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Abstract .  In this paper we present techniques to detect three common 
patterns of parallelism in C programs that use recursive data structures. 

These patterns include, function calls that access disjoint sub-pieces of 

tree-like data structures, pointer-chasing loops that traverse list-like data 

structures, and array-based loops which operate on an array of pointers 

pointing to disjoint data structures. We design dependence tests using 

a family of three existing pointer analyses, namely points-to, connection 

and shape analyses, with special emphasis on shape analysis. To iden- 

tify loop parallelism, we introduce special tests for detecting loop-carried 

dependences in the context of recursive data structures. We have imple- 

mented the tests in the framework of our McCAT C compiler, and we 

present some prehminary experimental results. 

1 I n t r o d u c t i o n  a n d  M o t i v a t i o n  

This paper focuses on detecting three common patterns for parallel computations 

that use recursive data structures: (1) function-call parallelism including parallel 

recursive calls on tree-like structures; (2) forall parallelism for loops traversing 

arrays of list/tree-like structures; and (3) foreach parallelism for loops traversing 

list/tree-like structures, which is similar to doacross parallelism. 

In order to safely detect these patterns of parallelism in C programs, one 

must deal with dependences due to scalars, dependences due to pointers to stack- 

allocated objects (stack-directed pointers), and dependences due to pointers to 

heap-allocated objects (heap-directed pointers). Thus, our approach uses the re- 

sults of the family of pointer analyses that have been implemented in the McCAT 

optimizing/parallelizing C compiler: points-to analysis[l], connection analysis[2] 
and shape analysis[3]. Points-to analysis is used to detect dependences due to 

scalars and stack-directed pointers, while connection and shape analysis are used 

to detect dependences due to heap-directed pointers. 

The main focus of this paper is not the pointer analyses themselves, but 

rather how we can use the results of the analyses to detect parallelism. The 

remainder of the paper is structured as follows. In Section 2 we introduce the 

three parallelism patterns in more detail. In Section 3 we describe the overall 

setting of our approach, and present the rules to detect function call parallelism. 

* This research supported in part by NSERC and FCAR. 
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We provide rules for safely identifying loop parallelism in Section 4. Section 5 

gives some preliminary empirical results indicating how often we can success- 

fully identify the patterns. Section 6 discusses related work, and Section 7 gives 

conclusions and future work. 

2 Parallel  Pat terns  

The focus of our approach is on detecting coarse-grain parallelism in the context 

of function calls and loops, that perform computation on heap-based recursive 

data structures. The three patterns we want to identify are illustrated in Fig- 

ure 1. These patterns typically arise in programs using recursive data structures. 

Below, we discuss the parallelism opportunities they offer. 

void treeAdd(tree *t) 
( 

if (t == NULL) 

return; 

Q: tl = t->left; 

L: treeAdd(tl); 

M: tr = t->right; 

N: treeAdd(tr); 

t->i = Zl->i + 

tr->i; 

(a) function-call 

for (i = O; i < N; i++) 

{ 

t = list_arr[i]; 

compute(t, x, y); 
} 

(b) fora l l  

while (ip != NULL) 

{ 

S: Ip->x = ip->y * 5; 

T: Ip->y = ip->x * 6; 

U: ip = ip->next; 

} 

(c) f o r e a c h  

Fig. 1. Parallelism Patterns 

Funct ion-cal l  paral lel ism: 

In Figure l(a), the two calls to the function treeAdd, respectively perform 

the addition for the left and right sub-trees of the tree pointed to by the pointer 

t .  If the sub-trees are disjoint, the two function calls access disjoint regions of 

the heap, and can be executed in parallel. 

forall paral lel ism: 

Figure l(b) shows an array-based loop. However, the array l i s t _ a r r  is an 

array of pointers, with each pointer pointing to a heap data structure (a list). If 

each pointer points to a disjoint heap data structure, then each call to compute 

accesses a disjoint heap region, and the loop can be fully parallelized, with all 

iterations executed in parallel. 

forcach paral le l ism: 

Figure l(c), shows a loop traversing a linked list. The loop body consists of 

two parts: one that does the computation on the list elements, and the second 

that performs the navigation through the list. The computation part is formed 

by the statements S and T in the loop, while the navigation part includes the 

statement U: lp = 1p->next. The pointer used to navigate through the list 

(lp), is termed as navigator, The parallelism in this loop arises from the fact 
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(a) Staggered Execution 

while (ip != NULL) 

{ for(i=O; lp != NULL &~ 

i<max_proc; lp=lp->next) 

{ ptr[i] = Ip; i = i + I; 

} 

forall(j = O; j < i; j++) 

{ ip = ptr_arr[j]; 

lp->x = lp->x * 5; 

lp->y = lp->y * 6; 

} 

(b) [oreach to forall 

Fig. 2. Parallel Execution of a/oreach Loop 

that each loop iteration visits a disjoint node in the list. However, this loop 

cannot be considered a forall loop, because its iterations cannot be executed 

in parallel. The loop contains an intrinsic loop-carried dependence due to the 

navigator. The navigator for the next iteration is obtained via the navigator for 

the current iteration. We call these loops as ]oreach loops. 

