
Detecting Parallelism in C Programs with

Recursive Data Structures*

Rakesh Ghiya, Laurie J. Hendren and Yingchun Zhu

School of Computer Science, McGill University

Montreal, CANADA H3A 2A7

{ghiya, hendren, ying}©cs, mcgill, ca

Abstract . In this paper we present techniques to detect three common
patterns of parallelism in C programs that use recursive data structures.

These patterns include, function calls that access disjoint sub-pieces of

tree-like data structures, pointer-chasing loops that traverse list-like data

structures, and array-based loops which operate on an array of pointers

pointing to disjoint data structures. We design dependence tests using

a family of three existing pointer analyses, namely points-to, connection

and shape analyses, with special emphasis on shape analysis. To iden-

tify loop parallelism, we introduce special tests for detecting loop-carried

dependences in the context of recursive data structures. We have imple-

mented the tests in the framework of our McCAT C compiler, and we

present some prehminary experimental results.

1 I n t r o d u c t i o n a n d M o t i v a t i o n

This paper focuses on detecting three common patterns for parallel computations

that use recursive data structures: (1) function-call parallelism including parallel

recursive calls on tree-like structures; (2) forall parallelism for loops traversing

arrays of list/tree-like structures; and (3) foreach parallelism for loops traversing

list/tree-like structures, which is similar to doacross parallelism.

In order to safely detect these patterns of parallelism in C programs, one

must deal with dependences due to scalars, dependences due to pointers to stack-

allocated objects (stack-directed pointers), and dependences due to pointers to

heap-allocated objects (heap-directed pointers). Thus, our approach uses the re-

sults of the family of pointer analyses that have been implemented in the McCAT

optimizing/parallelizing C compiler: points-to analysis[l], connection analysis[2]
and shape analysis[3]. Points-to analysis is used to detect dependences due to

scalars and stack-directed pointers, while connection and shape analysis are used

to detect dependences due to heap-directed pointers.

The main focus of this paper is not the pointer analyses themselves, but

rather how we can use the results of the analyses to detect parallelism. The

remainder of the paper is structured as follows. In Section 2 we introduce the

three parallelism patterns in more detail. In Section 3 we describe the overall

setting of our approach, and present the rules to detect function call parallelism.

* This research supported in part by NSERC and FCAR.

t60

We provide rules for safely identifying loop parallelism in Section 4. Section 5

gives some preliminary empirical results indicating how often we can success-

fully identify the patterns. Section 6 discusses related work, and Section 7 gives

conclusions and future work.

2 Parallel Pat terns

The focus of our approach is on detecting coarse-grain parallelism in the context

of function calls and loops, that perform computation on heap-based recursive

data structures. The three patterns we want to identify are illustrated in Fig-

ure 1. These patterns typically arise in programs using recursive data structures.

Below, we discuss the parallelism opportunities they offer.

void treeAdd(tree *t)
(

if (t == NULL)

return;

Q: tl = t->left;

L: treeAdd(tl);

M: tr = t->right;

N: treeAdd(tr);

t->i = Zl->i +

tr->i;

(a) function-call

for (i = O; i < N; i++)

{

t = list_arr[i];

compute(t, x, y);
}

(b) fora l l

while (ip != NULL)

{

S: Ip->x = ip->y * 5;

T: Ip->y = ip->x * 6;

U: ip = ip->next;

}

(c) f o r e a c h

Fig. 1. Parallelism Patterns

Funct ion-cal l paral lel ism:

In Figure l(a), the two calls to the function treeAdd, respectively perform

the addition for the left and right sub-trees of the tree pointed to by the pointer

t . If the sub-trees are disjoint, the two function calls access disjoint regions of

the heap, and can be executed in parallel.

forall paral lel ism:

Figure l(b) shows an array-based loop. However, the array l i s t _ a r r is an

array of pointers, with each pointer pointing to a heap data structure (a list). If

each pointer points to a disjoint heap data structure, then each call to compute

accesses a disjoint heap region, and the loop can be fully parallelized, with all

iterations executed in parallel.

forcach paral le l ism:

Figure l(c), shows a loop traversing a linked list. The loop body consists of

two parts: one that does the computation on the list elements, and the second

that performs the navigation through the list. The computation part is formed

by the statements S and T in the loop, while the navigation part includes the

statement U: lp = 1p->next. The pointer used to navigate through the list

(lp), is termed as navigator, The parallelism in this loop arises from the fact

161

I

toomp=e, P21] , - - .

