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ABSTRACT

Peering infrastructures, namely, colocation facilities and Internet

exchange points, are located in every major city, have hundreds

of network members, and support hundreds of thousands of in-

terconnections around the globe. These infrastructures are well

provisioned and managed, but outages have to be expected, e.g.,

due to power failures, human errors, attacks, and natural disasters.

However, little is known about the frequency and impact of outages

at these critical infrastructures with high peering concentration.

In this paper, we develop a novel and lightweight methodology

for detecting peering infrastructure outages. Our methodology re-

lies on the observation that BGP communities, announced with

routing updates, are an excellent and yet unexplored source of

information allowing us to pinpoint outage locations with high

accuracy. We build and operate a system that can locate the epi-

center of infrastructure outages at the level of a building and track

the reaction of networks in near real-time. Our analysis unveils

four times as many outages as compared to those publicly reported

over the past �ve years. Moreover, we show that such outages have

signi�cant impact on remote networks and peering infrastructures.

Our study provides a unique view of the Internet’s behavior under

stress that often goes unreported.
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1 INTRODUCTION

Today, our economy as well as our social life, rely on the smooth

and uninterrupted operation of the Internet. While the Internet has

shown an amazing resilience as a whole, even short outages can

have a signi�cant impact on a subset of the Internet user population.

Past major Internet outages have been studied in depth, including

outages due to network component failure, e.g., hardware, software,

and con�guration failures in routers [98], optical layer outages [47],

natural disasters [20, 23, 35, 56, 84], and nation-wide censorship [23,

24, 83]. Most of these events a�ected either individual networks or

entire regions. This can be attributed to the fact that the Internet’s

architecture used to be quite hierarchical. Thus, most local outages

were expected to have a local impact.

During recent years the Internet infrastructure has changed sig-

ni�cantly, a phenomenon that is referred to as the “�attening” of

the Internet’s hierarchy. In this setting, the majority of Internet

inter-domain tra�c �ows directly between edge networks, bypass-

ing transit providers [62]. For example, eyeball networks reduce

their transit costs and improve end-to-end performance [41, 49]

by directly peering with content providers, content distribution

networks, and cloud providers, which are now amajor source of traf-

�c [32, 46, 82]. Direct peering is enabled by third party peering infras-

tructures (also referred as carrier-neutral peering infrastructures),

such as colocation facilities and Internet Exchange Points (IXPs).

These infrastructures are increasingly deployed in cities around

the globe [50], and their members are growing constantly [61, 68]

supporting hundreds of thousands of peerings [100].

Given the high concentration of peerings established at coloca-

tion facilities and via IXPs, many government bodies consider them

critical infrastructures [30, 39, 64, 96]. Unfortunately, little is known

about outages at these peering infrastructures, i.e., outages due to

interruption, miscon�guration, and failure in the supply of power,

the hardware, or the software that supports the operation of the

peering facility. Such outages are a�ecting multiple networks, thus

have di�erent characteristics than those due to faulty operation or

failure of an individual router or a single network provider. To the

best of our knowledge, the only detailed study of such an outage is

about the World Trade Center after the September 11 attack [13].

The report concludes that the catastrophic failure had “little e�ect

on the Internet as a whole” but “a major e�ect on the services of-

fered by some information and service providers”. However, these

infrastructures have gained an increasingly international set of net-

work members in the last 15 years [16, 18]. Thus, it is quite possible

that a local outage at one of these infrastructures today has a more

global e�ect.

Unfortunately, a system that can detect and report on peering in-

frastructure outages in an automated fashion is not available. Such a

system would be of increasing interest for many Internet stakehold-

ers. Network operators can be informed, in real-time, about ongoing

outages, which today mainly happens via out-of-band communica-

tion after the event, if at all. Timely detection of outages based on

routing data can help operators optimize their mitigation strategies

and the communication with their customers. Policy makers can

make use of such a system to improve their situational awareness

regarding the threats to critical infrastructures. Finally, researchers

can understand how the evolving Internet behaves under stress. To

enable the above capabilities, we build Kepler , a system that detects

peering infrastructure outages with the aim to understand the ex-

ternalities of such outages, improve current monitoring practices,

and potentially help in improving the resilience of the Internet at

the regional and global level.

By extracting location meta-data encoded in BGP messages, Ke-

pler can detect 159 facilities and IXP outages over the last 5 years,

four times more than publicly reported in popular operators and
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Figure 1: Detected and reported infrastructure outages per

semester since 2012. The peak in the 2012/12 bin is due to

Hurricane Sandy.

outage mailing lists [25, 26, 67, 74]. Figure 1 shows the number

of facility and IXP outages we detect per 6-months since 2012,

compared to the number of facility and IXP outages reported. Sur-

prisingly, even infrastructure outages with large e�ects are not

necessarily communicated via these mailing lists.1 One alternative

communication channel of outage events is through social media,

where operators often resort to seeking answers on network dis-

ruptions. However, extracting this information remains a manual

and error-prone search process [9].

To develop Kepler we have to tackle the following challenges:

Identify Outages: How to detect outages at peering infrastruc-

tures given that previous work has illustrated that even identify-

ing the AS responsible for major routing events is a challenging

task [42, 94, 99].

Characterize Outages: The next challenge is to assess the start,

duration, impact, and frequency of an outage. Often, public infor-

mation, such as press releases after an outage, are of questionable

accuracy and detail, and there is limited transparency on what

actually happened and which parts of the Internet were a�ected.

Locate Outages: The third challenge is to detect the exact loca-

tion of an outage. While a map of the U.S. long-haul �ber-optic

infrastructure including some of the carrier facilities of major U.S.

ISPs was released last year [34], we lack a detailed map of peering

infrastructures. Two recent works attempt to tackle this problem by

using large-scale active traceroute campaigns to infer the IP-level

connectivity at colocation facilities [50, 72]. However, these meth-

ods scale only for a limited number of ASes or a limited number of

facilities. This is due to the scale of the required active queries and

the resource limitations of the available measurement platforms,

such as RIPE Atlas and Looking Glasses [48, 91].

Our Approach:We introduce a novel methodology to reliably

detect peering infrastructure outages in the wild and investigate

their impact. Our detection mechanism relies on the observation

that BGP is no longer purely an “information hiding protocol” [92].