The parallelism in a/oreach loop can be extracted by executing it in a stag- 
gered fashion as shown in Figure 2(a). Here, first the navigator for the next 

iteration is obtained. Subsequently, the next iteration can start before the first 

iteration completes, and the computation phases of the two iterations can over- 

lap. Alternatively, if the navigation overhead of the loop is minimal compared 

to the computation performed, the navigators could first be stored in an array 

of pointers of size max_proc, where max_proc is the number of processors be- 

ing used, via a separate pointer-collecting loop. The original loop can then be 

executed as a/orall  loop. This technique is illustrated in Figure 2(b). 

3 Dependence Testing Framework for Function Call 

Parallelism 

To identify if two function calls can be executed in parallel, we need to detect 

if there is a dependence between the statements containing them. To this end, 

we have developed a general dependence test that checks if a dependence exists 

between any two given statements in a function. The overall algorithm for the 

test dep Test is outlined in Figure 3. It has been implemented at the high level 

SIMPLE intermediate representation of the McCAT C compiler [14]. 

The test depTest proceeds in a hierarchical fashion. Given two statements, 

stmtS and stmtT, and the type of dependence to be detected (flow, anti or 

output), it first applies the stackTest to disambiguate direct/indirect references 

to the stack. This test uses the results of points-to analysis [1], which estimates 

targets of stack-directed pointers as points-to triples of the form (ptr, target, pos- 
sible/definite). If the dependence cannot be disproved, the test then checks if the 

dependence is only due to heap accesses. In this case, heap analysis information 

is used. First, the test connection Test is applied. This test uses connection-based 
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heap read/write sets to identify if the two statements access heap locations be- 

longing to disjoint heap data structures [2, 4]. If the test succeeds, statements 

are reported independent. Otherwise the test shapeTest is invoked to further 

identify if the statements access disjoint sub-pieces of a data structure. This is 

the focus of this paper. Detailed description of the first two tests can be found 

in [4, 5]. 

fun depTest(stmtS, stmtT, depType) = 

if (stackTest(stmtS, stmtT, depType) == NoDEP) 

return NODEP;/* no dependence */ 

/*  use heap analyses if dependence only due to heap */ 

else if (stackTest(stmtS, stmtT, depType) = =  ONLYHEAP) 

if (connectionTest(stmtS, stmtT, depType) == NoDEP) 

return NoDEP;/* access disjoint heap data structures */ 

if (shapeTest(stmtS, stmtT, depType) == NODEP) 

return NoDEP;/* access disjoint pieces of a data structure */ 

return DEP;/* heap dependence cannot be disproved */ 

else/* stack dependence is not only due to the symbolic heap location */ 

return DEP; /* dependence cannot be broken */ 

10 

Fig. 3. Checking if two Statements are Dependent 

The test shapeTest uses shape analysis information [3]. Shape analysis es- 

timates the shape of the data structure accessible from a given heap-directed 

pointer: is it tree-like, DAG-like or a general graph containing cycles? Knowledge 

about the shape of the data structure accessible from a heap-directed pointer, 

provides crucial information for disambiguating heap accesses originating from 

it. For a pointer p, if p. shape is Tree, then any two accesses of the form p->f 

and p->g will always lead to disjoint subpieces of the tree (assuming f and g 

are distinct fields). If p. shape is DAG, then two distinct field accesses p->f->f  

and p->g can lead to a common heap object. However, if a dag-like structure is 

traversed using a sequence of links, every subsequence visits a distinct node. This 

information can be used to disambiguate heap accesses in different iterations of 

a loop, or different recursive calls, traversing such a data structure, as discussed 

in the following sections. 

3.1 Shape Dependence  Test 

The shape dependence test relies on the shape of the data structure being tra- 

versed, and the access paths used to reach particular node(s) in the data struc- 

ture. The access paths are computed with respect to a given node in the data 

structure, pointed to by the anchor pointer. An anchor pointer is a pointer that 

points to a fixed node in the data structure over the program region starting from 

the statement that defines it, and ending at the statement T, where a dependence 

is being checked from some statement S to statement T. Once the access paths 

are computed with respect to the anchor, dependence is resolved by checking if 
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starting from the anchored node, the two paths can lead to the same node, in 

view of the shape of the data structure. 