(a) Staggered Execution

while (ip != NULL)

{ for(i=O; lp != NULL &~

i<max_proc; lp=lp->next)

{ ptr[i] = Ip; i = i + I;

}

forall(j = O; j < i; j++)

{ ip = ptr_arr[j];

lp->x = lp->x * 5;

lp->y = lp->y * 6;

}

(b) [oreach to forall

Fig. 2. Parallel Execution of a/oreach Loop

that each loop iteration visits a disjoint node in the list. However, this loop

cannot be considered a forall loop, because its iterations cannot be executed

in parallel. The loop contains an intrinsic loop-carried dependence due to the

navigator. The navigator for the next iteration is obtained via the navigator for

the current iteration. We call these loops as]oreach loops.

The parallelism in a/oreach loop can be extracted by executing it in a stag-
gered fashion as shown in Figure 2(a). Here, first the navigator for the next

iteration is obtained. Subsequently, the next iteration can start before the first

iteration completes, and the computation phases of the two iterations can over-

lap. Alternatively, if the navigation overhead of the loop is minimal compared

to the computation performed, the navigators could first be stored in an array

of pointers of size max_proc, where max_proc is the number of processors be-

ing used, via a separate pointer-collecting loop. The original loop can then be

executed as a/orall loop. This technique is illustrated in Figure 2(b).

3 Dependence Testing Framework for Function Call

Parallelism

To identify if two function calls can be executed in parallel, we need to detect

if there is a dependence between the statements containing them. To this end,

we have developed a general dependence test that checks if a dependence exists

between any two given statements in a function. The overall algorithm for the

test dep Test is outlined in Figure 3. It has been implemented at the high level

SIMPLE intermediate representation of the McCAT C compiler [14].

The test depTest proceeds in a hierarchical fashion. Given two statements,

stmtS and stmtT, and the type of dependence to be detected (flow, anti or

output), it first applies the stackTest to disambiguate direct/indirect references

to the stack. This test uses the results of points-to analysis [1], which estimates

targets of stack-directed pointers as points-to triples of the form (ptr, target, pos-
sible/definite). If the dependence cannot be disproved, the test then checks if the

dependence is only due to heap accesses. In this case, heap analysis information

is used. First, the test connection Test is applied. This test uses connection-based

162

heap read/write sets to identify if the two statements access heap locations be-

longing to disjoint heap data structures [2, 4]. If the test succeeds, statements

are reported independent. Otherwise the test shapeTest is invoked to further

identify if the statements access disjoint sub-pieces of a data structure. This is

the focus of this paper. Detailed description of the first two tests can be found

in [4, 5].

fun depTest(stmtS, stmtT, depType) =

if (stackTest(stmtS, stmtT, depType) == NoDEP)

return NODEP;/* no dependence */

/* use heap analyses if dependence only due to heap */

else if (stackTest(stmtS, stmtT, depType) = = ONLYHEAP)

if (connectionTest(stmtS, stmtT, depType) == NoDEP)

return NoDEP;/* access disjoint heap data structures */

if (shapeTest(stmtS, stmtT, depType) == NODEP)

return NoDEP;/* access disjoint pieces of a data structure */

return DEP;/* heap dependence cannot be disproved */

else/* stack dependence is not only due to the symbolic heap location */

return DEP; /* dependence cannot be broken */

10

Fig. 3. Checking if two Statements are Dependent

The test shapeTest uses shape analysis information [3]. Shape analysis es-

timates the shape of the data structure accessible from a given heap-directed

pointer: is it tree-like, DAG-like or a general graph containing cycles? Knowledge

about the shape of the data structure accessible from a heap-directed pointer,

provides crucial information for disambiguating heap accesses originating from

it. For a pointer p, if p. shape is Tree, then any two accesses of the form p->f

and p->g will always lead to disjoint subpieces of the tree (assuming f and g

are distinct fields). If p. shape is DAG, then two distinct field accesses p->f->f

and p->g can lead to a common heap object. However, if a dag-like structure is

traversed using a sequence of links, every subsequence visits a distinct node. This

information can be used to disambiguate heap accesses in different iterations of

a loop, or different recursive calls, traversing such a data structure, as discussed

in the following sections.

3.1 Shape Dependence Test

The shape dependence test relies on the shape of the data structure being tra-

versed, and the access paths used to reach particular node(s) in the data struc-

ture. The access paths are computed with respect to a given node in the data

structure, pointed to by the anchor pointer. An anchor pointer is a pointer that

points to a fixed node in the data structure over the program region starting from

the statement that defines it, and ending at the statement T, where a dependence

is being checked from some statement S to statement T. Once the access paths

are computed with respect to the anchor, dependence is resolved by checking if

163

starting from the anchored node, the two paths can lead to the same node, in

view of the shape of the data structure.

The shape dependence test is outlined in Figure 4. It first collects the sets of

pointers pSetS and pSetT that access the heap, respectively for struts and stmtT.

These sets are computed using the points-to based read/write set information.

