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Abstract

Most state-of-the-art text detection methods are specific

to horizontal Latin text and are not fast enough for real-time

applications. We introduce Segment Linking (SegLink), an

oriented text detection method. The main idea is to decom-

pose text into two locally detectable elements, namely seg-

ments and links. A segment is an oriented box covering a

part of a word or text line; A link connects two adjacent

segments, indicating that they belong to the same word or

text line. Both elements are detected densely at multiple

scales by an end-to-end trained, fully-convolutional neural

network. Final detections are produced by combining seg-

ments connected by links. Compared with previous meth-

ods, SegLink improves along the dimensions of accuracy,

speed, and ease of training. It achieves an f-measure of

75.0% on the standard ICDAR 2015 Incidental (Challenge

4) benchmark, outperforming the previous best by a large

margin. It runs at over 20 FPS on 512×512 images. More-

over, without modification, SegLink is able to detect long

lines of non-Latin text, such as Chinese.

1. Introduction

Reading text in natural images is a challenging task un-

der active research. It is driven by many real-world appli-

cations, such as Photo OCR [2], geo-location, and image

retrieval [9]. In a text reading system, text detection, i.e.

localizing text with bounding boxes of words or text lines,

is usually the first step of great significance. In a sense, text

detection can be seen as object detection applied to text,

where words/characters/text lines are taken as the detection

targets. Owing to this, a new trend has emerged recently

that state-of-the-art text detection methods [9, 6, 22, 30] are

heavily based on the advanced general object detection or

segmentation techniques, e.g. [4, 5, 15].

Despite the great success of the previous work, we ar-

gue that the general detection methods are not well suited
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Figure 1. SegLink Overview. The upper row shows an image

with two words of different scales and orientations. (a) Segments

(yellow boxes) are detected on the image. (b) Links (green lines)

are detected between pairs of adjacent segments. (c) Segments

connected by links are combined into whole words. (d-f) SegLink

is able to detect long lines of Latin and non-Latin text, such as

Chinese.

for text detection, for two main reasons. First, word/text

line bounding boxes have much larger aspect ratios than

those of general objects. An (fast/faster) R-CNN [5, 4, 19]-

or SSD [14]-style detector may suffer from the difficulty

of producing such boxes, owing to its proposal or anchor

box design. In addition, some non-Latin text does not have

blank spaces between words, hence the even larger bound-

ing box aspect ratios, which make the problem worse. Sec-

ond, unlike general objects, text usually has a clear defini-

tion of orientation [25]. It is important for a text detector to

produce oriented boxes. However, most general object de-

tection methods are not designed to produce oriented boxes.

To overcome the above challenges, we tackle the text de-

tection problem in a new perspective. We propose to de-

compose long text into two smaller and locally-detectable

elements, namely segment and link. As illustrated in Fig. 1,

a segment is an oriented box that covers a part of a word
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Figure 2. Network Architecture. The network consists of convolutional feature layers (shown as gray blocks) and convolutional predictors

(thin gray arrows). Convolutional filters are specified in the format of “(#filters),k(kernel size)s(stride)”. A multi-line filter specification

means a hidden layer between. Segments (yellow boxes) and links (not displayed) are detected by convolutional predictors on multiple

feature layers (indexed by l = 1 . . . 6) and combined into whole words by a combining algorithm.

(for clarity we use “word” here and later on, but segments

also work seamlessly on text lines that comprise multiple

words); A link connects a pair of adjacent segments, indi-

cating that they belong to the same word. Under the above

definitions, a word is located by a number of segments

with links between them. During detection, segments and

links are densely detected on an input image by a convo-

lutional neural network. Then, the segments are combined

into whole words according to the links.

The key advantage of this approach is that long and ori-

ented text is now detected locally since both basic elements

are locally-detectable: Detecting a segment does not require

the whole word to be observed. And neither does a link

since the connection of two segments can be inferred from

a local context. Thereafter, we can detect text of any length

and orientation with great flexibility and efficiency.