The BGP Communities attribute, introduced with RFC1997 [17] in

1996, provides meta-information regarding pre�xes announced

to customer and peer networks, and is used for tra�c engineer-

ing [85], tra�c blackholing to mitigate attacks [31], and network

troubleshooting [44]. Their use has become quite popular in recent

years (Section 3.2) allowing us to use them as a crowd-sourcing

1For example, the May 2015 outage at AMS-IX was discussed in the Austrian ATNOG
mailing list [4] but not the more popular NANOG and outages mailing lists.

mechanism for acquiring accurate location information for about

50% of all BGP IPv4 updates (Section 5.2).

While BGP routing updates have been used to detect outages

limited to the AS and pre�x granularities [8, 20, 24, 60], our novel in-

sight is that Communities with location information in BGP updates

can reveal the occurrence and location of peering infrastructure

outages. Our methodology relies on location-based BGP Commu-

nity values and allows us to pinpoint the exact location as well

as the starting time and duration of the outage at high accuracy.

To assess the impact of an outage, we track the changes in the

use of the Communities by the members of the a�ected facility.

However, since the semantics of the Communitiy attributes vary in

geolocation granularity, from facility or IXP to city or metropoli-

tan area, and Communities are not attached in every BGP update,

monitoring Communities alone is not su�cient. To address these

limitations, we augment our analysis with a physical map of facili-

ties which allows us to correlate location-speci�c routing changes

with the colocation of ASes in common peering infrastructures (Sec-

tion 3.3). Moreover, we use archived and a small number of targeted

traceroute measurements to con�rm our inferences (Section 6.3).

In summary, our contributions are the following:

• A novel lightweight methodology for detecting, localizing, and

tracking outages at peering infrastructures through passive mon-

itoring of BGP data, by combining location-tagging BGP Com-

munities with colocation data in facilities and IXPs.

• We instantiate our methodology in an operational monitoring

system, Kepler , and we use it to study infrastructure outages visi-

ble in public BGP data between 2012 – 2016. We unveil four times

as many outages at major peering infrastructures as compared

to those previously reported in major networking mailing lists

and news websites.

• We augment our analysis with targeted and archived traceroute

measurements, and tra�c data to further investigate the impact of

the detected outages. We �nd that a large number of the a�ected

links with remote networks can be hundreds or even thousands

of miles away from the location of the incident, challenging the

mental model that local outages have only local impact. Our study

reveals that interconnection strategies such as remote peering

and the colocation of ASes at multiple diverse locations create

unexpected interdependencies among peering infrastructures

that remain largely unnoticeable during normal operation, but

disrupt connectivity in counter-intuitive ways during outages.

The rest of the paper is organized as follows. Section 2 discusses

the changing interconnection landscape. Section 3 introduces our

methodology and the datasets we compile to make it feasible. Sec-

tion 4 explains how we develop Kepler to implement the proposed

methodology, which we evaluate in Section 5. Finally, Sections 7

and 8 discuss the implications of our work and summarize our

contributions respectively.

2 BACKGROUND

Networks often interconnect through multiple physical links estab-

lished over peering facilities, sometimes even in di�erent locations

in the same city [73, 92]. While in the past the majority of facilities

were maintained by individual transit providers to interconnect
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Figure 2: Examples of how facility-level and IXP-level outages a�ect the inter-domain paths.

with their customers, the advent of IXPs and the �attening of the In-

ternet hierarchy led to the increasing popularity of carrier-neutral

facilities, such as colocation facilities, which allow connectivity

independent of speci�c providers [54, 70].

Colocation facilities o�er the hosting of servers and network

equipment to facilitate networks’ interconnections, typically via

cross-connects or Private Network Interconnects (PNI), i.e., a point-

to-point circuit [12]. Facilities are mainly concentrated in metro-

politan areas, with major telecommunication hubs like London and

New York hosting dozens of facilities [50]. While it is common prac-

tice among facility operators not to publish the number of PNIs,

there are indications that their number is continuously growing.

Equinix reports more than 188K cross-connects over its 145 facil-

ities (Q3/2016) [37]. Moreover, high-pro�le acquisitions suggest

a highly dynamic sector, including the acquisition of Telecity by

Equinix for $3.8 Billion [36], and Telx by Digital Reality for $1.9

Billion [97]. Interconnection paradigms such as remote peering and

tethering are increasingly deployed, allowing networks in remote

sites of the same facility to exchange tra�c directly [77].

An IXP is a physical infrastructure composed of layer-2 Eth-

ernet switches which interconnect edge routers of members [18].

Once a physical connection is established, ASes can chose between

di�erent �avors of peering: (i) bilateral public peering, (ii) bilat-

eral private peering via a virtual local network, similar to PNIs in

colocation facilities, (iii) multilateral public peering over IXP route

servers [52, 89], or (iv) remote peeringwith the members of a�liated

IXPs [16]. Today, there are more than 300 IXPs in the world [81],

particularly in Europe, but their popularity also increases in other

regions, including the USA [61], Latin America [11], and Africa [40].

The number of members varies from tens to multiple hundreds, e.g.,

DE-CIX Frankfurt and AMS-IX Amsterdam have over 700 mem-

bers [2, 28]. Moreover, IXPs are not just local interconnection points

but they are becoming international hubs, through the use of layer-

2 carriers and Virtual PoPs (vPoPs). For instance, LINX London

interconnects networks from more than 72 countries [65, 66]. It is

also increasingly popular for IXPs to form conglomerates by inter-

connecting with each other [45], while distributed IXPs, such as

NL-IX, interconnect their remote sites to o�er virtual backbone and

remote access to their network members. Studies show that IXPs

enable hundreds of thousands of peerings [1], the large majority

being multi-lateral peerings [52, 89]. Tra�c exchanged at IXPs has

increased signi�cantly in recent years [18], exceeding 5 Tbps at

large IXPs.