The shape dependence test is performed on each pair of pointers (ptrS, ptr7 3

from the two sets, and no dependence is reported only if the test succeeds on

each pair. For a given pair, if the shape attribute of either pointer is found to be

cyclic, a dependence is reported and the test terminates. If the shape attributes

axe acyclic, anchor-based access paths are constructed, as explained below.

fun shapeTest(stmtS, stmtT, depType) =

[pSetS, pSetT] = heapAccessPtrs(stmtS, stmtT, depType);

foreach pair (ptrS, ptrT) E pSetS×pSetT

if (isCycle(ptrS.shape) or isCycle(ptrT.shape))

return DEP; /* Cyclic data structures */
[defS, defT] = getDefChains(ptrS, strutS, ptrT, stmtT);

anchorStmt = findAnchor(defS, defT);

if (anchorStmt != NULL)
anchor = getRef(anchorStmt, lhs);

if (!anchor or isCycle(anchor.shape))
return DEP; / * cannot find anchor or its shape is cyclic ~/

[pathS, pathT] = getPathExprs(anchor, defS, defT);

if (fieldsUpdatedBetween(pathS, strutS, pathT, stmtT, anchorStmt))

return DEP; /* structural modification involved */
if (checkPathExprs(pathS, strutS, pathT, stmtT, anchor) == DEP)

return DEP; / * path exprs indicate a possible conflict */

return NODEP; /* no dependence detected */

10

Fig. 4. Shape Dependence Test

Constructing Access Paths using Definition Chains

The first step in the construction of access paths is computation of definition

chains clefs and defT for the pointers ptrS and ptrT. Definition chains are con-

structed by recursively traversing the reaching definitions of the given pointers,

as illustrated by the following example. The complete algorithm is presented

in [5].
Consider the construction of the definition chain for the use of pointer t r at

the function call statement N: t reeAdd(t r) in Figure l(a). The definition that

reaches this use is from the statement M: t r = t -> r igh t . So this statement is

put in the definition chain. Next, the traversal looks for definitions that reach

the use of pointer t at the statement M. In this case the definition comes from the

function header, which is appended to the definition chain. Since the traversal

cannot proceed any further up, it stops. Similarly, the definition chain for the use

of pointer t l at statement L would consist of the statement Q and the function

header.

164

In general, the definition chain traversal stops when either it has reached the

function header, or it cannot find a unique definition that definitely reaches the

given use [5]. This ensures that we construct only one definite access path for a

given pointer, and not a set of possible paths. This is done for efficiency reasons,

as comparing a set of paths can be expensive and further is less likely to disprove

a dependence.

Finding a Common Anchor
Once the definition chains are constructed, the next step is to find an anchor

pointer, with respect to which both the pointers under consideration can be

defined. In our example above, the pointer t can be considered as an anchor

pointer, as both pointers t l and t r can be defined in terms of t . This is infered

from the fact that both the pointers have a common definition of the pointer t

in their definition chains. Now, using the function header definition of t as the

anchor, the definition chains of pointers t l and t r are traversed to construct their

respective access paths with respect to the anchor t , giving the paths t - > l e f t

and t - > r i g h t . The detailed algorithms for finding the anchor and constructing

the access paths can be found in [5].

Comparing Access Paths for Dependence Detection
The access paths are given to the function checkPathExprs, which detects if

they definitely lead to disjoint parts of the data structure. Note that shapeTest
reaches this function only if the shape of the data structure being traversed is

Tree or DAG, and the traversal fields are not being modified. The input to the

function checkPathExprs consists of two statements, stmtS and stmtT, and the

respective access paths, paths and pathT, expressed with respect to the anchor

pointer. The function uses three operations to compare the access paths:

equivPaths(pathS, pathT): This function checks if the two access paths are

equivalent, i.e., consist of the same sequence of field accesses. For example the ac-

cess path t - > l e f t - > r i g h t is equivalent to the access path t - > l e f t - > r i g h t , but

not equivalent to the access paths t - > l e f t or t - > l e f t - > l e f t . Two equivalent

access paths always lead to the same node.

subPath(pathS, pathT): This function checks if the access path paths is a

proper sub-path of the access path pathT, i.e., paths contains k field accesses less

than pathT, and is equivalent to the access path obtained by removing the last

k field accesses from pathT~ where k >_ 1. For example, the access path t - > l e f t

is a proper sub-path of the access path t - > l e f t - > r i g h t , but not of the access

paths t - > l e f t or t - > r i g h t . For acyclic data structures (anchor.shape is Tree

or DAG), if an access path is a proper sub-path of another path, the two paths

lead to disjoint nodes. Further, the node reached via the former path cannot be

accessed from the node reached via the latter path.

disjointPaths(pathS, pathT): This function checks three conditions: (i) the

access path paths is not equivalent to the access path pathT, (ii) paths is not a

proper sub-path of pathT, and (iii) pathT is also not a proper sub-path of path

pathS. For example, t - > l e f t and t - > r i g h t are disjoint paths, while t - > l e f t and

t - > l e f t - > r i g h t are not. For tree-like data structures (anchor.shape is Tree),

disjoint paths not only lead to disjoint nodes, but also one node cannot be

t65

accessed from the other. Thus disjoint path s lead to disjoint sub-pieces of tree-

like da ta structures.