The shape dependence test is outlined in Figure 4. It first collects the sets of 

pointers pSetS and pSetT that access the heap, respectively for struts and stmtT. 

These sets are computed using the points-to based read/write set information. 

The shape dependence test is performed on each pair of pointers (ptrS, ptr7 3 

from the two sets, and no dependence is reported only if the test succeeds on 

each pair. For a given pair, if the shape attribute of either pointer is found to be 

cyclic, a dependence is reported and the test terminates. If the shape attributes 

axe acyclic, anchor-based access paths are constructed, as explained below. 

fun shapeTest(stmtS, stmtT, depType) = 

[pSetS, pSetT] = heapAccessPtrs(stmtS, stmtT, depType); 

foreach pair (ptrS, ptrT) E pSetS×pSetT 

if (isCycle(ptrS.shape) or isCycle(ptrT.shape)) 

return DEP; /* Cyclic data structures */ 
[defS, defT] = getDefChains(ptrS, strutS, ptrT, stmtT); 

anchorStmt = findAnchor(defS, defT); 

if (anchorStmt != NULL) 
anchor = getRef(anchorStmt, lhs); 

if (!anchor or isCycle(anchor.shape)) 
return DEP; / * cannot find anchor or its shape is cyclic ~/ 

[pathS, pathT] = getPathExprs(anchor, defS, defT); 

if (fieldsUpdatedBetween(pathS, strutS, pathT, stmtT, anchorStmt)) 

return DEP; /* structural modification involved */ 
if (checkPathExprs(pathS, strutS, pathT, stmtT, anchor) == DEP) 

return DEP; / * path exprs indicate a possible conflict */ 

return NODEP; /* no dependence detected */ 

10 

Fig. 4. Shape Dependence Test 

Constructing Access Paths using Definition Chains 

The first step in the construction of access paths is computation of definition 

chains clefs and defT for the pointers ptrS and ptrT. Definition chains are con- 

structed by recursively traversing the reaching definitions of the given pointers, 

as illustrated by the following example. The complete algorithm is presented 

in [5]. 
Consider the construction of the definition chain for the use of pointer t r  at 

the function call statement N: t reeAdd( t r )  in Figure l(a). The definition that 

reaches this use is from the statement M: t r  = t -> r igh t .  So this statement is 

put in the definition chain. Next, the traversal looks for definitions that reach 

the use of pointer t at the statement M. In this case the definition comes from the 

function header, which is appended to the definition chain. Since the traversal 

cannot proceed any further up, it stops. Similarly, the definition chain for the use 

of pointer t l  at statement L would consist of the statement Q and the function 

header. 
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In general, the definition chain traversal stops when either it has reached the 

function header, or it cannot find a unique definition that  definitely reaches the 

given use [5]. This ensures that  we construct only one definite access path for a 

given pointer, and not a set of possible paths. This is done for efficiency reasons, 

as comparing a set of paths can be expensive and further is less likely to disprove 

a dependence. 

Finding a Common Anchor 
Once the definition chains are constructed, the next step is to find an anchor 

pointer, with respect to which both the pointers under consideration can be 

defined. In our example above, the pointer t can be considered as an anchor 

pointer, as both pointers t l  and t r  can be defined in terms of t .  This is infered 

from the fact that  both the pointers have a common definition of the pointer t 

in their definition chains. Now, using the function header definition of t as the 

anchor, the definition chains of pointers t l  and t r  are traversed to construct their 

respective access paths with respect to the anchor t ,  giving the paths t - > l e f t  

and t - > r i g h t .  The detailed algorithms for finding the anchor and constructing 

the access paths can be found in [5]. 

Comparing Access Paths for Dependence Detection 
The access paths are given to the function checkPathExprs, which detects if 

they definitely lead to disjoint parts of the data  structure. Note that  shapeTest 
reaches this function only if the shape of the data  structure being traversed is 

Tree or DAG, and the traversal fields are not being modified. The input to the 

function checkPathExprs consists of two statements, stmtS and stmtT, and the 

respective access paths, paths and pathT, expressed with respect to the anchor 

pointer. The function uses three operations to compare the access paths: 

equivPaths(pathS, pathT): This function checks if the two access paths are 

equivalent, i.e., consist of the same sequence of field accesses. For example the ac- 

cess path t - > l e f t - > r i g h t  is equivalent to the access path t - > l e f t - > r i g h t ,  but 

not equivalent to the access paths t - > l e f t  or t - > l e f t - > l e f t .  Two equivalent 

access paths always lead to the same node. 