With the advent of Content Distribution Networks (CDNs) and

the placement of data caches close to the users, the interconnection

landscape has become increasingly clustered in large metropolitan

hubs [50, 70]. The geographic agglomeration of the peering activity

has led to an increasingly symbiotic relationship between IXPs and

colocation facilities: IXPs bene�t from placing their switches in

locations where ISPs can easily install their network equipment,

while facility operators often subsidize the presence of IXPs in

their space to increase the attractiveness of their colocation ecosys-

tem [12, 78]. These mutual interconnection incentives create tight

physical interdependencies between IXPs and facilities. For exam-

ple, DE-CIX has distributed its peering fabric among 12 di�erent

facilities in the greater Frankfurt metropolitan area [29], while the

Equinix Frankfurt KleyerStrasse (FR5) colocation facility hosts 10

di�erent IXPs [81].

3 METHODOLOGY

In this section, we describe our methodology for detecting and

localizing peering infrastructure outages.

3.1 Challenges and Concept

Recall that the main purpose of BGP is to provide reachability in-

formation and not connectivity information [92]. Thus, relying on

the BGP path or the AS-level topology of the Internet is not su�-

cient to detect the physical location of a peering, and the location

of the underlay interconnection infrastructure. To illustrate the

challenges in detecting and pinpointing the exact physical location

of a peering outage consider the topology of Figure 2. It consists of

four ASes (ASi ), four colocation facilities (Fj ), and two IXPs (IXk ).
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Figure 2(b) and 2(c) are the results of two di�erent outages, at colo-

cation facility F2 and at IXP IX1, respectively. Initially, AS1 reaches

AS2 via private peering over facility F2; AS2 reaches AS4 via public

peering over the IXP IX1; and AS3 reaches AS4 via IX1. Note, some

paths involve multiple facilities, e.g., from AS2 to AS4 via IXP IX1,

F2, and F4, and from AS3 to AS4 via IX1, F3, and F4.

The failure of F2, Figure 2(b), a�ects both private and public in-

terconnections at this facility. The private ones are a�ected directly,

the public ones only indirectly since F2 hosts part of IXP IX1’s

switching fabric. In our example, two paths change: AS1 switches

to its backup path via F1, and AS2 switches to its backup path to

AS4 over F4. Note that the AS paths do not change. However, the

involved facilities and IXPs do change. Likewise, the failure of IX1,

(Figure 2(c)), partially a�ects the paths of F2, F3, and F4, since the

new routes have to bypass IX1. This can cause a large number of

BGP updates. Yet, the AS paths themselves again do not necessarily

change. Both scenarios illustrate the increasing symbiotic relation-

ships between colocation and IXP peering infrastructures. Such

inter-dependencies have already led to confusion when locating

and reporting the cause of outages [3, 87].

Our examples show that it is not su�cient to track AS-level

changes to determine the outage location, we need to monitor

facility-level paths and correlate them acrossmultiple route changes.

In Figure 2(b), the fact that F2 disappears from all paths, while IX1

disappears only from the path through F2, is su�cient to infer that

the outage occurred at F2. Similarly, for Figure 2(c) the outage can

be localized at IX1 and not F1, since the AS1–AS2 path through

the facilities/IXP remains unchanged, while the AS3–AS4 path is

re-routed via IX2 concurrently with a path change fromAS2 toAS4.

The example above allows us to derive the following insights

about infrastructure-level outage detection:

Facility-level Inter-domain Hops: The four ASes appear to ex-

change tra�c directly when observing only the AS-level paths.

However, the physical paths involve multiple intermediate facility-

level and IXP-level infrastructures that introduce externalities in

the resilience of the AS interconnections. We need to capture these

infrastructures to accurately localize outages.

Path Correlation: To uncover the failure location within the com-

plex infrastructure of today’s Internet, we have to correlate path

changes across multiple vantage points with colocation data at

facilities and IXPs.

Before and After Comparison: To understand the source and

impact of an outage, one needs to compare routes during an outage

to those before the outage—the “healthy” state. Therefore, we need

the ability to continuously monitor the routing system.

A major challenge is how to get su�ciently �ne-grained facility

information. A key insight of our approach is that we can extract

facility information per routing update through the analysis of BGP

communities. Moreover, it is feasible to collect detailed facility maps

from various public sources using techniques described in [50, 68],

thanks to the increasing openness in the sharing of colocation data

to support a more �exible peering setup process or even automate

it altogether [7, 63]. Indeed, today the large majority of peerings

are multilateral peerings that do not involve formal contractual

agreements [100].
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Figure 3: Number of unique BGP Communities values (left

y-axis), compared to unique top two octets.

3.2 BGP Community Dictionary

BGP Communities have the format X:Y, where X, Y are two 16-bit

values (extended communities use four octets [93]). By convention,

the �rst two octets encode the ASN of the operator that sets the

community, while the next two octets encode an arbitrary value

that is used by the operator to denote speci�c information such

as the ingress location of a route. There are two types of commu-

nities: (i) inbound communities that are applied when an operator

receives a pre�x advertisement at an ingress peering point, and (ii)

outbound communities that are applied when an operator sends a

pre�x advertisement at an egress peering point.

The Rise of BGP Communities: Between 2010 and 2016 the

visible number of networks using BGP Communities has more than

doubled from 2, 500 to 5, 500, and the number of unique community

values has tripled to more than 50K in 2016 (Figure 3). Moreover,

the number of Community values per pre�x announcement has

increased from an average of 4 to 16. These communities encode a

wealth of routing meta-data, but unfortunately, the community is

possibly the only BGP attribute with no speci�c semantics and val-

ues that are neither standardized nor have a uniform encoding [33].

Consequently, extracting meaningful information from the commu-

nities is not possible without additional sources of interpretation.

Location-Encoding Ingress Communities: Each operator uses

di�erent values to encode location information at various granu-

larities. For example, in Figure 4 the BGP collector receives routes

for pre�xes 184.84.242.0/24 and 2.21.67.0/24 with a common

AS subpath 13030 20940. The �rst route is tagged with commu-

nity 13030:51904. The value 13030 in the top 16 bits indicates

that AS13030 has applied the community. The value 51904 in the

bottom 16 bits, indicates that this community is used to tag routes

received at the Coresite LAX-1 facility [59]. Similarly, the second

route is tagged with two communities from AS13030. The value

51702 means that the route’s ingress point was the Telehouse East

London facility, and the value 4006 means that the route was re-

ceived by a public peer at the LINX IXP Juniper LAN.

