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Abstract. Medical imaging datasets used in clinical studies or basic
research often comprise highly variable multi-subject data. Statistically-
controlled inclusion of a subject in a group study, i.e. deciding whether
its images should be considered as samples from a given population or
whether they should be rejected as outlier data, is a challenging issue.
While the informal approaches often used do not provide any statistical
assessment that a given dataset is indeed an outlier, traditional statistical
procedures are not well-suited to the noisy, high-dimensional, settings en-
countered in medical imaging, e.g. with functional brain images. In this
work, we modify the classical Minimum Covariance Determinant ap-
proach by adding a regularization term, that ensures that the estimation
is well-posed in high-dimensional settings and in the presence of many
outliers. We show on simulated and real data that outliers can be de-
tected satisfactorily, even in situations where the number of dimensions
of the data exceeds the number of observations.

Keywords: Outlier detection, Minimum Covariance Determinant, reg-
ularization, robust estimation, neuroimaging, fMRI.

1 Introduction

Between-subject variability is a prominent effect in many fields of medical imag-
ing, and particularly in brain imaging. While part of this variability can be
viewed as normal fluctuations within a population or across repeated measure-
ments, and can be considered as an effect of interest for diagnosis problems,
part of it may be a confound, related to scanner instabilities, experimental is-
sues, or acquisition artifacts. Such confounding factors can be much larger than
the effects of interest: for instance, in functional neuroimaging, the variability re-
lated to acquisition issues (motion, defective experimental setup, scanner spikes)
can mask the true effect of interest, which is the variability in brain functional
organization related to diseases, psychological or genetic factors.
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The detection of abnormal data, or outlier detection, is important in order
to ensure that the ensuing statistical analysis will be robust to such undesired
effects. This detection should be automated for the sake of reproducibility and
to be time efficient, as cohorts can now encompass up to several hundreds of
subjects. This detection is challenging because i) images, in particular brain im-
ages, are complex, high-dimensional objects with some unknown latent structure;
ii) the problem is unsupervised, in the sense that outlier detection procedures
can in general not be calibrated on training data; and iii) in many cases, it is
impossible to normalize the signal or its variability.

So far, high-dimensional analysis procedures have been confined to high SNR
data, such as anatomical images, e.g. with the use of manifold learning techniques
[1,3]. These, however, are not robust to outlier data, and are not applicable
to functional Magnetic Resonance Imaging (fMRI) since they may easily be
confounded by noise. As a first step to alleviate this issue, univariate outlier
detection methods have been proposed for fMRI, in which one particular image
feature is studied, and compared to other data [6,12]. Kherif et al. [5] point out
the need of homogeneous datasets in fMRI studies and propose a model-based
multivariate framework as a solution. However, their work is restricted to small
cohorts and does not discuss statistical control.

While the robust statistics literature generally considers that problems with
a number of dimensions comparable to the number of observations cannot be
addressed in model-based approaches, we investigate whether outlier detection
is still possible in that setting. Specifically, we modify the Minimum Covariance
Determinant method [8] so that its performance approaches the level of non-
parametric methods, such as one-class Support Vector Classification [2]. We de-
scribe the new robust estimator in the next section and show its well-posedness.
We then perform some experiments on simulated data and assess the behaviour
of the proposed method with respect to state-of-the-art techniques. Finally, we
describe the application of our approach to an fMRI dataset, where we show
that outliers can still be detected on medium-sized groups of subjects.

2 Robust Location and Covariance Estimates

We focus on a model-based approach, as it yields more interpretable results as
well as a probabilistic control of false detections: Assuming a high dimensional
Gaussian model, an observation xi ∈ R

p within a set X can be characterized
as outlier whenever it has a large Mahalanobis distance to the mean of the
data distribution, defined as d2

μ̂,Σ̂
(xi) = (xi − μ̂)T Σ̂−1(xi − μ̂), μ̂ and Σ̂ being

respectively estimates of the dataset location and covariance. Crucially, robust
estimators of location and covariance have to be used for the computation of
these distances.