If the data structure is DAG-like (anchor.shape is DAG), disjoint paths can

lead to a common node. For example, if l e f t and r i g h t links of the node pointed

to by the anchor pointer t , point to the same node (giving a DAG), the disjoint

paths t - > l e f t and t - > r i g h t will lead to the same node.

fun checkPathExprs(pathS, stmtS, pathT, stmtT, anchor) =

case type(stmtS) of

< CallStmt > -->
case type(stmtT) of

< CallStmt > =>
if (isDag(anchor.shape))

r e tu rn DEP; /~" DAG shape is not useful with two call struts ~/

else /* shape is Tree */

ret urn(disjointPaths(pathS, pathT));

< SimpleStmt > -->

if(subPath(pathT, pathS))

r e tu rn NoDEP; /* su~cient condition */

if (isTree(anchor.shape))

ret urn(disjointPaths(pathS, pathT));

< SimpleStmt > =>

case type(stmtT) of

< CaUStmt > =>
if(subPath(pathS, pathT))

r e tu rn NoDEP;
if (isTree (anchor.shape))

return(disjointPaths(pathS, pathT)); /* need not be a subpath ~/

< SimpleStmt > =>
if (isTree(anchor.shape))

return(!equivPaths(pathT, pathS));

else /* anchor shape is DAG : one is subpath of another */

return(subPath(pathT , pathS) or subPath(pathS, pathT));

10

2G

Fig. 5. Comparing Access Paths for Dependence Detection

Di f f e ren t Cases for D e p e n d e n c e D e t e c t i o n

We now discuss the different cases and the associated disambiguation rules

given in the function checkPathExprs in Figure 5. We have four cases depending

on if the two statements, stmtSand stmtT, are call statements (contain a function

call) or simple statements (do not contain a function call).

Case 1: B o t h s t a t e m e n t s a re call s t a t e m e n t s

As call statements can access whole sub-pieces of a data structure, two call

statements can be independent only if the access paths lead to disjoint sub-pieces

of the da ta structure. This requires that the two access paths are disjoint and

the shape attribute of anchor is Tree, as shown in the function cheekPathExprs

(Figure 5). This is the case for our example based on the t r e e h d d function

shown in Figure l(a). The two access paths are t - > l e f t and t - > r i g h t , which

166

are disjoint, and the shape at t r ibute of the anchor pointer t is Tree. Thus the

two calls to t reeAdd are independent and can be executed in parallel.

Case 2: strutS is a call s ta t ement and s t m t T is a s imple s t a t e m e n t

Here struts can access a sub-piece of the data structure, while stmtT can

access only fields in a specific node of the data structure. This is because in our

SIMPLE representation, a statement can only have one level of indirection. Thus

for the two statements to be independent, paths should lead to a node, which is

disjoint from the node corresponding to pathT, and also cannot reach the latter

node. This can be guaranteed if pathT is a proper sub-path of pathS. The shape

at t r ibute of the anchor can be either Tree or DAG in this case. For example, if

paths is t - > l e f t and path Tis simply t , the proper sub-path condition is satisfied,

and struts cannot access the node accessed by stmtT. If shape at t r ibute of the

anchor is Tree, the statements will be independent also for the case when paths
and pathT are disjoint. Note that Case 3 is analogous to Case 2, with stmtS

as simple statement, and stmtT as call statement.

Case 4: B o t h s t a t e m e n t s a re s imple s ta tements

In this case both statements can respectively access only some specific node

of the data structure. We simply need to check that paths does not lead to the

same node as pathT. This condition is satisfied, if paths is not equivalent to

pathT, when shape at tr ibute for the anchor is Tree. With DAG attribute, we

need to check for the stronger condition that one of the access paths is a proper

sub-path of another.

For example, let paths be t - > r i g h t - > l e f t and pathT be t - > l e f t - > r i g h t .

The access paths are not equivalent. With shape at tr ibute as Tree, the two

access paths cannot lead to the same node. With DAG attr ibute they can lead

to the same node. However, the access paths t - > l e f t and t - > l e f t - > r i g h t can

be proven to lead to disjoint nodes even with DAG attribute. This is because

the common sub-path in the paths leads them to the same node, and then the

additional field access in the latter path, leads it to a distinct node as the data

structure is acyclic.

Above, we have described our overall strategy for detecting dependence be-

tween two given statements in a function, and discussed in detail how to use

shape information for dependence testing. We use the test (depTest) during the

DDG (data dependence graph) construction phase of the EARTH-McCAT com-

piler [15]. The DDG is then used to identify statements/function calls that can

be executed in parallel, and to partit ion the program into threads.