While the community values are not standardized, many oper-

ators publicly document their community schemes either in their

Internet Routing Registry (IRR) records or in their support Web

pages. However, the documentation is in natural text and lacks a

standardized structure and terminology, therefore its parsing neces-

sitates signi�cant manual work that is unsustainable given the large

number of BGP Communities. To tackle this problem we develop a
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Figure 4: Inferring physical locations from BGP Communi-

ties.

web-mining tool that enables the automatic compilation of a com-

munity dictionary. We �rst use a Web Scraper to extract the text

from the remarks sections of IRR records and from ASes’ web pages.

Then, a text parser analyzes the extracted text using the Natural

Language ToolKit [10] to discover infrastructure-related communi-

ties. We identify sub-strings that include community values using

regular expression matching, on which we use Stanford’s Named

Entity Recognizer (NER) [43] to identify named entities, focusing

on entities that pertain to locations or infrastructure operators.

To improve the accuracy of NER for network-related entities, we

adopt the techniques proposed by Banerjee et al. [5] and we search

PeeringDB [81], Euro-IX [38], and IRR records, for organization

names that match capitalized words encountered in communities

documentation. These sources also enable us to determine the net-

work type of the identi�ed entities. For our community dictionary,

we only keep communities that tag three types of Named Entities:

(i) city-level locations, (ii) IXPs, and (iii) colocation facilities.

Then, using syntactic analysis we �lter-out outbound commu-

nities that de�ne location-speci�c tra�c engineering actions. In

particular, we perform Part-of-Speech tagging to distinguish verbs

in passive voice used for documenting inbound communities (e.g.,

“received”, “learned”, “exchanged”), and ones in active voice that

de�ne actions (e.g., “announce”, “block”). Finally, we assign a sin-

gle location identi�er to all entities related to a common location.

Di�erent operators use di�erent naming, such as city names (“New

York City”), city initials (“NYC”), or IATA airport codes (“JFK”). To

determine if the di�erent location identi�ers refer to the same loca-

tion we query the Google Maps Geocoding API [53] to obtain the

coordinates for each identi�er, and we group together identi�ers

that are within 10 km from each other.

IXP Path Redistribution Communities: We augment our dic-

tionary with path redistribution communities used by IXP route

servers. IXP route servers often use communities to aid their mem-

bers in controlling how their pre�xes are advertised to other route

server members [57], e.g., advertise to all, and advertise to selected

peers. Thus, a route server community on a BGP route indicates that

the route traversed the IXP and the �rst 16 bits of the community

value indicates the IXP ASN.

Dictionary Statistics: As of December 2016, our community dic-

tionary includes 5,284 communities by 468 ASes and 48 route

servers, and covers 288 cities in 72 countries, 172 IXPs, and 103

facilities. While 468 ASes is a small fraction of the ASes, it includes

all but two Tier-1 ASes and most major peering ASes. Note that for

the two Tier-1 ASes (XO Communications and Verizon) missing

from our dictionary we observed less than 20 di�erent community

values in the public BGP data, which indicates that they either do

not use communities to annotate their PoPs, or they do not prop-

agate such communities outside their domain and do not provide

publicly accessible community documentations. Figure 5 shows

the geographical coverage of locations we extract from the com-

munities. The majority of the communities (66%) tag a location

in Europe, followed by North America (24.5%), while only 2% of

the communities cover locations in Africa and South America. Al-

though the interconnection ecosystem in these regions is indeed

relatively underdeveloped [55, 71], the di�erence in coverage can

be also explained by biases in the underlay documentation sources,

such as the completeness of the di�erent Internet Routing Reg-

istries [6], and the fact that our natural language parser works only

with English text. As we elaborate in Section 5.2, location BGP

Communities included in our dictionary are present in about half

of all BGP IPv4 updates. To ensure freshness we recompute our

dictionary every two weeks and always use the dictionary from

the corresponding time period for route processing. To validate the

correctness of our automatically-generated community dictionary,

we compared it against a manually-constructed dictionary. Due to

the overhead of manually parsing community documentations, we

limited the validation to the 25 ASes in our dictionary with the

highest number of BGP paths annotated. We did neither �nd a false

positive nor a false negative.

Attrition of BGP Communities: To understand the attrition rate

of location-encoding communities we study the communities clas-

si�ed either as “geographical location” or as “interconnection point”

by Donnet and Bonaventure in 2008 [33]. Only 552 of the 2,980

communities in their dictionary are visible in the aggregated Route-

Views/RIS BGP data across 2016, while the rest appear not to be

used anymore. On the other hand, of the 5,284 communities in our

dictionary, only 471 (9%) are also in the 2008 dictionary. However,

only 7 (1.5%) of the common community values changed meaning

after almost a decade, indicating that the semantics of communities

within an AS change rarely. Since location-encoding communities

are used for operational purposes, such as troubleshooting and

tra�c engineering, the stability of community semantics minimizes

the risk of miscon�gurations when setting these communities on

pre�x advertisements.

The above �ndings highlight the value of our automated commu-

nity interpretation to enable a frequent extension of the community

dictionary with new values, to remove stale entries, and to maintain

a high-degree of coverage of the active communities. Moreover, the

risk of misinterpreting the community values due to stale entries is

small even in the time span of years.

3.3 Colocation Map

The majority of the communities annotate routes at city-level gran-

ularity, which is too coarse to pinpoint a peering infrastructure

outage at the facility-level or IXP-level. To achieve the intended

detection granularity, we complement the BGP communities with

a high-resolution colocation map that includes three types of inter-

connections: (i) ASes to IXPs, (ii) ASes to facilities, and (iii) IXP to

facilities. For each facility we also record the building-level address,
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Figure 5: The geographic spread of trackable infrastructure.

so that we know which facilities, IXPs and ASes operate at the cities

annotated by our community dictionary. To this end, we mine the

colocation data from PeeringDB [81] and DataCenterMap [27], as

well as individual AS websites. Since names of facilities and facility

operators are not standardized, we use the facility address (postcode

and country) to identify common facilities among the di�erent data

sources. We then merge the tenants listed in each data source for

the same facility to increase the completeness of our colocation

map. Similarly, IXP names also di�er between datasets. To identify

and merge the records that refer to the same IXP we use the URLs

of the IXP websites, and the location (city/country) where the IXP

operates. We use the constructed colocation map in the city-level

outage signal arbitration to de-correlate the “fate” of various ASes

in the same city during an incident, based on their presence or

absence at facilities. Thus, we can pinpoint the likely facility-level

or IXP-level location of incidents and increase the coverage of our

outage detection capabilities to physical locations beyond those

explicitly encoded in BGP communities.