Concretely, we propose a convolutional neural network

(CNN) model to detect both segments and links simultane-

ously, in a fully-convolutional manner. The network uses

VGG-16 [21] as its backbone. A few extra feature lay-

ers are added onto it. Convolutional predictors are added

to 6 of the feature layers to detect segments and links at

different scales. To deal with redundant detections, we in-

troduce two types of links, namely within-layer links and

cross-layer links. A within-layer link connects a segment

to its neighbors on the same layer. A cross-layer link, on

the other hand, connects a segment to its neighbors on the

lower layer. In this way, we connect segments of adjacent

locations as well as scales. Finally, we find connected seg-

ments with a depth-first search (DFS) algorithm and com-

bine them into whole words.

Our main contribution is the novel segment-linking de-

tection method. Through experiments, we show that the

proposed method possesses several distinctive advantages

over the other state-of-the-art methods: 1) Robustness:

SegLink models the structure of oriented text in a simple

and elegant way, with robustness against complex back-

grounds. Our method achieves highly competitive results

on standard datasets. In particular, it outperforms the previ-

ous best by a large margin in terms of f-measure (75.0% vs

64.8%) on the ICDAR 2015 Incidental (Challenge 4) bench-

mark [12]; 2) Efficiency: SegLink is highly efficient due

to its single-pass, fully-convolutional design. It processes

more than 20 images of 512x512 size per second; 3) Gener-

ality: Without modification, SegLink is able to detect long

lines of non-Latin text, such as Chinese. We demonstrate

this capability on a multi-lingual dataset.

2. Related Work

Text Detection Over the past few years, much research

effort has been devoted to the text detection problem [24,

23, 17, 17, 25, 7, 8, 30, 29, 2, 9, 6, 22, 26]. Based on the ba-

sic detection targets, the previous methods can be roughly

divided into three categories: character-based, word-based

and line-based. Character-based methods [17, 23, 24, 10, 7,

8] detect individual characters and group them into words.

These methods find characters by classifying candidate re-

gions extracted by region extraction algorithms or by classi-

fying sliding windows. Such methods often involve a post-

processing step of grouping characters into words. Word-

based methods [9, 6] directly detect word bounding boxes.

They often have a similar pipeline to the recent CNN-based

general object detection networks. Though achieving ex-

cellent detection accuracies, these methods may suffer from
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performance drop when applied to some non-Latin text such

as Chinese, as we mentioned earlier. Line-based meth-

ods [29, 30, 26] find text regions using some image seg-

mentation algorithms. They also require a sophisticated

post-processing step of word partitioning and/or false pos-

itive removal. Compared with the previous approaches,

our method predicts segments and links jointly in a single

forward network pass. The pipeline is much simpler and

cleaner. Moreover, the network is end-to-end trainable.

Our method is similar in spirit to a recent work [22],

which detects text lines by finding and grouping a sequence

of fine-scale text proposals through a CNN coupled with

recurrent neural layers. In contrast, we detect oriented seg-

ments only using convolutional layers, yielding better flexi-

bility and faster speed. Also, we detect links explicitly using

the same strong CNN features for segments, improving the

robustness.

Object Detection Text detection can be seen as a partic-

ular instance of general object detection, which is a funda-

mental problem in computer vision. Most state-of-the-art

detection systems either classify some class-agnostic ob-

ject proposals with CNN [5, 4, 19] or directly regress ob-

ject bounding boxes from a set of preset boxes (e.g. anchor

boxes) [18, 14].

The architecture of our network inherits that of SSD [14],

a recent object detection model. SSD proposed the idea of

detecting objects on multiple feature layers with convolu-

tional predictors. Our model also detects segments and links

in a very similar way. Despite the model similarity, our de-

tection strategy is drastically different: SSD directly out-

puts object bounding boxes. We, on the other hand, adopt

a bottom-up approach by detecting the two comprising ele-

ments of a word or text line and combine them together.

3. Segment Linking

Our method detects text with a feed-forward CNN

model. Given an input image I of size wI × hI , the model

outputs a fixed number of segments and links, which are

then filtered by their confidence scores and combined into

whole word bounding boxes. A bounding box is a ro-

tated rectangle denoted by b = (xb, yb, wb, hb, θb), where

xb, yb are the coordinates of the center, wb, hb the width

and height, and θb the rotation angle.

3.1. CNN Model

Fig. 2 shows the network architecture. Our network uses

a pretrained VGG-16 network [21] as its backbone (conv1

through pool5). Following [14], the fully-connected layers

of VGG-16 are converted into convolutional layers (fc6 to

conv6; fc7 to conv7). They are followed by a few extra con-

volutional layers (conv8 1 to conv11), which extract even

deeper features with larger receptive fields. Their configu-

rations are specified in Fig. 2.