4 L o o p P a r a l l e l i s m

In this section, we present techniques to identify loop-level parallelism, in the

form of /o ra l l and foreach loops traversing recursive heap data structures. For

finding loop parallelism, we need to detect the presence of loop-carried depen-

dences (henceforth refered to as LCDs). Two statements in a loop have an LCD,

if a memory location accessed by one statement in a given iteration, is accessed

167

by the other statement in a future iteration, with one of the accesses being a

write access.

The presence of LCDs in a loop indicates that its iterations are not indepen-

dent, and hence cannot be executed in parallel. Our particular focus is on finding

heap-based]orall and foreach loops (described in section 2). A]orall loop should

not have any LCD, while a foreach loop can only involve an LCD with respect

to the navigator. Considering these constraints, we first describe the method for

detecting foreach loops, and then explain how it can be adapted to detect]orall
loops. Given a loop, we identify if it is a heap-based foreach loop, using the steps

explained in the following subsections.

4.1 Good Loop Detection

This is a pre-processing step, which detects potential heap-based]oreach loops

in the program. It is required so that we do not incur the overhead of detect-

ing LCDs for each loop in the program. The criteria used to label a loop as a

good loops are as follows: (i) the loop body involves read/write accesses to heap

locations, (ii) the loop body is free from irregular control flow constructs such

as break, continue, or r e t u r n statements, or system calls such as e x i t and

abort , and thus control can exit the loop only from the loop condition test; and
(iii) a navigator can be identified for the loop. The second condition is required

to ensure the correctness of the parallelizing transformations illustrated in Fig-

ure 2, as they assume that the loop does not terminate prematurely. The third

condition is required to detect that the loop actually navigates a recursive heap

data structure in a regular fashion.

Identifying the Naviga tor

The overall algorithm for identifying the navigator is outlined in in Figure 6.

The process is closely related with the variables used in the loop condition test.
For a given variable in the loop test, say tes tVar , the function findNavigator
proceeds as follows. First, a definition chain is constructed for the use of tes tVar

in the loop test. The function getLoopDefChain is used for this purpose. This

function is similar to the function getDefChain defined in Figure 4. However, it

only considers the definitions that arise from a statement within the given loop

(loop-resident definitions). It terminates when either it cannot find a unique
loop-resident definition that definitely reaches the given use, or it encounters a

loop-resident definition for the second time [5]. In the latter case a recurrence

is reported. If the traversal terminates without finding a recurrence, it returns

NULL, indicating that a navigator cannot be detected.

If the function getLoopDe/Chain reports a recurrence, it indicates the pres-

ence of a variable in the loop whose value for the next iteration is defined in

terms of its current value. Such a variable is a potential candidate for being a

navigator. In this case, the definition chain is used to construct an access path

for the loop test variable testVar. This access path is called the test expression
and the base variable in the path is called the navigator. The test expression

indicates how the tes tVar for the next loop test is obtained from the naviga-

tor for the current iteration. The component of the access path, contributed by

168

/ * find the navigator for the given loop if one exists */

fun identifyNavigator(loopStmt) =

cond = loopStmt.cond; /* loop condition test */

navigator = findNavigator(cond.lhsvar, loopStmt);
if (navigator != NULL) / * lhs var succeeds */

re tu rn navigator;

e l s e / * try rhs vat in the loop test */

re tu rn (findNavigator(cond.rhsvar, loopStmt));

/* find the navigator for the given loop with respect to the var */ lO

fun findNavigator(var, loopStmt) =
defN = getLoopDefChain(var, loopStmt, loopStmt);

if (defN == NULL tl recFlag(defN) != RECUR)

return NULL; / * no recurrence exists in the definition chain */

pathT = getPathExpr(loopStmt.cond.var, defN); /* test expression */

pathN = getNavExpr(pathT);/* navigator expression ~/

varN = getBaseVar(pathN); /* navigator */

if (fieldsUpdated(pathN, loopStmt, navigator))

r e tu rn NULL; /* structural modification involved */

loopStmt.navigatorExpr -- pathN; 20

loopStmt.navigator -- yarN;
return (varN);

Fig. 6. Identifying the Navigator

the definition(s) involved in the recurrence, is called the navigator expression.

It indicates how the navigator for the next iteration is obtained in terms of the

current navigator. We illustrate these concepts via an example below.

For example, consider the loop in Figure l(c). The loop test variable in this

case is the pointer lp. Its loop-resident definition comes from the statement

S : lp = l ? ->nex t . So it is added to the definition chain. Next, the loop-resident

definition for the use of lp at S is sought. It again happens to be the statement S.

Here the definition chain construction terminates and a recurrence is reported.