3.4 Detection Methodology Overview

To detect and localize peering infrastructure outages we propose

Algorithm 1. Its input is a stream of BGP data, the BGP Community

dictionary, the colocation map, as well as targeted active measure-

ments for incident investigation.

The �rst step is to parse the BGP Communities attribute of the

collected BGP routes and �nd paths annotated with the traversed

Points-of-Presence (PoPs). We use these paths to analyze the PoP-

level routing dynamics. When we use the term “PoP” without any

other quali�cation, we refer to any of city, IXP, or facility. We �lter-

out transient paths to ensure that we have a stable baseline of the

routing system, and we update the set of stable paths periodically

to account for path changes after the start of our detection process.

Next, we start monitoring the incoming BGP updates for PoP-

level deviations from the stable baseline. Instead of checking for AS

path changes, we check if the relevant community values change.

When we observe a large enough fraction of paths that deviates

from the baseline PoP within the same time frame, we call it outage

signal. An outage signal corresponds to a spike in localized routing

activity and indicates that a routing incident a�ected a speci�c PoP.

Yet, it does not indicate if the incident is due to an outage.

Link-level events such as the de-peering of two large peers, or

AS-level incidents such as the disconnection of an IXP member,

can also lead to such an outage signal. To determine the source of

the signal, we trigger a detailed signal investigation process that

Algorithm 1:Overview outage detection and investigation

Input: (BGP paths, BGP Community Dictionary, Colocation Map,

Targeted Active Measurements)

Output: Location, Time and Duration of a PoP-level Outage

Pathsmapped ←− Map BGP paths to traversed PoPs based on the

attached Communities meta-data;

Pathsstable
mapped

←− Filter-out transient paths;

for BGP updates in new measurement interval do

Pathsdi�er ted
mapped

←− calculate how many paths diverted from

the PoP in the stable baseline;

if
Pathsdi�er ted

mapped

Pathsstable
mapped

> Tf ail then

Signal investigation

Si�nalt�pe ←− Infer the type of outage signal based on

the number of a�ected ASes and AS links;

if Si�nalt�pe is PoP then

POPBGPt�pe ←− Determine the type of PoP based on the

colocation map;

POP tracet�pe ←− Con�rm the a�ected PoP through

traceroute queries;

if POPBGPt�pe ≡ POP tracet�pe then

while Outa�estate is True do
duration ←− record the duration of the

outage

return Outa�e(t ime , POP , duration)

classi�es the signal as link-level, AS-level, or PoP-level based on

the number and disjointedness of the a�ected ASes.

If the signal is classi�ed as a PoP-level outage, the algorithm

proceeds to explore the granularity of the PoP. Here, we combine

the colocation map with active traceroute measurements that we

collect either opportunistically by mining public traceroute reposi-

tories, such as those provided by PathCache [95], or by executing

our own targeted traceroute campaigns. The traceroute paths help

us to validate the outage and eliminate false positives by mapping

the IP-level hops to IXPs and facility interfaces using the techniques

described in [50, 76]. When the data-plane and control-plane infer-

ence identify the same PoP as the source of the outage, we consider

the outage as validated. We determine the length of the outage (i)

by actively probing the involved interfaces and (ii) by monitoring

BGP messages for changes in the communities that indicate that

the paths have returned to the baseline PoP. Since we mainly rely

on passive measurements via BGP, our active monitoring is rather

selective and does not rely on greedily probing all infrastructure

addresses. Therefore, our approach is practical and conforms to the

resource limitations of publicly available measurement platforms,

including RIPE Atlas [90] and Looking Glasses [48].

4 THE KEPLER SYSTEM

In this section, we present the design and implementation of Ke-

pler2, a system that relies on our methodology to detect outages

2Data and additional technical details are available at http://kepler.inet.tu-berlin.de
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in the wild and investigate them. While the analysis of BGP data

is lightweight, our experience with operating Kepler shows that

the e�cient design of di�erent modules is critical to make the sys-

tem practical and accurate. Figure 6 illustrates the architecture of

Kepler .

4.1 Input Module: Data Preprocessing

The �rst part of Kepler preprocesses all data sources. First, it gener-

ates the BGP Community dictionary and the colocation map. For

the continuous BGP data we use BGPStream [79] to decouple Kepler

from the sources of BGP feeds, and thus, obtain a uni�ed feed of

sorted BGP records. In addition, Kepler sanitizes the collected paths

by discarding paths with AS loops, private ASNs, or special-purpose

ASNs [22]. Currently, we use all RouteView and RIPE RIS collec-

tors. For every BGP update with attached BGP community values,

Kepler uses the dictionary to infer which physical infrastructure

a route traverses. Hereby, Kepler also infers which location-based

BGP community refers to which hop of the BGP path, either by

mapping the �rst two octets of the community to the same ASN

hop in the path, or by applying the methodology in [51] in the case

of IXP route server communities.

4.2 Monitoring Module: Outage Detection

Kepler’s monitoring module identi�es all the PoPs P for which we

have physical location information from the community dictionary.

These are the PoPs that we monitor in detail. Then, Kepler periodi-

cally computes a set of stable routes that involve p for all p ∈ P . A

pre�x route is stable if it traverses P for a period of ds consecutive

days (the default value is 2 days). Thereafter, we check for PoP-level

routing changes vs. the baseline stable path. Hereby, we consider

the following change to a route from s to d involving PoP p ∈ P :

(i) an explicit withdrawal, (ii) another AS path not involving PoP p,

and (iii) an announcement with another community—an implicit

withdrawal. In addition, we check for BGP State messages to detect

potential disruptions in the BGP feed that can cause gaps in our

BGP stream and disregard updates due to it. Note, if the AS path

changes but the community tag involving p remains the same, we

do not consider the update a route change for p. However, we con-

sider changes to the community tag as route change even if the AS

path remains unchanged.

