whose initial conditions lie on the line py = 0. In particular

we take 5000 equally spaced initial conditions on this line and compute the value of the SALI

for each one. The results are presented in figure 8 where we plot the SALI as a function of

the y coordinate of the initial condition of these orbits for t = 1000 (panel (a)) and t = 4000

(panel (b)). In both panels the data points are line connected, so that the changes of the

SALI values are clearly visible. Note that there are intervals where the SALI has large values

(e.g. larger than 10−4), which correspond to ordered motion in the island of stability crossed

by the py = 0 line in figure 7. There also exist regions where the SALI has very small

values (e.g. smaller than 10−12) denoting that in these regions the motion is chaotic. These

intervals correspond to the regions of scattered points crossed by the py = 0 line in figure 7.

Although most of the initial conditions give large (>10−4) or very small (�10−12) values

for the SALI, there also exist initial conditions that have intermediate values of the SALI
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Figure 7. The PSS x = 0 of the 2D Hénon–Heiles system (3). The axis py = 0 is also plotted.

(a) (b)

Figure 8. The values of the SALI for (a) t = 1000 and (b) t = 4000 for orbits of the 2D system

(3) with initial conditions on the py = 0 line on the PSS (figure 7), as a function of the y coordinate

of the initial condition.

(10−12 < SALI � 10−4) e.g. at t = 1000 in figure 8(a). These initial conditions correspond

to sticky chaotic orbits, remaining for long time intervals at the borders of islands, whose

chaotic nature will be revealed later on. By comparing figures 8(a) and (b) it becomes evident

that almost all points having 10−12 < SALI � 10−4 in figure 8(a) move downwards to very

small values of the SALI in figure 8(b), while the intervals that correspond to ordered motion

remain the same. Again in figure 8(b) there exist few points having intermediate values of the

SALI, which correspond to sticky orbits whose SALI will eventually become zero. We note

that it is not easy to define a threshold value, so that the SALI being smaller than this value

reliably signifies chaoticity. Nevertheless, numerical experiments in several systems show that

in general a good guess for this value could be �10−4.
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Figure 9. Regions of different values of the SALI (a) on the PSS x = 0 of the 2D Hénon–Heiles

system (3), at t = 1000 and (b) on the subspace y = 0, py = 0 of the PSS z = 0 of the 3D system

(5), at t = 5000. In both frames initial conditions are coloured black if their SALI � 10−12, deep

grey if 10−12 < SALI � 10−8, grey if 10−8 < SALI � 10−4 and light grey if SALI > 10−4.

In both panels of figure 8, around y ≈ −0.1 there exists a group of points inside a big

chaotic region having SALI > 10−4. These points correspond to orbits with initial conditions

inside a small stability island, which is not even visible in the PSS of figure 7. Also the point

with y = −0.2088 has very high value of the SALI (>0.1) in both panels of figure 8, while all

its neighbouring points have SALI < 10−9 even for t = 1000. This point actually corresponds

to an ordered orbit inside a tiny island of stability, which can be revealed only after a very

high magnification of this region of the PSS. So, we see that the systematic application of the

SALI method can reveal very fine details of the dynamics.

By carrying out the above analysis for points not only along a line but on the whole plane

of the PSS, and giving to each point a colour according to the value of the SALI, we can have

a clear picture of the regions where chaotic or ordered motion occurs. The outcome of this

procedure for the 2D Hénon–Heiles system (3), using a dense grid of initial conditions on

the PSS, is presented in figure 9(a). The values of the logarithm of the SALI are divided in

four intervals. Initial conditions having different values of the SALI at t = 1000 are plotted

by different shades of grey: black if SALI � 10−12, deep grey if 10−12 < SALI � 10−8,

grey if 10−8 < SALI � 10−4 and light grey if SALI > 10−4. Thus, in figure 9(a) we clearly

distinguish between light grey regions, where the motion is ordered and black regions, where

it is chaotic. At the borders between these regions we find deep grey and grey points, which

correspond to sticky chaotic orbits. It is worth mentioning that in figure 9(a) we can see small

islands of stability inside the large chaotic sea, which are not visible in the PSS of figure 7,

such as that for y ≈ −0.1, py ≈ 0. Although figure 9(a) was computed for only t = 1000

(such as figure 8(a)), this time was sufficient for the clear revelation of small ordered regions

inside the chaotic sea.

The construction of figure 9(a) was actually speeded up by attributing the final value of the

SALI (at t = 1000) of an orbit to all its intersection points with the PSS, and by stopping the

evolution of the orbit if its SALI became equal to zero for t < 1000. For a grid of 375 × 750

equally spaced initial conditions on the py � 0 part of the figure, we need about 2 h of CPU

time on a Pentium 4 2GHz PC. Although it is difficult to estimate, we expect that it would
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take considerably longer to discern the same kind of detail, by straightforward integration of

equations (4) for a similar grid of initial conditions.