The definition chain gives the access path lp ->next , which is the test expression

for the loop, and the base pointer for the expression, lp, is the navigator. Here,

since the navigator is identical to the loop test variable, the navigator expression

is same as the test expression. More detailed examples for navigator identification

can be found in [5].

4.2 Verifying the Navigator

Once a navigator is identified, and a navigator expression is constructed, the next

step is to verify if the navigator visits a distinct node in the data structure in

each iteration. Thus, the function findNavigator checks that, none of the fields in

the navigator expression (navigator fields) are updated inside the loop. For this

purpose connection-based heap read/write sets are used [5]. This check ensures

that the navigator advances in a regular fashion from one iteration to the next

169

iteration, i.e., the fields along which the data structure is navigated remain

static through the loop execution. Further, note that the navigator is definitely

advanced in each iteration using the navigator expression, and not conditionally.

From this information, we can make the following important observations.

Observation 1: If the shape attribute of the navigator is Tree or DAG, the nav-

igator expression will lead the navigator to a distinct node in the data structure,

in each iteration. In this case the data structure is acyclic, and since the navi-

gator is advanced using the same expression every iteration (lp = 1p->next),

it cannot revisit a node.

Observation 2: If the shape attribute of the navigator is Cycle, the above claim

still holds in an important case. This case represents loops, where the loop test

involves testing a heap-directed pointer, say pt r , against a constant (p t r !=

NULL) or another pointer that is loop-invariant (p t r != b), where b could be

the navigator for the outer loop. Such loops typically arise in C programs using

recursive data structures.

For such loops, if the navigator (ptr) visits a given node a second time, the

loop wilt execute infinitely. This is because the navigator fields are not updated

inside the loop body. Consider again the loop in Figure l(c). Suppose after three

iterations, its navigator lp visits the node it visited at the beginning of the

loop. Since the navigator field next is not updated, lp will visit this node every

three iterations, and the condition (lp == NULL) will never be satisfied, giving

an infinite loop. Note that during good loop detection, we have already ensured

that the only exit point for the loop is the loop condition test.

Thus, with the assumption that a loop does not run infinitely, we can infer

that its navigator visits a distinct node in each iteration, for an important class

of loops. These loops typically traverse parts of a cyclic data structure in an

acyclic fashion: for example a loop that traverses a doubly linked list only using

the next link. We term such loops as acyelic loops.

4.3 Detecting Heap-based Loop-carried Dependences

Once a valid navigator is found for a loop, we check if the loop involves any LCDs

with respect to heap accesses. The function heapLCD in Figure 7, outlines this

dependence test. It takes as input any two statements belonging to the loop,

and determines if an LCD of depType (flow, anti or output) exists between

them with respect to heap accesses. Given two statements from the loop, struts

and stmtT, and the pointers they use to access the heap (ptrS and ptr~ , the

test first constructs the access paths for the two pointers with respect to the

navigator/This is similar to constructing the access paths with respect to the

anchor, for the shapeTest. Next, it compares the two access paths to detect if

they can introduce an LCD. These access paths are termed as navigator access
paths (NAPs). In case, the NAPs cannot be constructed, dependence is reported.

While traversing a heap data structure, an LCD can be introduced when

fields of neighbor nodes, i.e., nodes other than the one being currently visited

by the navigator, are accessed. To access the neighbor nodes via the navigator,

pointer fields must be traversed. Thus a NAP can lead to a neighbor node only

t70

fun heapLCD(stmtS, stmtT, loopStmt, depType) =

[pSetS, pSetT] = heapAccessPtrs(stmtS, stmtT, depType);
navigator = loopStmt.navigator;

foreach pair (ptrS, ptrT) ~ pSetS×pSetT
[defsS, defsT] = getLoopDefChains(ptrS, stmtS, ptrT, stmtT, loopStmt);

[pathS, pathT] = getPathExprs(navigator, defsS, defsT);

if (!paths or ipathT)

return DE]'; /* reference cannot be expressed wrt navigator */

if (isTree(navigator.shape)) /* traversing a tree-like structure ~/

if (fieldsUpdated(pathS, toopStmt, navigator) 11
fieldsUpdated(pathT, toopStmt, navigator))

return DEP; /* structural modification involved */

if (navigatorFieldsUsed(pathS, pathT, loopStmt.navigatorExpr))
return DEP; / * can access nodes from other iterations ~/

else if (isAcyctic(loopStmt))/* loop test is (ptr !-- someConstant) */

if (ptrFieldsUsed(pathS, strutS, pathT, stmtT))

return DEP; /* can access nodes from other iterations */

else return DEP; /* cannot check this depenence: assume dependence */

return NoDEP; / * no loop-carried dependence detected ~/

10

Fig. 7. Test for Loop-Carried Heap Dependences

if it involves one or more pointer fields. With this observation, we can infer that

two statements can induce an LCD, only if one of the NAPs involves pointer

fields. Otherwise, the NAPs lead to fields in the node currently being visited by

the navigator, without introducing any LCD.