Segments and links are detected on 6 of the feature lay-

ers, which are conv4 3, conv7, conv8 2, conv9 2, conv10 2,

and conv11. These feature layers provide high-quality deep

features of different granularity (conv4 3 the finest and

conv11 the coarsest). A convolutional predictor with 3 × 3
kernels is added to each of the 6 layers to detect segments

and links. We index the feature layers and the predictors by

l = 1, . . . , 6.

Segment Detection Segments are also oriented boxes, de-

noted by s = (xs, ys, ws, hs, θs). We detect segments by

estimating the confidence scores and geometric offsets to a

set of default boxes [14] on the input image. Each default

box is associated with a feature map location, and its score

and offsets are predicted from the features at that location.

For simplicity, we only associate one default box with a fea-

ture map location.

Consider the l-th feature layer whose feature map size

is wl × hl. A location (x, y) on this map corresponds to a

default box centered at (xa, ya) on the image, where

xa =
wI

wl

(x+ 0.5); ya =
hI

hl

(y + 0.5) (1)

The width and height of the default box are both set to a

constant al.

The convolutional predictor produces 7 channels for

segment detection. Among them, 2 channels are further

softmax-normalized to get the segment score in (0, 1). The

rest 5 are the geometric offsets. Considering a location

(x, y) on the map, we denote the vector at this location

along the depth by (∆xs, ∆ys, ∆ws, ∆hs, ∆θs). Then,

the segment at this location is calculated by:

xs = al∆xs + xa (2)

ys = al∆ys + ya (3)

ws = al exp(∆ws) (4)

hs = al exp(∆hs) (5)

θs = ∆θs (6)

Here, the constant al controls the scale of the output seg-

ments. It should be chosen with regard to the receptive

field size of the l-th layer. We use an empirical equation

for choosing this size: al = γ wI

wl
, where γ = 1.5.

Within-Layer Link Detection A link connects a pair of

adjacent segments, indicating that they belong to the same

word. Here, adjacent segments are those detected at adja-

cent feature map locations. Links are not only necessary for

combining segments into whole words but also helpful for

separating two nearby words – between two nearby words,

the links should be predicted as negative.
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Figure 3. Within-Layer and Cross-Layer Links. (a) A location

on conv8 2 (yellow block) and its 8-connected neighbors (blue

blocks with and without fill). The detected within-layer links

(green lines) connect a segment (yellow box) and its two neigh-

boring segments (blue boxes) on the same layer. (b) The cross-

layer links connect a segment on conv9 2 (yellow box) and two

segments on conv8 2 (blue boxes).

We explicitly detect links between segments using the

same features for detecting segments. Since we detect only

one segment at a feature map location, segments can be

indexed by their map locations (x, y) and layer indexes l,

denoted by s(x,y,l). As illustrated in Fig. 3.a, we define

the within-layer neighbors of a segment as its 8-connected

neighbors on the same feature layer:

Nw
s(x,y,l) = {s(x

′,y′,l)}x−1≤x′≤x+1,y−1≤y′≤y+1 \ s
(x,y,l)

(7)

As segments are detected locally, a pair of neighboring seg-

ments are also adjacent on input image. Links are also de-

tected by the convolutional predictors. A predictor outputs

16 channels for the links to the 8-connected neighboring

segments. Every 2 channels are softmax-normalized to get

the score of a link.

Cross-Layer Link Detection In our network, segments

are detected at different scales on different feature layers.

Each layer handles a range of scales. We make these ranges

overlap in order not to miss scales at their edges. But as

a result, segments of the same word could be detected on

multiple layers at the same time, producing redundancies.

To address this problem, we further propose another

type of links, called cross-layer links. A cross-layer link

connects segments on two feature layers with adjacent in-

dexes. For example, cross-layer links are detected between

conv4 3 and conv7, because their indexes are l = 1 and

l = 2 respectively.

An important property of such a pair is that the first layer

always has twice the size as the second one, because of the

down-sampling layer (max-pooling or stride-2 convolution)

between them. Note that this property only holds when all

feature layers have even-numbered sizes. In practice, we

ensured this property by having the width and height of the

input image both dividable by 128. For example, an 1000×
800 image is resized to 1024 × 768, which is the nearest

valid size.