For 3D Hamiltonians the PSS is four dimensional and thus, not so useful as in the 2D

case. On the other hand, the SALI can again identify successfully regions of order and chaos

in phase space. To see this, let us start with initial conditions on a 4d grid of the PSS and

attribute again the final value of the SALI of an orbit to all the points visited by the orbit. In

this way, we again find regions of order and chaos, which may be visualized, if we restrict our

study to a subspace of the whole 4d phase space. As an example, we plot in figure 9(b) the

subspace y = 0, py = 0 of the 4d PSS z = 0 of the 3D system (5), using the same technique

as in figure 9(a). Again we can see regions of ordered (coloured in light grey) and chaotic

motion (coloured in black), as well as sticky chaotic orbits (coloured in deep grey and grey)

at the edges of these regions. Pictures such as those of figure 9, apart from presenting the

regions of order and chaos, can also be used to estimate roughly the fraction of phase-space

volume occupied by chaotic or ordered orbits and provide good initial guesses for the location

of stable periodic orbits, in regions where the motion is ordered.

5. Comparison with other methods

The results presented in the previous sections show that the SALI is a simple, efficient and

easy to compute tool for distinguishing between ordered and chaotic motion. Implementing

the SALI is an easy computational task as we only have to follow the evolution of an orbit and

of two deviation vectors, computing in every time step the minimum norm of the difference

and the addition of these vectors. In the case of chaotic motion the SALI eventually tends

exponentially to zero, reaching rapidly very small values or even the limit of the accuracy of

the computer. On the other hand, in the case of ordered motion the SALI fluctuates around

non-zero values. It is exactly this different behaviour of the SALI that makes it an ideal tool

of chaos detection. The SALI has a clear physical meaning as zero, or a very small value of

the index, signifies the alignment of the two deviation vectors. An advantage of the method is

that the index ranges in a defined interval (SALI ∈ [0,
√

2]) and so very small values of the

SALI (e.g., smaller than 10−8) establish the chaotic nature of an orbit beyond any doubt.

The SALI helps us decide the chaotic nature of orbits faster and with less computational

effort than the estimation of the maximal LCE. This happens because the time needed for Lt

to give a clear and undoubted indication of convergence to non-zero values is usually much

greater than the time in which the SALI becomes practically zero, as can be seen in figures 4,

5 and 6.

Many other chaos indicators have been introduced in recent years, some of which are

compared in this section with the SALI. We also study in more detail the latest method

we very recently became aware of, the so-called 0–1 test, introduced by Gottwald and

Melbourne [17].

The efficiency of the SALI was compared in [3] with the well-known method of the fast

Lyapunov indicator (FLI) [18, 19] and the method of the spectral distance D of spectra of

stretching numbers [20]. It was shown that the SALI has comparable behaviour to the FLI

both for ordered and chaotic orbits, with the SALI being able to decide the nature of an orbit

at least as fast as the FLI. An advantage of the SALI method with respect to the FLI is the

fact that the SALI ranges in a given interval, with very small values corresponding to chaotic

behaviour, while the values of FLI increase in time, both for ordered and chaotic motion, but

with different rates. So, the interpretation of different colours in colour plots produced by the

SALI method, such as those of figure 9, does not depend on the integration time of the orbits,

in contrast to similar plots of the FLI, since the range of FLI values changes as time grows.
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As was explained in detail in [3] the computation of the SALI is much easier and faster than

the computation of the spectral distance D, mainly because we do not have to go through the

computation of the spectra of stretching numbers. Also the SALI can be used to distinguish

between order and chaos in the case of 2d maps, where the spectral distance D cannot be

applied.

Sándor et al [21] comparing the relative Lyapunov indicator (RLI) method with the SALI

showed that both indices have similar behaviours even in cases of weakly chaotic motion. The

RLI is practically the absolute value of the difference of Lt of two initially nearby orbits, with

very small values of the RLI denoting ordered motion, while large differences between the Lt

denote chaotic behaviour (for more information on the RLI method see [21]). We note that

the computation of the RLI requires the time evolution of two orbits and two deviation vectors

(one for each orbit), while the computation of the SALI is faster as we compute one orbit and

two deviation vectors.

Very recently, Gottwald and Melbourne [17] introduced a new test for distinguishing

ordered from chaotic behaviour in deterministic dynamical systems: the 0–1 test. The method

is quite general and can be applied directly to long time series data produced by the evolution

of a dynamical system. In this sense, the 0–1 test is more general than the SALI for the

computation of which we need to know the equations that govern the evolution of the system,

as well as its variational equations. The 0–1 test uses the real valued function

p(t) =
∫ t

0

φ(s) cos(ψ(s)) ds (16)

where φ(s) is, in general, any observable of the underlying dynamics and

ψ(t) = kt +

∫ t

0

φ(s) ds (17)

with k being a positive constant. By defining the mean-square-displacement of p(t)

M(t) = lim
T →∞

1

T

∫ T

0

(p(t + τ) − p(τ))2 dτ (18)

and setting

K(t) = log(M(t) + 1)

log t
(19)

one takes the limit

K = lim
t→∞

K(t) (20)

and characterizes the particular orbit as ordered if K = 0, or chaotic if K = 1. The justification

of the 0–1 test, as well as applications of the method to some dynamical systems can be found

in [17].