The function heapLCD essentially makes the above check. Additionally, it

makes a weaker check if the shape attribute of the anchor is Tree. In this case,

the NAPs can use pointer fields other than the navigator fields. For example, for

a loop traversing a list using the pointer lp, if the shape attribute of lp is Tree,

the statement lp->hdr->num++ will not induce an LCD. This is because the

header node cannot be common for any two nodes in the list, else it will violate

the Tree shape attribute. However, the assignment statement lp->next ->i =

lp -> i will still induce the dependence as the access path lp->next ->i uses the

pointer field next, which is a navigator field.

H no heap-based LCDs are detected, we flag this loop as a foreach loop with

respect to the heap accesses. To identify it as a real foreach loop, we use existing

tests implemented in the McCAT C compiler to check against LCDs induced

by accesses to scalar variables, array references [11, 12], and stack-based indirect

references [4]. If the only LCD detected is with respect to the navigator, the loop

is flagged as a real foreach loop. Otherwise, it is flagged as a non-foreach loop.

4.4 Identifying foratl Loops

To identify heap-based forall loops of the type shown in Figure l(b), we use a

similar strategy as for detecting foreach loops. The key difference is that the nav-

igator for the forall loops is an integer, and the navigator expression is an integer

171

expression. The tests for checking heap-based LCDs are modified to compare ac-

cess paths which consist of array expressions as opposed to pointer references.

To this end, subscript tests developed for array dependence testing are used.

For example, in Figure l(b), the navigator access path for the heap pointer t

is computed as l i s t _ a r r [i] . From the information that i is a navigator, and

the shape attribute of l i s t _ a r r is Tree, the test infers that pointer t accesses

a disjoint list in each iteration and cannot induce an LCD. Further, if it needs

to compare access paths of the form l i s t _ a r r [± + j] and l i s t _ a r r [± + k], it

uses subscript tests from array dependence testing [11, 12], to identify LCDs.

5 E x p e r i m e n t a l R e s u l t s

We have implemented the dependence tests described in sections 3 and 4 in

the framework of our McCAT C compiler. We have done a preliminary study of

their effectiveness on a set of four recursive data structure based C benchmark

programs. The results are summarized in Table 1.

ProgramllDescription IData Structures Par]oreach]orall Total Total

I Calls Loops Loops Loops Calls

I treeadd Tree Addition Binary Tree 4 0 0 0 4

power iPower System Opt. k-ary Tree 0 0 4 10 25

circuit Sparse Matrix Solver Doubly-linked Lists 0 14 0 24 35

pug Grid Triangulation Interconnected Lists 0 5 0 15 34

Table 1. Benchmark Results

For the treeadd benchmark, the test depTest finds two pairs of parallel calls

respectively to the functions bui ldTree and treeAdd. The]orall loops in the

power benchmark are detected using the heapLCD test. These loops iterate on

arrays of pointers to tree data structures, and form the most compute-intensive

part of the code. The benchmarks pug and circuit use cyclic data structures, but

perform majority of their computation inside acyclic list-traversing loops, which

are detected as]oreach loops by the heapLCD test. Finally, the hand-written

Earth-C [10] versions of the benchmarks treeadd and power, that only use the

parallelism detected by our dependence tests, respectively obtain speed-up by

factors of 16 and 12 on the EARTH-MANNA multithreaded machine [10] using

16 processors. We are presently working on analyzing and collecting runtime

performance improvement statistics for a larger set of benchmarks.

6 R e l a t e d W o r k

A considerable amount of work has been done on the problem of pointer analysis

itself, and a detailed discussion can be found in [5]. More directly related to this

paper are methods that use the results of heap pointer analysis in the context of

dependence analysis and parallelization. The approaches include: techniques us-

ing path expressions to name locations [13], using syntax trees to name locations

172

[6], extending k-limited graphs with location names[9]; and dependence analysis

based on shape information and path expressions [8]. The focus of these tech-

niques is on identifying function-call parallelism for recursive data structures,

and the heap analyses used are substantially more complex than our connec-

tion and shape analyses. Further, they do not consider the detection of loop

parallelism, and also do not consider the presence of stack-directed pointers.

In contrast to the above techniques which are based on automatic heap anal-

ysis, Hummel et al. [7] use a language-based approach. They rely on the pro-

grammer to provide the information about the shape of the data structure via

aliasing axioms. To compute dependence between two statements, they collect

access paths with respect to an anchor. A theorem prover is used to identify

if, given the aliasing axioms, the access paths can lead to the same node. This

approach is quite powerful, as the aliasing axioms can accurately express the

shape of even complex cyclic data structures, and the theorem prover can com-

pare complex access paths. Our (shape) dependence test also uses the concept

of collecting access paths with respect to a common anchor. However, it relies

on connection and shape information that is automatically computed, is focused

on identifying specific parallelism patterns, and thus uses only two types of ac-

cess path comparisons (equivPaths and subPath 2) which can be done efficiently.