As illustrated in Fig. 3.b, we define the cross-layer

neighbors of a segment as

(8)N c
s(x,y,l) = {s(x

′,y′,l−1)}2x≤x′≤2x+1,2y≤y′≤2y+1,

which are the segments on the preceeding layer. Every seg-

ment has 4 cross-layer neighbors. The correspondence is

ensured by the double-size relationship between the two

layers.

Again, cross-layer links are detected by the convolu-

tional predictor. The predictor outputs 8 channels for cross-

layer links. Every 2 channels are softmax-normalized to

produce the score of a cross-layer link. Cross-layer links

are detected on feature layer l = 2 . . . 6, but not on l = 1
(conv4 3) since it has no preceeding feature layer.

With cross-layer links, segments of different scales can

be connected and later combined. Compared with the tradi-

tional non-maximum suppression, cross-layer linking pro-

vides a trainable way of joining redundancies. Besides, it

fits seamlessly into our linking strategy and is easy to im-

plement under our framework.

segment 

scores

segment 

offsets

within-layer 

link scores

cross-layer 

link scores

2 5 16 8

�"

ℎ"

Figure 4. Output channels of a convolutional predictor. The block

shows a wl × hl map of depth 31. The predictor of l = 1 does not

output the channels for corss-layer links.

Outputs of a Convolutional Predictor Putting things to-

gether, Fig. 4 shows the output channels of a convolutional

predictor. A predictor is implemented by a convolutional

layer followed by some softmax layers that normalize the

segment and link scores respectively. Thereafter, all lay-

ers in our network are convolutional layers. Our network is

fully-convolutional.

3.2. Combining Segments with Links

After feed-forwarding, the network produces a number

of segments and links (the number depends on the image

size). Before combination, the output segments and links

are filtered by their confidence scores. We set different fil-

tering thresholds for segment and link, respectively α and β.
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Empirically, the performance of our model is not very sensi-

tive to these thresholds. A 0.1 deviation on either thresholds

from their optimal values results in less than 1% f-measure

drop.

Taking the filtered segments as nodes and the filtered

links as edges, we construct a graph over them. Then, a

depth-first search (DFS) is performed over the graph to find

its connected components. Each component contains a set

of segments that are connected by links. Denoting a con-

nected component by B, segments within this component

are combined following the procedures in Alg. 1.

Algorithm 1 Combining Segments

1: Input: B = {s(i)}
|B|
i=1 is a set of segments connected

by links, where s(i) = (x
(i)
s , y

(i)
s , w

(i)
s , h

(i)
s , θ

(i)
s ).

2: Find the average angle θb :=
1
|B|

∑

B θ
(i)
s .

3: For a straight line (tan θb)x + b, find the b that min-

imizes the sum of distances to all segment centers

(x
(i)
s , y

(i)
s ).

4: Find the perpendicular projections of all segment cen-

ters onto the straight line.

5: From the projected points, find the two with the longest

distance. Denote them by (xp, yp) and (xq, yq).

6: xb :=
1
2 (xp + xq)

7: yb :=
1
2 (yp + yq)

8: wb :=
√

(xp − xq)2 + (yp − yq)2 +
1
2 (wp + wq)

9: hb :=
1
|B|

∑

B h
(i)
s

10: b := (xb, yb, wb, hb, θb)

11: Output: b is the combined bounding box.

4. Training

4.1. Groundtruths of Segments and Links

The network is trained by the direct supervision of

groundtruth segments and links. The groundtruths include

the labels of all default boxes (i.e. the label of their corre-

sponding segments), their offsets to the default boxes, and

the labels of all within- and cross-layer links. We calculate

them from the groundtruth word bounding boxes.

First, we assume that there is only one groundtruth word

on the input image. A default box is labeled as positive iff

1) the center of the box is inside the word bounding box;

2) the ratio between the box size al and the word height h

satisfies:

max(
al

h
,
h

al
) ≤ 1.5 (9)

Otherwise, the default box is labeled as negative.