MCD estimator and FastMCD algorithm. The state-of-the-art robust covariance
estimator for multidimensional Gaussian data is Rousseeuw’s Minimum Covari-
ance Determinant (MCD) estimator [8], which can be computed using the Fast-
MCD algorithm [10]. Given a dataset with n p-dimensional observations, MCD
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aims at finding h observations (referred to as the support), the scatter matrix of
which has a minimal determinant. For the scatter matrix to be well-conditioned,
h must be greater than hmin = n+p+1

2 . As p
n becomes large, hmin increases so

outliers are potentially included in the covariance estimation if there are more
than n−p−1

2 of them. When p = n − 1, the MCD estimator is equivalent to the
unbiased maximum likelihood estimator, which is not robust. Finally, if p ≥ n,
the MCD estimator is not defined. To alleviate these issues we propose to use
half of the observations in the support (h = n

2 ) and compensate the shortage of
data for covariance estimation with regularization.

Regularized MCD estimator (R-MCD). We consider ridge regularization: let
λ ∈ R

+ be the amount of regularization, (μr, Σr) the location and covariance es-
timates of a n×p dataset X that maximize the penalized negative log-likelihood:

(μr, Σr) = argmin
μ,Σ

(
log |Σ| + 1

n

n∑
i=1

(xi − μ)T Σ−1(xi − μ) + λTrΣ−1

)
, (1)

yielding Σr = XT X
n−1 + λ Idp and μr = 1

nXT1n.

Convergence of the Fast R-MCD algorithm. Fast-MCD is an iterative algorithm
that successively culls out outliers using Mahalanobis distances defined with the
covariance of the most homogeneous fraction of the data. In our new algorithm,
Fast-R-MCD, we replace the sample covariance matrix used in MCD to define
the Mahalanobis distance by the ridge estimate. The convergence of Fast-R-
MCD stems from the following lemma, that generalizes the proof of convergence
of Fast-MCD [4]:

∀η > 0, (μr, Σr) =
{

argminμ,Σ |Σ|,
s.t. E

[
(X − μ)TΣ−1(X − μ)

]
+ λ tr Σ−1 = η

(2)

which straightforwardly implies that the determinant of Σr will decrease at each
iteration of the Fast-R-MCD algorithm.

Setting the regularization parameter λ. Starting with an initial guess for λ =
tr(Σ̂)
n p where Σ̂ is the unbiased empirical covariance matrix of the whole dataset,

we isolate an uncontaminated set of n
2 observations, as in the Fast-MCD ap-

proach. Let λ = δ
tr(Σ̂pure)

n p , where Σ̂pure is the empirical covariance matrix of
the uncontaminated dataset. We choose δ so as to maximize the ten-fold cross-
validated log-likelihood of the uncontaminated dataset.

3 Experiments

We compared the outlier detection accuracy that can be obtained from the Ma-
halanobis distances of the samples, using respectively MCD and R-MCD.
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3.1 Simulations

Data generation. In our simulations, we sample a core set of n − q (q < n
2 )

observations from a N (0p, Σ) distribution corresponding to regular observations
(also called inliers). We add q outliers from a N (μq , Σq) distribution (μq ∈
R

p, Σq ∈ S+
n (p)), thus generating a total of n observations with p features. We

use three outliers types (see Fig. 1):

Variance outliers are obtained by setting Σq = αΣ, α > 1 and μq = 0p. This
situation models signal normalization issues, where the amount of variance in
outlier observations is abnormally large.

Multi-modal outliers are obtained by setting Σq = Σ and μq �= 0Rp , which
simulates the presence of an heterogeneous population.

Multivariate outliers are obtained by setting μq = 0p, Σq = Σ +αaaT where
a = arand

||arand||2 and arand is a vector p-dimensional vector with coordinates drawn
from a Bernoulli distribution B(1

2 ). This model simulates outliers as sets of points
having potentially abnormally high values in some random directions.

In our experiments, we also investigated the influence of Σ’s condition number
κ(Σ) = ||Σ||2 · ||Σ−1||2 and contamination rate q

n .