Further, it also considers identification of loop-carried dependencies, which is

crucial for detecting loop parallelism.

7 C o n c l u s i o n s a n d F u t u r e W o r k

This paper has focused on how to use pointer analysis for detecting parallelism.

We used a family of pointer analyses that run in a hierarchical fashion, for

dependence testing. We particularly focused on using shape information, and

presented special dependence tests that build access paths with respect to a

common anchor, and then compare the two paths in view of the shape informa-

tion available. Further, we introduced a separate test for identifying loop-carried

dependences, which is crucial for detecting loop-parallelism. We also proposed

the foreach loop construct for pointer-chasing loops, along with techniques to

extract the parallelism available. Finally, we presented preliminary experimental

results for a set of C benchmark programs.

Our future work will be in three major directions. Firstly, we plan to eval-

uate the effectiveness of our dependence tests on a larger set of benchmarks.

Secondly, we plan to do a detailed study of the run time performance improve-

ment achieved, due to the parallelism detected. Finally, we plan to continue

to develop new analyses and transformations to detect parallelism in pointer-

intensive programs, particularly those that use complex cyclic data structures.

2 The disjointPath comparison is done via a combination of equivPaths and subPath

comparisons.

173

References

1. Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive inter-

procedural points-to analysis in the presence of function pointers. In Proceedings

of the A CM SIGPLAN '9~ Conference on Programming Language Design and Im-

plementation, pages 242-256, Orlando, Florida, June 1994.

2. Rakesh Ghiya and Laurie J. Hendren. Connection Analysis: A practical interpro-

cedural heap analysis for C. International Journal of Parallel Programming, 24(6),

pages 547-578, 1996.

3. Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? a

shape analysis for heap-directed pointers in C. In Conference Record of the 23rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programmin 9 Languages,

pages 1-15, St. Petersburg, Florida, January 1996.
4. Rakesh Ghiya and Laurie J. Hendren. Putting Pointer Analysis to Work. In

Conference Record of the 25th ACId SIGPLAN-SIGA CT Symposium on Principles

of Programming Languages, San Diego, California, January 1998.

5. Rakesh Ghiya. Putting Pointer Analysis to Work. PhD Thesis, School of Computer

Science, McGill University, Montreal, Canada. February 1998. Expected.

6. Vincent A. Guarna, Jr. A technique for analyzing pointer and structure refer-

ences in parallel restructuring compilers. In Proceeding s of the 1988 International

Conference on Parallel Processing, volume II, pages 212-220, August 1988.

7. Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. A general data de-

pendence test for dynamic, pointer-based data structures. In Proceedings of the

A CM SIGPLAN '94 Conference on Programming Language Design and Implemen-

tation, pages 218-229, Orlmldo, Florida, June 1994.

8. Laurie J. Hendren and Alexandru Nicolau. Parallelizing programs with recursive

data structures. IEEE '.Pransactions on Parallel and Distributed Systems, 1(t):35-

47, January 1990.

9. Susan Horwitz, Phil Pfeiffer, and Thomas Reps. Dependence analysis for pointer

variables. In Proceedings of the SIGPLAN '89 Conference on Programmin 9 Lan-

guage Desi9n and Implementation, pages 28-40, Portland, Oregon, June 1989.

10. Laurie J. Hendren, Xinan Tang, Yingchun Zhu, Guang R. Gao, Xun Xue, Halying

Cai, and Pierre Ouellet. Compiling C for the EARTH multithreaded architecture.

In Proceedings of the 1996 Conference on Parallel Architectures and Compilation

Techniques (PACT '96), pages 12-23, Boston, Massachusetts, October 1996.

11. Justiani. An array dependence testing framework for the McCAT compiler. Mas-

ter's thesis, McGill University, Montreal, Quebec, December 1994.

12. Christopher Lapkowski. A practical symbolic array dependence analysis framework
for C. Master's thesis, McGiU University, Montreal, Quebec, April 1997.

13. James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure ac-

cesses. In Proceedings of the SIGPLAN '88 Conference on Programming Language

Design and Implementation, pages 21-34, Atlanta, Georgia, June 1988.

14. Bhama Sridharan. An analysis framework for the McCAT compiler. Master's

thesis, McGill University, Montreal, Quebec, September 1992.

15. Xinan Tang, Rakesh Ghiya, L. J. Hendren, and G. R. Gao. Heap analysis and

optimizations for threaded programs. In Proceedings of the 1997 Conference on

Parallel Architectures and Compilation Techniques, San Franc., Calif., Nov. 1997.