subPath(pathS, pathT): This function checks if the access path paths is a 

proper sub-path of the access path pathT, i.e., paths contains k field accesses less 

than pathT, and is equivalent to the access path obtained by removing the last 

k field accesses from pathT~ where k >_ 1. For example, the access path t - > l e f t  

is a proper sub-path of the access path t - > l e f t - > r i g h t ,  but not of the access 

paths t - > l e f t  or t - > r i g h t .  For acyclic data  structures (anchor.shape is Tree 

or DAG), if an access path is a proper sub-path of another path, the two paths 

lead to disjoint nodes. Further, the node reached via the former path cannot be 

accessed from the node reached via the latter path. 

disjointPaths(pathS, pathT): This function checks three conditions: (i) the 

access path paths is not equivalent to the access path pathT, (ii) paths is not a 

proper sub-path of pathT, and (iii) pathT is also not a proper sub-path of path 

pathS. For example, t - > l e f t  and t - > r i g h t  are disjoint paths, while t - > l e f t  and 

t - > l e f t - > r i g h t  are not. For tree-like data  structures (anchor.shape is Tree), 

disjoint paths not only lead to disjoint nodes, but also one node cannot be 
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accessed from the other. Thus disjoint path s lead to disjoint sub-pieces of tree- 

like da ta  structures. 

If the data  structure is DAG-like (anchor.shape is DAG), disjoint paths can 

lead to a common node. For example, if l e f t  and r i g h t  links of the node pointed 

to by the anchor pointer t ,  point to the same node (giving a DAG), the disjoint 

paths t - > l e f t  and t - > r i g h t  will lead to the same node. 

fun checkPathExprs(pathS, stmtS, pathT, stmtT, anchor) = 

case type(stmtS) of 

< CallStmt > --> 
case type(stmtT) of 

< CallStmt > => 
if (isDag(anchor.shape)) 

r e tu rn  DEP; /~" DAG shape is not useful with two call struts ~/ 

else /* shape is Tree */ 

ret  urn(disjointPaths(pathS, pathT)); 

< SimpleStmt > --> 

if(subPath(pathT, pathS)) 

r e tu rn  NoDEP; /* su~cient condition */ 

if (isTree(anchor.shape)) 

ret  urn(disjointPaths(pathS, pathT)); 

< SimpleStmt > =>  

case type(stmtT) of 

< CaUStmt > => 
if(subPath(pathS, pathT)) 

r e tu rn  NoDEP; 
if (isTree (anchor.shape)) 

return(disjointPaths(pathS, pathT)); /* need not be a subpath ~/ 

< SimpleStmt > =>  
if (isTree(anchor.shape)) 

return(!equivPaths(pathT, pathS)); 

else /* anchor shape is DAG : one is subpath of another */ 

return(subPath(pathT , pathS) or subPath(pathS, pathT)); 

10 

2G 

Fig. 5. Comparing Access Paths for Dependence Detection 

Di f f e ren t  Cases  for  D e p e n d e n c e  D e t e c t i o n  

We now discuss the different cases and the associated disambiguation rules 

given in the function checkPathExprs in Figure 5. We have four cases depending 

on if the two statements, stmtSand stmtT, are call statements (contain a function 

call) or simple statements (do not contain a function call). 

Case  1: B o t h  s t a t e m e n t s  a re  call  s t a t e m e n t s  

As call statements can access whole sub-pieces of a data  structure, two call 

statements can be independent only if the access paths lead to disjoint sub-pieces 

of the da ta  structure. This requires that  the two access paths are disjoint and 

the shape attribute of anchor is Tree, as shown in the function cheekPathExprs 

(Figure 5). This is the case for our example based on the t r e e h d d  function 

shown in Figure l(a). The two access paths are t - > l e f t  and t - > r i g h t ,  which 
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are disjoint, and the shape at t r ibute of the anchor pointer t is Tree. Thus the 

two calls to t reeAdd are independent and can be executed in parallel. 

Case 2: strutS is a call s ta t ement  and s t m t T  is a s imple  s t a t e m e n t  

Here struts can access a sub-piece of the data  structure, while stmtT can 

access only fields in a specific node of the data  structure. This is because in our 

SIMPLE representation, a statement can only have one level of indirection. Thus 

for the two statements to be independent, paths should lead to a node, which is 

disjoint from the node corresponding to pathT, and also cannot reach the latter 

node. This can be guaranteed if pathT is a proper sub-path of pathS. The shape 

at t r ibute of the anchor can be either Tree or DAG in this case. For example, if 

paths is t - > l e f t  and path Tis simply t ,  the proper sub-path condition is satisfied, 

and struts cannot access the node accessed by stmtT. If shape at t r ibute of the 

anchor is Tree, the statements will be independent also for the case when paths 
and pathT are disjoint. Note that  Case  3 is analogous to Case  2, with stmtS 

as simple statement, and stmtT as call statement. 