We bin routing updates in time intervals to correlate path changes

with routing incidents. Since most of the ASes that set the ingress

Communities are close to one of our BGP collectors it su�ces to

use a relatively short time interval. We use a binning interval of

60 seconds (twice the default MRAI time [88]). At the end of each

binning interval we compare the paths from the baseline to the

paths in the current bin and determine the fraction of paths that

continues to traverse p. If this fraction is below a threshold ofTf ail
we may have an outage signal. However, an aggregated comparison

of all the paths can be biased by ASes that account for a dispropor-

tionately large number of paths. For instance, if a partial outage in p

a�ects the paths of many regional ASes but not the paths of a large

Tier-1 AS, then the total fraction of paths may not fall below the

detection threshold Tf ail causing a false-negative. Therefore, we

group the paths based on the ASes that are involved in the tagged

links and determine outages per AS. If the fraction of paths of an AS

a involving p falls below the thresholdT , we say that a is subject to

an outage signal in the current binning interval. An outage signal is

an indicator of a possible outage event but the de�nite inference is a

task of the signal investigation module. After each binning interval,

we remove the changed paths from the set of stable paths. We also

refresh the set of stable paths every 2 days to account for new paths

and new community values. Note, the focus of this module is to

detect the start of an outage.

4.3 Outage Signal Investigation

Kepler’s outage signal investigation considers all outages signaled

within a time interval and determines the granularity of the trigger-

ing event. We distinguish four incidents: (i) link-level, (ii) AS-level,

(iii) operator-level, and (iv) PoP-level outages. For PoP-level events

we identify the physical location. Kepler also tracks the new physi-

cal location after the rerouting of a stable path and the time it takes

for a path to return back based on the same principle to estimate the

duration of the outage. To increase the con�dence for the duration

of each outage and the reaction of network operators, Kepler relies

on targeted active measurements.

We distinguish four di�erent granularities of outage signals.

Link-level: Changes to an AS-link with a large number of pre�xes,

can cause an outage signal, e.g., a de-peering or even a MED change

between two Tier-1 ASes. Since such link-level incidents are not

the focus of this paper we require that more than three di�erent

ASes have to be a�ected to trigger an investigation.

AS-level: Changes in the availability of a densely connected AS

can cause multiple of its peers to change their paths away from

a speci�c location concurrently. For instance, if an IXP member

decides to terminate its membership, it will terminate all public

peering BGP sessions at that IXP. If all a�ected links intersect at a

single common AS, either as near-end or as far-end neighbor, we

classify the signal as AS-level.

Operator-level:We combinemultiple AS-level outages to an operator-

level outage, if all of the a�ected links include ASes that belong

to the same operator. Our motivation is that operators often ad-

minister multiple sibling ASes each with di�erent functions but

often hosted on the same infrastructures. For instance, the Equinix

Ashburn Exchange hosts three di�erent sibling ASes operated by

Bell Canada. An organizational-wide policy or network change will

e�ect all sibling ASes. We map ASes to organizations using the

methodology from [14].

PoP-level: When a signal involves multiple AS links with disjoint

near-end and far-end ASes and organizations, we classify it as

PoP-level. In particular, we require that the set of a�ected links

includes at least three di�erent non-sibling near-endASes and three-

di�erent non-sibling far-end ASes that are disjoint. From that, we

infer a PoP-level incident if at least three di�erent AS-level and

operator-level incidents occur in the same binning interval at the

same PoP. Next, we re�ne our localization for PoP-level outages.

Disambiguation of Outage Signals: Recall, from Figure 2, that

the physical connectivity between two ASes can involve multiple

physical PoPs. With ingress communities we can only identify PoPs

at the near-end of an AS pair. However, depending on the peering

strategy, which includes private peering and local or remote public

peering, there may be up to four facilities between the ingress
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Figure 6: Flowchart of Kepler’s outage signal detection and investigation.
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Figure 7: Tuning parameters for Kepler (a) and (b), and Fraction of updates with location communities (c).

PoP and the far-end AS. A failure in any of them will trigger an

outage signal at the near-end facility. To disambiguate such signals

we correlate outage signals from multiple PoPs, combined with

our colocation map. Our assumption is that outages at the near-

end facility, the one identi�ed by the ingress community of an AS,

should a�ect all paths taggedwith this community that involve links

with far-end ASes co-located in the same facility. More speci�cally,

we infer the outage in the near-end facility if at least 95% of the

paths with co-located ASes are a�ected. We allow for a 5% margin

to account for possible inaccuracies in the colocation map, such as

spurious AS-to-facility presences, based on the results in [50].

If this is not the case, we check if the outage location is among

the facilities where the a�ected far-end ASes have a presence. Ac-

cordingly, we repeat the above process for all facilities where any

of the remote ASes has a presence and for which we have an outage

signal in this binning interval. Figure 2(c) illustrates this process.

When we infer that the near-end facility is not the outage epicenter,

and the far-end peers have no facility in common (after checking

the colocation map) we increase the PoP granularity to IXP-level

and we repeat the same process. Namely, we collect the common

IXPs among the near-end and the far-end peers and we check if all

the common IXP members have been a�ected, e.g., in Figure 2(c)

the outage source is IX1 and not F3 or F4. If we fail to converge to

a single IXP as the outage source, we cannot make an inference

and resort to targeted traceroute queries to discover the outage

source. If during a binning interval we successfully converge to a

facility/IXP for multiple outage signals, and all the facilities/IXPs

operate in the same city, we abstract the granularity of the incident

to city-level.

Increasing Signal Resolution: Unfortunately, communities are

not always PoP speci�c but coarser, e.g., only at the IXP level (colo-

cated IXP). To further re�ne our inference, we utilize again the

colocation maps. For outage signals with IXP communities we

check if all IXP peers or only IXP peers in speci�c facilities are not

reachable. Thus, we check for each facility that the IXP is involved

only if all routes of that facility are a�ected. If this is the case, we

can infer that the outage is at the facility rather than the IXP, e.g.,

at F2 and not IX1 in Figure 2(b). We follow a similar methodology

for outage signals detected using city-level communities, with the

additional step of checking for IXP-level failures, if we infer that

the outage did not occur in a facility.