Next, we consider the case of multiple words. A default

box is labeled as negative if it does not meet the above-

mentioned criteria for any word. Otherwise, it is labeled as

positive and matched to the word that has the closest size,

i.e. the one with the minimal value at the left-hand side of

Eq. 9.

word 

bounding box

default box

box center

�

(1) Default box, word bounding box, and 

the center of the default box (blue dot)

(2) Rotate word clockwise by � along 

the center of the default box

(3) Crop word bounding box to remove 

the parts to the left and right of the 

default box

(4) Rotate the cropped box 

anticlockwise by � along the center of 

the default box

�

ℎ

�% 	
groundtruth 

segment

ℎ%	

�%, �%

Figure 5. The steps of calculating a groundtruth segment given a

default box and a word bounding box.

Offsets are calculated on positive default boxes. First,

we calculate the groundtruth segments following the steps

illustrated in Fig. 5. Then, we solve Eq. 2 to Eq. 6 to get the

groundtruth offsets.

A link (either within-layer or cross-layer) is labeled as

positive iff 1) both of the default boxes connected to it are

labeled as positive; 2) the two default boxes are matched to

the same word.

4.2. Optimization

Objective Our network model is trained by simultane-

ously minimizing the losses on segment classification, off-

sets regression, and link classification. Overall, the loss

function is a weighted sum of the three losses:

L(ys, cs,yl, cl, ŝ, s) =
1

Ns

Lconf(ys, cs)+λ1
1

Ns

Lloc(ŝ, s)

+ λ2
1

Nl

Lconf(yl, cl)

(10)

Here, ys is the labels of all segments. y
(i)
s = 1 if the i-th

default box is labeled as positive, and 0 otherwise. Like-

wise, yl is the labels of the links. Lconf is the softmax loss

over the predicted segment and link scores, respectively cs

and cl. Lloc is the Smooth L1 regression loss [4] over the

predicted segment geometries ŝ and the groundtruth s. The

losses on segment classification and regression are normal-

ized by Ns, which is the number of positive default boxes.

The loss on link classification is normalized by the number

of positive links Nl. The weight constants λ1 and λ2 are

both set to 1 in practice.
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Online Hard Negative Mining For both segments and

links, negatives take up most of the training samples. There-

fore, hard negative mining is necessary for balancing the

positive and negative samples. We follow the online hard

negative mining strategy proposed in [20] to keep the ra-

tio between the negatives and positives 3:1 at most. Hard

negative mining is performed separately for segments and

links.

Data Augmentation We adopt an online augmentation

pipeline that is similar to that of SSD [14] and YOLO [18].

Training images are randomly cropped to a patch that has a

minimum Jaccard overlap of o with any groundtruth word

Crops are resized to the same size before loaded into a

batch. For oriented text, the augmentation is performed on

the axis-aligned bounding boxes of the words. The overlap

o is randomly chosen from 0 (no constraint), 0.1, 0.3, 0.5,

0.7, and 0.9 for every sample. The crop size is randomly

chosen from [0.1, 1] of the original image size. Training

images are not horizontally flipped.

5. Experiments

In this section, we evaluate the proposed method on three

public datasets, namely ICDAR 2015 Incidental Text (Chal-

lenge 4), MSRA-TD500, and ICDAR 2013, using the stan-

dard evaluation protocol of each.

5.1. Datasets

SynthText in the Wild (SynthText) [6] contains 800,000

synthetic training images. They are created by blending nat-

ural images with text rendered with random fonts, size, ori-

entation, and color. Text is rendered and aligned to care-

fully chosen image regions in order have a realistic look.

The dataset provides very detailed annotations for charac-

ters, words, and text lines. We only use the dataset for pre-

training our network.

ICDAR 2015 Incidental Text (IC15) [12] is the Chal-

lenge 4 of the ICDAR 2015 Robust Reading Competition.

This challenge features incidental scene text images taken

by Google Glasses without taking care of positioning, im-

age quality, and viewpoint. Consequently, the dataset ex-

hibits large variations in text orientation, scale, and res-

olution, making it much more difficult than previous IC-

DAR challenges. The dataset contains 1000 training images

and 500 testing images. Annotations are provided as word

quadrilaterals.

MSRA-TD500 (TD500) [25] is the first standard dataset

that focuses on oriented text. The dataset is also multi-

lingual, including both Chinese and English text. The

dataset consists of 300 training images and 200 testing im-

ages. Different from IC15, TD500 is annotated at the level

of text lines.