Methods comparison. Given a simulated dataset, we estimated the location and
covariance of the data using MCD and R-MCD estimators. Both were computed
with the Fast-MCD (or Fast-R-MCD) algorithm without consistency and re-
weighting steps (see [10]), leading to what we call raw estimates. The parameter
that influences the most the relative performances of MCD- and R-MCD-based
outlier detection methods is the p

n ratio. Every other parameter being fixed,
we averaged 100 ROC curves for each value of p

n in a given range, and finally
expressed Area Under Curve (AUC) as a function of p

n .
We also compare the R-MCD sensitivity with the One-class SVM sensitivity,

holding the latter as a reference since it is not limited by any prior shape of the
separation between in- and outlying observations. We used a RBF kernel and
selected its bandwidth γ with an heuristic inspired by [11]: γ = 0.01

Δ , where Δ is
the 10th percentile of the pairwise distances histogram of the observations.

Fig. 1. Three different ways to generate multivariate outliers for Gaussian data. (a)
all directions (α = 3). (b) second cluster (μq = 3 × 1R2). (c) multivariate (α = 5).
Outliers are represented in red and inliers in black. κ(Σ) = 10. Contamination is 40%.
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3.2 Outliers Identification in Functional Neuroimaging

We used data from a large functional neuroimaging database containing several
fMRI contrast images in more than 1500 subjects. 3T scanners from multiple
manufacturers were used for acquiring the data with TR = 2200 ms, TE = 30
ms, and flip angle = 75◦. Standard preprocessing were performed on the data
using the SPM8 software. Here we focus on a control contrast that shows brain
regions implied in auditory tasks as opposed to visual tasks.

We used a probabilistic brain atlas [7] to extract an average activation in-
tensity value from 145 regions of interest in all the contrast images. We then
performed an initial outlier detection at P < 0.1 familywise corrected, including
more than 1000 subjects. With such a small p

n value, a statistically controlled
outlier detection could be done using the MCD estimate. The outliers list ob-
tained from this first outlier detection was then held as a ground truth for
further outlier detection experiments performed on reduced sample, using MCD
and R-MCD estimators. Note that for very small samples, we could not use the
MCD-based outliers detection method. The outliers lists were compared to the
ground truth and ROC curves were hence constructed. For each sample size, we
repeated the detection 10 times with 10 different, randomly selected samples.

4 Results

4.1 Simulation Results

We first give the results on a 30-dimensional dataset with a 40% contamination
rate ( q

n = 0.4), generated from the multivariate outliers model. We show the
case where κ(Σ) = 1000. The accuracy of the R-MCD-based method is much
higher than the accuracy of the MCD-based method as soon as p

n > 0.3 (Fig 2).
Using regularization, it is possible to go beyond the p = n limit, keeping an AUC
greater than 0.70.

Fig. 2. AUC for MCD- and R-MCD-based outliers detection methods. 40% multivari-
ate outliers are generated (α = 5, κ(Σ) = 1000). The R-MCD-based method keeps an
AUC of � 0.70 up to p

n
= 3.5 (not shown) while the MCD-based method breaks down.
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Outliers type. Table 1.a summarizes the AUC results for experiments with the
variance outliers model. In this case, the MCD performance drops when p

n > 0.5
while the R-MCD-based method always achieves at least a 80% accuracy. In the
multimodal case (Table 1.b), the R-MCD-based method is also more successful
at detecting outliers.

Covariance matrix condition number and contamination rate. The methods’ per-
formance depends weakly on the condition number. A small condition number
yields better results with R-MCD while a high condition number gives advantage
to the use of the MCD estimator when p

n is small. The higher the contamina-
tion rate, the more MCD estimator is likely to break. On the other hand, the
performance of a R-MCD-based detection method is stable (Table 2).

Comparison to One-class SVM. In both cases of variance and multivariate out-
liers, One-class SVM achieves a better specificity/sensitivity compromise than
R-MCD-based outlier detection method. Yet, for a p

n ratio of the order of .5, the
R-MCD performance remains comparable to that of the One-class SVM, with
an asymptotic score that remains below (0.05 difference in the AUC).

4.2 Application on a Real Dataset

We give the averaged ROC curves for detecting outliers on an auditory task
in Fig 4. The reference outlier detection was performed on 1118 subjects, each
being described by 145 features. The results shown correspond to 10 random
sets of 290 subjects. In the useful range (FP ≤ 5%), R-MCD outperforms MCD.
Even with only 100 samples ( p

n = 1.5), R-MCD can still be used to find outliers,
as Fig 4 and Fig 5 demonstrate. On this latter figure, outlying subjects 1, 2 and
3 indeed exhibit much variable activity patterns than subjects A or B, despite
the presence of a few mistakes (subject 4).