Case 4: B o t h  s t a t e m e n t s  a re  s imple  s ta tements  

In this case both statements can respectively access only some specific node 

of the data  structure. We simply need to check that  paths does not lead to the 

same node as pathT. This condition is satisfied, if paths is not equivalent to 

pathT, when shape at tr ibute for the anchor is Tree. With DAG attribute,  we 

need to check for the stronger condition that  one of the access paths is a proper 

sub-path of another. 

For example, let paths be t - > r i g h t - > l e f t  and pathT be t - > l e f t - > r i g h t .  

The access paths are not equivalent. With shape at tr ibute as Tree, the two 

access paths cannot lead to the same node. With DAG attr ibute they can lead 

to the same node. However, the access paths t - > l e f t  and t - > l e f t - > r i g h t  can 

be proven to lead to disjoint nodes even with DAG attribute. This is because 

the common sub-path in the paths leads them to the same node, and then the 

additional field access in the latter path, leads it to a distinct node as the data  

structure is acyclic. 

Above, we have described our overall strategy for detecting dependence be- 

tween two given statements in a function, and discussed in detail how to use 

shape information for dependence testing. We use the test (depTest) during the 

DDG (data dependence graph) construction phase of the EARTH-McCAT com- 

piler [15]. The DDG is then used to identify statements/function calls that  can 

be executed in parallel, and to partit ion the program into threads. 

4 L o o p  P a r a l l e l i s m  

In this section, we present techniques to identify loop-level parallelism, in the 

form of /o ra l l  and foreach loops traversing recursive heap data  structures. For 

finding loop parallelism, we need to detect the presence of loop-carried depen- 

dences (henceforth refered to as LCDs). Two statements in a loop have an LCD, 

if a memory location accessed by one statement in a given iteration, is accessed 
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by the other statement in a future iteration, with one of the accesses being a 

write access. 

The presence of LCDs in a loop indicates that its iterations are not indepen- 

dent, and hence cannot be executed in parallel. Our particular focus is on finding 

heap-based ]orall and foreach loops (described in section 2). A ]orall loop should 

not have any LCD, while a foreach loop can only involve an LCD with respect 

to the navigator. Considering these constraints, we first describe the method for 

detecting foreach loops, and then explain how it can be adapted to detect ]orall 
loops. Given a loop, we identify if it is a heap-based foreach loop, using the steps 

explained in the following subsections. 

4.1 Good Loop Detection 

This is a pre-processing step, which detects potential heap-based ]oreach loops 

in the program. It is required so that we do not incur the overhead of detect- 

ing LCDs for each loop in the program. The criteria used to label a loop as a 

good loops are as follows: (i) the loop body involves read/write accesses to heap 

locations, (ii) the loop body is free from irregular control flow constructs such 

as break, continue,  or r e t u r n  statements, or system calls such as e x i t  and 

abort ,  and thus control can exit the loop only from the loop condition test; and 
(iii) a navigator can be identified for the loop. The second condition is required 

to ensure the correctness of the parallelizing transformations illustrated in Fig- 

ure 2, as they assume that the loop does not terminate prematurely. The third 

condition is required to detect that the loop actually navigates a recursive heap 

data structure in a regular fashion. 

Identifying the Naviga tor  

The overall algorithm for identifying the navigator is outlined in in Figure 6. 

The process is closely related with the variables used in the loop condition test. 
For a given variable in the loop test, say tes tVar ,  the function findNavigator 
proceeds as follows. First, a definition chain is constructed for the use of tes tVar  

in the loop test. The function getLoopDefChain is used for this purpose. This 

function is similar to the function getDefChain defined in Figure 4. However, it 

only considers the definitions that arise from a statement within the given loop 

(loop-resident definitions). It terminates when either it cannot find a unique 
loop-resident definition that definitely reaches the given use, or it encounters a 

loop-resident definition for the second time [5]. In the latter case a recurrence 

is reported. If the traversal terminates without finding a recurrence, it returns 

NULL, indicating that a navigator cannot be detected. 