4.4 Data-Plane Analysis

Kepler validates the occurrence and determines the outage duration

via data-plane analysis, using both archived and targeted traceroute

queries. We again initialize the analysis with a set of stable paths,

whereby, we focus on paths that cross the monitored facilities

and IXPs. To construct an extensive set of stable paths without

incurring high measurement cost, we follow an approach similar to

PathCache [95] and consume the publicly available traceroute paths

collected by RIPE Atlas [90], CAIDA’s Ark [15], and iplane [69].

Kepler also has an interface to initiate traceroute campaigns using

public probing platforms [48, 90]. For mapping the traceroutes

to ASes, IXPs, facilities, and data sanitization, we use techniques
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proposed in [19, 50, 76]. The facility mapping part is the only one

that requires active measurement. To keep the number of required

active measurements low, we focus on the ASes that are not covered

by our community dictionary, yet are colocated at the facilities of

interest.

Since we use opportunistic measurements for our baseline set of

paths, we have to focus on subpaths. Namely, if an AS pair appears

to consistently interconnect over the same IXP or facility hops in the

traces of the last four consecutive weekly path dumps, we include

the corresponding paths in our baseline dataset. This approach may

remove some AS pairs with very diverse interconnection footprint

which is desirable for the purpose of con�rming outages, since path

changes between AS pairs with low path diversity are less likely to

re�ect intra-domain routing changes.

WhenKepler detects an outage for a PoP, it identi�es the baseline

paths of AS pairs that interconnect over the PoP. Next, it selects the

same sources and destinations and repeats the traceroute queries.

If the fraction of baseline paths that continues to cross the PoP

is below a threshold Tf ail , we con�rm the outage and continue

probing to determine the duration of the outage. Otherwise, we

either have a false-positive in our outage inference, or the service

was restored in the mean time. Unfortunately, there is a 5 to 15

minute lag in receiving BGP updates. To eliminate false positives, we

continue the traceroute analysis until the next set of BGP updates.

If the outage signal is still in the BGP data, but the traceroutes did

not con�rm the outage, we conclude that we have a false-positive

and disregard it.

When over 50% of the paths (traceroute if available/BGP oth-

erwise) return to the baseline we consider the outage as restored.

However, for a number of outages we observe periods of oscillations.

When two consecutive outages for the same PoP are separated by

less than 12 hours, we conclude that they are part of the same inci-

dent. Its downtime is the sum of the individual outage durations.

5 KEPLER EVALUATION

In this section we present a data-driven evaluation of Kepler’s capa-

bilities. We �rst analyze the detection sensitivity of our algorithm,

and how we tune Kepler to optimize the detection of PoP-level

outages. We then discuss the reach of Kepler and its limitations,

and we present our validation e�orts to understand its accuracy

and precision.

5.1 Sensitivity and Calibration

Kepler has two main parameters: (i) the time window for determin-

ing stable paths and (ii) the threshold which triggers an outage sig-

nal (Tf ail ). For the stable paths, a window smaller than 1 day would

include transient paths, while windows higher than 5 days yield

small sets of stable paths that restrict Kepler’s coverage. Therefore,

we use two days to obtain a stable yet extensive baseline of paths.

Kepler is more sensitive to the threshold parameter, as shown in

Figure 7a. For 2016, it shows the number of detected outage signals

at link-level, AS-level, and facility/IXP-level for thresholds ranging

from 2% to 50%. We assess the e�ciency of the di�erent threshold

levels by validating the control-plane outage signals against the

data-plane measurements for each signal. The number of detected

facility/IXP-level outages, which is our focus, remains stable for

thresholds from 2% to 15%. Higher thresholds lead to missing out-

age signals that have been con�rmed by concurrent traceroute path

changes. The missed outages are partial, i.e., outages limited to

certain systems of a facility/IXP and a�ect a subset of its members.

On the other hand, thresholds below 2% increase the number of

outages that have to be investigated, and lead to mis-classi�cation

of AS-level and link-level outages as PoP-level. Note, that some of

the additional outage signals raised for low thresholds may capture

partial outages of limited impact that traceroute measurements fail

to detect. We select a threshold of 10% to be relatively conservative

and minimize wrong inferences, while still being able to capture

medium-scale partial outages.

5.2 Data Analysis Reach and Coverage

A natural question is what fraction of BGP paths, can be analyzed

with Kepler . Figure 7c shows the fraction of IPv4 and IPv6 BGP

updates per month in 2016 with at least one location-encoding

community. About 50% of the IPv4 and 30% of the IPv6 paths in-

clude such communities and, thus, are usable by Kepler . Moreover,

Kepler’s communities consistently tag over 35% of the IPv4 and 28%

of the IPv6 AS links across every BGP snapshot. One reason for

the larger fraction of IPv4 paths/links compared to IPv6 is that ISPs

still focus less on optimizing IPv6 tra�c �ows.

The next question is at what fraction of the facilities can Kepler

uncover outages. We de�ne a facility as trackable if it has a mini-

mum number of networks whose interconnections can be located

by the communities in Kepler’s dictionary so that our methodology

is applicable. To distinguish PoP-level from AS-level or link-level

incidents, we rely on correlation of updates from multiple members

and we require that we have at least six di�erent members that can

be located through communities, 3 at the near-end of a link, and 3

at the far-end. The colocation databases we mined in Section 3.3

include 1, 742 facilities with at least one AS member. For each of the

1, 742 facilities, Figure 7b shows the total number of their members

compared to the ones that are trackable. There are 1, 209 facilities

with less than 6 members, thus, in principle, we can track 533 fa-

cilities. Of these we miss 130 (24%) for which we currently have

less than 6 trackable members. Therefore, the detected outages by

Kepler are a lower bound of all possible outages. Note that while

for the trackable facilities we are able to detect all full outages, it is

possible that some partial outages may be undetected depending

on the number of a�ected trackable facility members. Given the

increase in the community usage and in member ASes we expect

these numbers to increase over the next years. Importantly, we

are able to cover 180 out of 183 (98%) facilities with at least 20

members which are the most prominent interconnection hubs.3

Table 1 breaks down the covered facilities per continent. Kepler’s

coverage is better for Europe and North America, while Africa and

South America have the smallest fraction of trackable facilities.