5 Discussion

In high-dimensional Gaussian datasets, our results show that Regularized MCD
can reach a significantly higher sensitivity in outlier detection than the stan-
dard MCD. We assumed that neuroimaging data are distributed according to
a multivariate Gaussian distribution. This strong hypothesis lead us to focus
on Mahalanobis-distances-based approaches since they can exploit the assumed
shape of the dataset to estimate its covariance matrix. Since R-MCD systemati-
cally deals with half of the observations, it is not subject to the known masking
and swamping effects [9]. We plan to investigate a 
1 norm for covariance regu-
larization, as it may fit with standard hypotheses on brain covariance structure.

Under the Gaussian assumption we made, outlier detection with the R-MCD
estimator is the only method so far that both holds in high-dimension and al-
lows a probabilistic control of the false detection rate. Although the One-class
SVM non-parametric algorithm achieves a better sensitivity/specificity compro-
mise and is still applicable with non-Gaussian data, its lack of interpretability
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Table 1. AUC values: a: left variance outliers model (p = 30, q/n = 40%, α = 1.25),
b: right multimodal outliers model (p = 30, q/n = 20%, μq = 2 · 1p)

p/n 0.1 0.2 0.3 0.4 0.5 0.7 0.8

MCD 0.86 0.82 0.77 0.73 0.70 0.66 0.63
R-MCD 0.87 0.86 0.85 0.85 0.84 0.82 0.82

p/n 0.1 0.2 0.3 0.4 0.5 0.7 0.8

MCD 0.62 0.60 0.58 0.57 0.55 0.55 0.51
R-MCD 0.76 0.77 0.78 0.81 0.78 0.75 0.77

Table 2. Influence of the contamination rate. p = 30, multivariate outliers (α = 5).
Unlike MCD, the R-MCD performances are independent of the contamination value.

q/n 10 % 20 % 30 % 40 %
p/n 0.1 0.3 0.6 0.9 0.1 0.3 0.6 0.9 0.1 0.3 0.6 0.9 0.1 0.3 0.6 0.9

MCD 0.83 0.77 0.68 0.56 0.82 0.74 0.65 0.57 0.81 0.72 0.65 0.55 0.79 0.71 0.64 0.54
R-MCD 0.77 0.74 0.72 0.68 0.76 0.75 0.72 0.71 0.76 0.74 0.72 0.72 0.76 0.75 0.74 0.71

Fig. 3. One-class SVM comparison with 40% contamination and κ(Σ) = 100. (a) AUC
for multivariate outliers (α = 5). (b) AUC for variance outliers (α = 1.25).

Fig. 4. ROC curves showing that R-MCD outperforms MCD on real fMRI data

Fig. 5. R-MCD-based Mahalanobis distances of a small sample. The higher the Maha-
lanobis distance, the higher the probability for an observation to be tagged as outlying.
Points in red are outliers subjects according to the whole population.
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and statistical control, as well as the difficulty to tune its parameters, makes it
unsuitable in a medical context.

6 Conclusion

We introduced the R-MCD estimator, a regularized version of a robust covari-
ance estimator commonly used to detect outlying observations on the basis of
their Mahalanobis distances. We showed that the Fast-MCD algorithm is still
valid to compute this new estimator. Our application to neuroimaging, where
studies have a high exclusion rate, shows that it is possible to build automatic
procedures to detect outliers even though the number of descriptors is higher
than the number of available subjects. This property is of broad interest in med-
ical applications where heterogeneous populations have to be considered and
relies on an objective assessment of normal variability.

This work was supported by a Digiteo DIM-Lsc grant (HiDiNim project,
No2010-42D). JBP was partly funded by the IMAGEN project, which receives
research funding from the E.U. Community’s FP6, LSHM-CT-2007-037286. This
manuscript reflects only the author’s views and the Community is not liable for
any use that may be made of the information contained therein.
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