If the function getLoopDe/Chain reports a recurrence, it indicates the pres- 

ence of a variable in the loop whose value for the next iteration is defined in 

terms of its current value. Such a variable is a potential candidate for being a 

navigator. In this case, the definition chain is used to construct an access path 

for the loop test variable testVar.  This access path is called the test expression 
and the base variable in the path is called the navigator. The test expression 

indicates how the tes tVar  for the next loop test is obtained from the naviga- 

tor for the current iteration. The component of the access path, contributed by 
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/ * find the navigator for the given loop if one exists */ 

fun identifyNavigator(loopStmt) = 

cond = loopStmt.cond; /* loop condition test */ 

navigator = findNavigator(cond.lhsvar, loopStmt); 
if (navigator != NULL) / * lhs var succeeds */ 

re tu rn  navigator; 

e l s e / *  try rhs vat in the loop test */ 

re tu rn  (findNavigator(cond.rhsvar, loopStmt)); 

/* find the navigator for the given loop with respect to the var */ lO 

fun findNavigator(var, loopStmt) = 
defN = getLoopDefChain(var, loopStmt, loopStmt); 

if  (defN == NULL tl recFlag(defN) != RECUR) 

return NULL; / * no recurrence exists in the definition chain */ 

pathT = getPathExpr(loopStmt.cond.var, defN); /* test expression */ 

pathN = getNavExpr(pathT);/* navigator expression ~/ 

varN = getBaseVar(pathN); /*  navigator */ 

if  (fieldsUpdated(pathN, loopStmt, navigator)) 

r e tu rn  NULL; /* structural modification involved */ 

loopStmt.navigatorExpr -- pathN; 20 

loopStmt.navigator -- yarN; 
return (varN); 

Fig. 6. Identifying the Navigator 

the definition(s) involved in the recurrence, is called the navigator expression. 

It indicates how the navigator for the next iteration is obtained in terms of the 

current navigator. We illustrate these concepts via an example below. 

For example, consider the loop in Figure l(c). The loop test variable in this 

case is the pointer lp. Its loop-resident definition comes from the statement 

S : lp  = l ? ->nex t .  So it is added to the definition chain. Next, the loop-resident 

definition for the use of lp  at S is sought. It again happens to be the statement S. 

Here the definition chain construction terminates and a recurrence is reported. 

The definition chain gives the access path lp ->next ,  which is the test expression 

for the loop, and the base pointer for the expression, lp, is the navigator. Here, 

since the navigator is identical to the loop test variable, the navigator expression 

is same as the test expression. More detailed examples for navigator identification 

can be found in [5]. 

4.2 Verifying the Navigator 

Once a navigator is identified, and a navigator expression is constructed, the next 

step is to verify if the navigator visits a distinct node in the data  structure in 

each iteration. Thus, the function findNavigator checks that, none of the fields in 

the navigator expression (navigator fields) are updated inside the loop. For this 

purpose connection-based heap read/write sets are used [5]. This check ensures 

that  the navigator advances in a regular fashion from one iteration to the next 
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iteration, i.e., the fields along which the data structure is navigated remain 

static through the loop execution. Further, note that the navigator is definitely 

advanced in each iteration using the navigator expression, and not conditionally. 

From this information, we can make the following important observations. 

Observation 1: If the shape attribute of the navigator is Tree or DAG, the nav- 

igator expression will lead the navigator to a distinct node in the data structure, 

in each iteration. In this case the data structure is acyclic, and since the navi- 

gator is advanced using the same expression every iteration (lp = 1p->next), 

it cannot revisit a node. 

Observation 2: If the shape attribute of the navigator is Cycle, the above claim 

still holds in an important case. This case represents loops, where the loop test 

involves testing a heap-directed pointer, say pt r ,  against a constant (p t r  != 

NULL) or another pointer that is loop-invariant (p t r  != b), where b could be 

the navigator for the outer loop. Such loops typically arise in C programs using 

recursive data structures. 

For such loops, if the navigator (ptr) visits a given node a second time, the 

loop wilt execute infinitely. This is because the navigator fields are not updated 

inside the loop body. Consider again the loop in Figure l(c). Suppose after three 

iterations, its navigator lp visits the node it visited at the beginning of the 

loop. Since the navigator field next  is not updated, lp  will visit this node every 

three iterations, and the condition ( lp  == NULL) will never be satisfied, giving 

an infinite loop. Note that during good loop detection, we have already ensured 

that the only exit point for the loop is the loop condition test. 

Thus, with the assumption that a loop does not run infinitely, we can infer 

that its navigator visits a distinct node in each iteration, for an important class 

of loops. These loops typically traverse parts of a cyclic data structure in an 

acyclic fashion: for example a loop that traverses a doubly linked list only using 

the next  link. We term such loops as acyelic loops. 