In order to compare the 0–1 test with the SALI method we apply it in the cases of the

ordered and chaotic orbits of the Hénon–Heiles system (3) presented in figure 1. Recall that in

the case of the chaotic orbit the SALI determines the true nature of the orbit at t ≈ 800 when

SALI ≈ 10−16, or even at t ≈ 400 if we consider the more loose condition that SALI ≈ 10−8

guarantees chaoticity. We consider as an observable φ(t) the quantity

φ(t) = y(t) + py(t) (21)

while for the constant k we adopt the value used in [17], i.e. k = 1.7. The application of the

0–1 test requires a rather long time series of the observable φ(t) in order to reliably compute

firstly M(t) for T → ∞ (equation (18) and secondly K as the limit of K(t) for t → ∞
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Figure 10. Application of the 0–1 test for the orbits of figure 1. K(t) oscillates with an amplitude

decreasing towards K = 0 for the ordered orbit (solid line), while it tends to K = 1 for the chaotic

orbit (dashed line).

(equation 20). In our computations we set T = 900 00 time units and compute K(t) for

t ∈ (0, 100 00), which means that the particular orbit is integrated up to t = 105 time units.

Although the assumption T ≫ t , which is formally required for the convergence of K(t)

(see [17]), is not fulfilled, the behaviour of K(t) for the ordered and chaotic orbit is different,

allowing us to distinguish between the two cases (figure 10). In particular, K(t) increases

for the chaotic orbit (dashed line in figure 10) showing a tendency to reach K = 1, while it

tends to K = 0 for the ordered orbit (solid line in figure 10) exhibiting fluctuations of slowly

decreasing amplitude. From these results it is obvious that the true nature of the orbits is

determined correctly by the 0–1 test, but the computational effort needed in order to be able to

characterize the orbits is much higher than in the case of the SALI. This difference is due to,

firstly, the more complicated way of estimating K, in comparison with the computation of the

SALI, as we have to compute several integrals, and secondly, the fact that we must compute

the particular orbit for sufficiently long time, in order to approximate the limits of equations

(18), (20). Of course, as we have already mentioned, the 0–1 test is more general as it can

also be readily applied to time series data, without knowing necessarily the equations of the

dynamical system.

6. Summary

In this paper we have applied the SALI method to distinguish between order and chaos in 2D

and 3D autonomous Hamiltonian systems, and have also analysed the behaviour of the index

for chaotic orbits. Our results can be summarized as follows:

• The SALI proves to be an ideal indicator of chaoticity independent of the dimensions of

the system. It tends to zero for chaotic orbits, while it exhibits small fluctuations around

non-zero values for ordered ones and so it clearly distinguishes between these two cases.

Its advantages are its simplicity, efficiency and reliability as it can rapidly and accurately
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determine the chaotic versus ordered nature of a given orbit. In regions of ‘stickiness’,

of course, along the borders of ordered motion it displays transient oscillations. However,

once the orbit enters a large chaotic domain the SALI converges exponentially to zero,

often at shorter times than it takes the maximal Lyapunov exponent to converge to its

limiting value.

• We emphasize that the main advantage of the SALI in chaotic regions is that it uses two

deviation vectors and exploits at every step, their convergence to the unstable manifold

from all previous steps. This allows us to show that the SALI tends to zero for chaotic

orbits at a rate which is related to the difference of the two largest Lyapunov characteristic

exponents σ1, σ2 as SALI ∝ e−(σ1−σ2)t . By comparison, the computation of the maximal

LCE, even though it requires only one deviation vector and one exponent, σ1, often

takes longer to converge, since it needs to average over many time intervals, where the

calculation of this exponent is independent from all previous intervals. The SALI was also

proved to have similar or even better performance than other methods of chaos detection

which were briefly discussed in section 5.

• The SALI ∈ [0,
√

2] and its value characterize an orbit of being chaotic or ordered.

Exploiting this feature of the index we have plotted detailed phase-space portraits both

for 2D and 3D Hamiltonian systems, where the chaotic and ordered regions are clearly

distinguished. We were thus able to trace in a fast and systematic way very small islands

of ordered motion, whose detection by traditional methods would be very difficult and

time consuming. This approach is therefore expected to provide useful tools for the

location of stable periodic orbits, or the computation of the phase-space volume occupied

by ordered or chaotic motion in multi-dimensional systems, where the PSS is not easily

visualized, and very few other similar techniques of practical value are available.
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[18] Froeschlé C, Lega E and Gonczi R 1997 Celest. Mech. Dyn. Astron. 67 41
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