ICDAR 2013 (IC13) [13] contains mostly horizontal text,

with some text slightly oriented. The dataset has been

widely adopted for evaluating text detection methods pre-

viously. It consists of 229 training images and 233 testing

images.

5.2. Implementation Details

Our network is pre-trained on SynthText and finetuned

on real datasets (specified later). It is optimized by the stan-

dard SGD algorithm with a momentum of 0.9. For both pre-

training and finetuning, images are resized to 384×384 after

random cropping. Since our model is fully-convolutional,

we can train it on a certain size and apply it to other sizes

during testing. Batch size is set to 32. In pretraining, the

learning is set to 10−3 for the first 60k iterations, then de-

cayed to 10−4 for the rest 30k iterations. During finetuning,

the learning rate is fixed to 10−4 for 5-10k iterations. The

number of finetuning iterations depends on the size of the

dataset.

Due to the precision-recall tradeoff and the difference

between evaluation protocols across datasets, we choose

the best thresholds α and β to optimize f-measure. Except

for IC15, the thresholds are chosen separately on different

datasets via a grid search with 0.1 step on a hold-out vali-

dation set. IC15 does not offer an offline evaluation script,

so the only way for us is to submit multiple results to the

evaluation server.

Our method is implemented using TensorFlow [1] r0.11.

All the experiments are carried out on a workstation with

an Intel Xeon 8-core CPU (2.8 GHz), 4 Titan X Graphics

Cards, and 64GB RAM. Running on 4 GPUs in parallel,

training a batch takes about 0.5s. The whole training pro-

cess takes less than a day.

5.3. Detecting Oriented English Text

First, we evaluate SegLink on IC15. The pretrained

model is finetuned for 10k iterations on the training dataset

of IC15. Testing images are resized to 1280 × 768. We set

the thresholds on segments and links to 0.9 and 0.7, respec-

tively. Performance is evaluated by the official central sub-

mission server (http://rrc.cvc.uab.es/?ch=4).

In order to meet the requirements on submission format, the

output oriented rectangles are converted into quadrilaterals.

Table 1 lists and compares the results of the proposed

method and other state-of-the-art methods. Some results are

obtained from the online leaderboard. SegLink outperforms

the others by a large margin. In terms of f-measure, it out-

performs the second best by 10.2%. Considering that some

methods have close or even higher precision than SegLink,
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Recall=1.0    Precision=0.86    F-Score=0.92 Recall=1.0    Precision=1.0    F-Score=1.0
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Figure 6. Example Results on IC15. Green regions are correctly detected text regions. Red ones are either false positive or false negative.

Gray ones are detected but neglected by the evaluation algorithm. Visualizations are generated by the central submission system. Yellow

frames contain zoom-in image regions.

Table 1. Results on ICDAR 2015 Incidental Text

Method Precision Recall F-measure

HUST MCLAB 47.5 34.8 40.2

NJU Text 72.7 35.8 48.0

StradVision-2 77.5 36.7 49.8

MCLAB FCN [30] 70.8 43.0 53.6

CTPN [22] 51.6 74.2 60.9

Megvii-Image++ 72.4 57.0 63.8

Yao et al. [26] 72.3 58.7 64.8

SegLink 73.1 76.8 75.0

the improvement mainly comes from the recall. As shown

in Fig. 6, our method is able to distinguish text from very

cluttered backgrounds. In addition, owing to its explicit link

prediction, SegLink correctly separates words that are very

close to each other.

5.4. Detecting MultiLingual Text in Long Lines

We further demonstrate the ability of SegLink to detect

long text in non-Latin scripts. TD500 is taken as the dataset

for this experiment, as it consists of oriented and multi-

lingual text. The training set of TD500 only has 300 im-

ages, which are not enough for finetuning our model. We

mix the training set of TD500 with the training set of IC15,

in the way that every batch has half of its images coming

from each dataset. The pretrained model is finetuned for 8k

iterations. The testing images are resized to 768×768. The

thresholds α and β are set to 0.9 and 0.5 respectively. Per-

formance scores are calculated by the official development

toolkit.