4.3 Detecting Heap-based Loop-carried Dependences 

Once a valid navigator is found for a loop, we check if the loop involves any LCDs 

with respect to heap accesses. The function heapLCD in Figure 7, outlines this 

dependence test. It takes as input any two statements belonging to the loop, 

and determines if an LCD of depType (flow, anti or output) exists between 

them with respect to heap accesses. Given two statements from the loop, struts 

and stmtT, and the pointers they use to access the heap (ptrS and ptr~ ,  the 

test first constructs the access paths for the two pointers with respect to the 

navigator/This is similar to constructing the access paths with respect to the 

anchor, for the shapeTest. Next, it compares the two access paths to detect if 

they can introduce an LCD. These access paths are termed as navigator access 
paths (NAPs). In case, the NAPs cannot be constructed, dependence is reported. 

While traversing a heap data structure, an LCD can be introduced when 

fields of neighbor nodes, i.e., nodes other than the one being currently visited 

by the navigator, are accessed. To access the neighbor nodes via the navigator, 

pointer fields must be traversed. Thus a NAP can lead to a neighbor node only 
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fun heapLCD(stmtS, stmtT, loopStmt, depType) = 

[pSetS, pSetT] = heapAccessPtrs(stmtS, stmtT, depType); 
navigator = loopStmt.navigator; 

foreach pair (ptrS, ptrT) ~ pSetS×pSetT 
[defsS, defsT] = getLoopDefChains(ptrS, stmtS, ptrT, stmtT, loopStmt); 

[pathS, pathT] = getPathExprs(navigator, defsS, defsT); 

if (!paths or ipathT) 

return DE]'; /* reference cannot be expressed wrt navigator */ 

if (isTree(navigator.shape)) /* traversing a tree-like structure ~/ 

if (fieldsUpdated(pathS, toopStmt, navigator) 11 
fieldsUpdated(pathT, toopStmt, navigator)) 

return DEP; /* structural modification involved */ 

if (navigatorFieldsUsed(pathS, pathT, loopStmt.navigatorExpr)) 
return DEP; / * can access nodes from other iterations ~/ 

else if (isAcyctic(loopStmt))/* loop test is (ptr !-- someConstant) */ 

if (ptrFieldsUsed(pathS, strutS, pathT, stmtT)) 

return DEP; /* can access nodes from other iterations */ 

else return DEP; /* cannot check this depenence: assume dependence */ 

return NoDEP; / * no loop-carried dependence detected ~/ 

10 

Fig. 7. Test for Loop-Carried Heap Dependences 

if it involves one or more pointer fields. With this observation, we can infer that 

two statements can induce an LCD, only if one of the NAPs involves pointer 

fields. Otherwise, the NAPs lead to fields in the node currently being visited by 

the navigator, without introducing any LCD. 

The function heapLCD essentially makes the above check. Additionally, it 

makes a weaker check if the shape attribute of the anchor is Tree. In this case, 

the NAPs can use pointer fields other than the navigator fields. For example, for 

a loop traversing a list using the pointer lp, if the shape attribute of lp is Tree, 

the statement lp->hdr->num++ will not induce an LCD. This is because the 

header node cannot be common for any two nodes in the list, else it will violate 

the Tree shape attribute. However, the assignment statement lp->next ->i  = 

lp -> i  will still induce the dependence as the access path lp->next ->i  uses the 

pointer field next, which is a navigator field. 

H no heap-based LCDs are detected, we flag this loop as a foreach loop with 

respect to the heap accesses. To identify it as a real foreach loop, we use existing 

tests implemented in the McCAT C compiler to check against LCDs induced 

by accesses to scalar variables, array references [11, 12], and stack-based indirect 

references [4]. If the only LCD detected is with respect to the navigator, the loop 

is flagged as a real foreach loop. Otherwise, it is flagged as a non-foreach loop. 

4.4 Identifying foratl Loops 

To identify heap-based forall loops of the type shown in Figure l(b), we use a 

similar strategy as for detecting foreach loops. The key difference is that the nav- 

igator for the forall loops is an integer, and the navigator expression is an integer 
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expression. The tests for checking heap-based LCDs are modified to compare ac- 

cess paths which consist of array expressions as opposed to pointer references. 

To this end, subscript tests developed for array dependence testing are used. 

For example, in Figure l(b), the navigator access path for the heap pointer t 

is computed as l i s t _ a r r [ i ] .  From the information that i is a navigator, and 

the shape attribute of l i s t _ a r r  is Tree, the test infers that pointer t accesses 

a disjoint list in each iteration and cannot induce an LCD. Further, if it needs 

to compare access paths of the form l i s t _ a r r [ ±  + j]  and l i s t _ a r r [ ±  + k], it 

uses subscript tests from array dependence testing [11, 12], to identify LCDs. 

5 E x p e r i m e n t a l  R e s u l t s  

We have implemented the dependence tests described in sections 3 and 4 in 

the framework of our McCAT C compiler. We have done a preliminary study of 

their effectiveness on a set of four recursive data structure based C benchmark 

programs. The results are summarized in Table 1. 

ProgramllDescription IData Structures Par ]oreach ]orall Total Total 

I Calls Loops Loops Loops Calls 

I treeadd Tree Addition Binary Tree 4 0 0 0 4 

power iPower System Opt. k-ary Tree 0 0 4 10 25 

circuit Sparse Matrix Solver Doubly-linked Lists 0 14 0 24 35 

pug Grid Triangulation Interconnected Lists 0 5 0 15 34 

Table 1. Benchmark Results 

For the treeadd benchmark, the test depTest finds two pairs of parallel calls 

respectively to the functions bui ldTree and treeAdd. The ]orall loops in the 

power benchmark are detected using the heapLCD test. These loops iterate on 

arrays of pointers to tree data structures, and form the most compute-intensive 

part of the code. The benchmarks pug and circuit use cyclic data structures, but 

perform majority of their computation inside acyclic list-traversing loops, which 

are detected as ]oreach loops by the heapLCD test. Finally, the hand-written 

Earth-C [10] versions of the benchmarks treeadd and power, that only use the 

parallelism detected by our dependence tests, respectively obtain speed-up by 

factors of 16 and 12 on the EARTH-MANNA multithreaded machine [10] using 

16 processors. We are presently working on analyzing and collecting runtime 

performance improvement statistics for a larger set of benchmarks. 

6 R e l a t e d  W o r k  

A considerable amount of work has been done on the problem of pointer analysis 

itself, and a detailed discussion can be found in [5]. More directly related to this 

paper are methods that use the results of heap pointer analysis in the context of 

dependence analysis and parallelization. The approaches include: techniques us- 

ing path expressions to name locations [13], using syntax trees to name locations 
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[6], extending k-limited graphs with location names[9]; and dependence analysis 

based on shape information and path expressions [8]. The focus of these tech- 

niques is on identifying function-call parallelism for recursive data structures, 

and the heap analyses used are substantially more complex than our connec- 

tion and shape analyses. Further, they do not consider the detection of loop 

parallelism, and also do not consider the presence of stack-directed pointers. 

In contrast to the above techniques which are based on automatic heap anal- 

ysis, Hummel et al. [7] use a language-based approach. They rely on the pro- 

grammer to provide the information about the shape of the data structure via 

aliasing axioms. To compute dependence between two statements, they collect 

access paths with respect to an anchor. A theorem prover is used to identify 

if, given the aliasing axioms, the access paths can lead to the same node. This 

approach is quite powerful, as the aliasing axioms can accurately express the 

shape of even complex cyclic data structures, and the theorem prover can com- 

pare complex access paths. Our (shape) dependence test also uses the concept 

of collecting access paths with respect to a common anchor. However, it relies 

on connection and shape information that is automatically computed, is focused 

on identifying specific parallelism patterns, and thus uses only two types of ac- 

cess path comparisons (equivPaths and subPath 2) which can be done efficiently. 

Further, it also considers identification of loop-carried dependencies, which is 

crucial for detecting loop parallelism. 

7 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

This paper has focused on how to use pointer analysis for detecting parallelism. 

We used a family of pointer analyses that run in a hierarchical fashion, for 

dependence testing. We particularly focused on using shape information, and 

presented special dependence tests that build access paths with respect to a 

common anchor, and then compare the two paths in view of the shape informa- 

tion available. Further, we introduced a separate test for identifying loop-carried 

dependences, which is crucial for detecting loop-parallelism. We also proposed 

the foreach loop construct for pointer-chasing loops, along with techniques to 

extract the parallelism available. Finally, we presented preliminary experimental 

results for a set of C benchmark programs. 

Our future work will be in three major directions. Firstly, we plan to eval- 

uate the effectiveness of our dependence tests on a larger set of benchmarks. 

Secondly, we plan to do a detailed study of the run time performance improve- 

ment achieved, due to the parallelism detected. Finally, we plan to continue 

to develop new analyses and transformations to detect parallelism in pointer- 

intensive programs, particularly those that use complex cyclic data structures. 

2 The disjointPath comparison is done via a combination of equivPaths and subPath 

comparisons. 
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