According to Table 2, SegLink achieves the highest

scores in terms of precision and f-measure. Benefiting from

its fully-convolutional design, SegLink runs at 8.9 FPS, a

Table 2. Results on MSRA-TD500

Method Precision Recall F-measure FPS

Kang et al. [11] 71 62 66 -

Yao et al. [25] 63 63 60 0.14

Yin et al. [27] 81 63 74 0.71

Yin et al. [28] 71 61 65 1.25

Zhang et al. [30] 83 67 74 0.48

Yao et al. [26] 77 75 76 ∼1.61

SegLink 86 70 77 8.9

much faster speed than the others. SegLink also enjoys sim-

plicity. The inference process of SegLink is a single forward

pass in the detection network, while the previous methods

[25, 28, 30] involve sophisticated rule-based grouping or fil-

tering steps.

TD500 contains many long lines of text in mixed lan-

guages (English and Chinese). Fig. 7 shows how SegLink

handles such text. As can be seen, segments and links are

densely detected along text lines. They result in long bound-

ing boxes that are hard to obtain from a conventional ob-

ject detector. Despite the large difference in appearance be-

tween English and Chinese text, SegLink is able to handle

them simultaneously without any modifications in its struc-

ture.

5.5. Detecting Horizontal Text

Lastly, we evaluate the performance of SegLink on

horizontal-text datasets. The pretrained model is finetuned

for 5k iterations on the combined training sets of IC13 and

IC15. Since the most text in IC13 has relatively larger sizes,

the testing images are resized to 512× 512. The thresholds

α and β are set to 0.6 and 0.3, respectively. To match the

submission format, we convert the detected oriented boxes
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Figure 7. Example Results on TD500. The first row shows the detected segments and links. The within-layer and cross-layer links

are visualized as red and green lines, respectively. Segments are shown as rectangles in different colors, denoting different connected

components. The second row shows the combined boxes.

into their axis-aligned bounding boxes.

Table 3 compares SegLink with other state-of-the-art

methods. The scores are calculated by the central sub-

mission system using the “Deteval” evaluation protocol.

SegLink achieves very competitive results in terms of f-

measure. Only one approach [22] outperforms SegLink in

terms of f-measure. However, [22] is mainly designed for

detecting horizontal text and is not well-suited for oriented

text. In terms of speed, SegLink runs at over 20 FPS on

512× 512 images, much faster than the other methods.

Table 3. Results on IC13. P, R, F stand for precision, recall and

f-measure respectively. *These methods are only evaluated under

the “ICDAR 2013” evaluation protocol, the rest under “Deteval”.

The two protocols usually yield very close scores.

Method P R F FPS

Neumann et al. [16]∗ 81.8 72.4 77.1 3

Neumann et al. [17]∗ 82.1 71.3 76.3 3

Busta et al. [3]∗ 84.0 69.3 76.8 6

Zhang et al. [29] 88 74 80 <0.1

Zhang et al. [30] 88 78 83 <1

Jaderberg et al. [9] 88.5 67.8 76.8 <1

Gupta et al. [6] 92.0 75.5 83.0 15

Tian et al. [22] 93.0 83.0 87.7 7.1

SegLink 87.7 83.0 85.3 20.6

5.6. Limitations

A major limitation of SegLink is that two thresholds, α

and β, need to be set manually. In practice, the optimal

values of the thresholds are found by a grid search. Sim-

plifying the parameters would be part of our future work.

Another weakness is that SegLink fails to detect text that

has very large character spacing. Fig. 8.a,b show two such

cases. The detected links connect adjacent segments but fail

to link distant segments.

(a) (b) (c)

Figure 8. Failure cases on TD500. Red boxes are false posi-

tives. (a)(b) SegLink fails to link the characters with large char-

acter spacing. (c) SegLink fails to detect curved text.

Fig. 8.c shows that SegLink fails to detect text of curved

shape. However, we believe that this is not a limitation of

the segment linking strategy, but the segment combination

algorithm, which can only produce rectangles currently.

6. Conclusion

We have presented SegLink, a novel text detection strat-

egy implemented by a simple and highly-efficient CNN

model. The superior performance on horizontal, ori-

ented, and multi-lingual text datasets well demonstrate that

SegLink is accurate, fast, and flexible. In the future, we

will further explore its potentials on detecting deformed text

such as curved text. Also, we are interested in extending

SegLink into a end-to-end recognition system.
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