Note over 80% of all the facilities included in the colocation datasets

(PeeringDB, DataCenterMap) are located either in Europe or in

North America. While the low number of facilities in the other

regions may indicate a geographical bias in the available colocation

databases, the European and North American peering ecosystems

3Two of the non-trackable facilities with more than 20 members are in India and the
other in Argentina.
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Table 1: Facilities coverage per continent
Continent Facilities

All >5 members Trackable

Europe 878 305 243

North America 529 132 105

Asia/Paci�c 233 70 46

South America 76 19 11

Africa 26 6 4

are signi�cantly more developed, with 73% of all the ASNs and 70%

of all IPv4 addresses assigned to countries in the RIPE and ARIN

zones.

5.3 Validation

We �rst check the accuracy and completeness of our PoP inference

via communities, by obtaining ground-truth data of the facility-

level interconnections from three large ISPs and one major CDN via

private communication that use BGP location communities. Each

gave us their list of facilities with neighbor ASes—in total location

information for roughly 5K AS pairs. We �nd that our community-

based localization is correct in every case, which is not surprising

given the operational importance of communities. From Figure 8a,

which plots the fraction of AS links vs. the number of facilities (the

main plot is zoomed-in for AS links with more than 1 PoP), we

see that we are missing less than 5% of the interconnections. On

the side, we �nd that a large fraction of AS pairs only involves a

single physical location. 60% are multilateral peerings between net-

works co-located at a single IXP, while the rest are interconnections

between stub ASes and their transit providers. Still, a signi�cant

number of AS pairs involves many physical locations, in particular,

if the two ASes are tier-1 or tier-2 ASes and peer with each other.

We then check the accuracy of Kepler’s inferences. We consider

as true-positive any inferred outage for which we �nd an external

data source that con�rms the outage occurred in the same facil-

ity/IXP at the same time. Validating false-positives, i.e., inferred

outages that did not happen, is more challenging since it is possible

that an outage was not publicly reported, or that it was reported in

a source that we could not discover. Nonetheless, we consider as

false-positives incidents that happened in the same location/time

as an inferred outage, but a�ected di�erent infrastructures from the

inferred one. We consider as false-negative any outage reported by

an external data source which a�ected a trackable facility, but for

which Kepler did not infer the outage. To collect validation data we

parsed messages in the NANOG and Outages mailing lists [67, 74],

news articles from specialized websites [25, 26], incident reports

from 18 Network Operating Centers (NOCs) [75], as well as pri-

vately shared information. We successfully validated 53 out of the

159 detected outages (Figure 1) as true positives. We also found 6

cases of false positives. In these cases,Kepler determined the correct

location of the incident but in reality the root cause of the outages

were �ber cuts that a�ected multiple co-located ASes. In terms of

false-negatives, Kepler did not miss any full outage that a�ected

trackable facilities. However, we found 4 undetected small-scale

partial outages that a�ected facilities with less than 30 tenants and

were mis-classi�ed as AS-level incidents.

6 RESULTS

Next, we use Kepler to detect and assess the impact of peering

infrastructure outages during the past �ve years. To this end, we

provide a detailed analysis of sample incidents enabled by Kepler

and underpin our �ndings with active measurements to (i) con�rm

outages, (ii) track path changes, (iii) measure rerouting times and

RTT increase, and (iv) infer the impact on tra�c at seemingly

unrelated locations.

6.1 Detected Facility Outages

The passive detection capabilities of Kepler allow us to conduct

a historical analysis of archived BGP stream and PeeringDB data

from 2012 to 2016. Overall, we detect 159 outages that include 103

outages among 87 facilities, and 56 outages in 41 IXPs, as shown

in Figure 1. To contextualize the completeness of our �ndings we

collect facility and IXP outages, reported in two popular mailing

lists, NANOG [74] and Outages [67], plus two specialized data

center and colocation websites [25, 26]. They only report 24% of the

detected outages, missing most of the incidents that occur outside

the US and the UK.

We �nd that 53% of the outages are in Europe, 31% in the US,

and the remaining ones in the other regions. The median outage

duration is 17 minutes and 40% of the outages exceed 1 hour (see

Figure 8b). With regards to frequency we �nd that the number

of detected outages is not increasing drastically over the last �ve

years, see Figure 1. In general, we �nd that IXP outages last longer

than facility outages. One reason may be in the possible causes of

outages.Most facility outages are due to basic infrastructure failures,

e.g., power or �ber cuts. Hence, restoring service mainly depends

on infrastructure recovery. IXPs also su�er from software and/or

con�guration failures which apparently take longer to resolve.

To correlate the duration of each outage with general service

availability, we add support lines for 99.9%, 99.99%, and 99.999%

uptime. This is slightly optimistic since 5 IXPs had multiple outages

in the same year. Still, 5% of the monitored 403 facilities fail to

meet the 99.99% uptime mark and 18% the 99.999% uptime mark.

Consequently, to provide services with availability beyond 99.999%

service providers must use redundant facilities.

6.2 Outages in Depth: Case Studies

To demonstrate Kepler’s capability to investigate outages we now

focus on three outages in detail. The �rst one occurred at AMS-IX, a

major IXP in Amsterdam, NL, at 2015-05-13. The outage was caused

by a loop in the switching fabric during planned maintenance [18].

Figure 8c plots the path change fractions for three di�erent aggre-

gation levels. The outage caused the IXP to loose almost all routes

and more than 90% of the exchanged tra�c for about 10 minutes.

It took about 15 minutes for the tra�c to recover. The incident is

clearly visible in all aggregation levels, but the paths tagged with

the AMS-IX Communities show the largest drop indicating the

actual source of the outage.

However, the changes in aggregated paths can be misleading.

Indeed, Figure 9a shows the e�ect of two independent facility-level

outages in London [3], on the co-located London-IXP LINX, and

a third facility, TH East. At time A, when the �rst outage occurs,

we see almost no change at the city level aggregation, while both
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Figure 8: Physical location deciphered by BGP updates (a), Outage durations (b), and AMS-IX outage case study (c).
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Figure 9: Two outages at di�erent colocation facilities in London (TC HEX8/9 and TH North) at July 20 & 21, 2016.

LINX and TH East are a�ected. At time B we observe a city level

signal, which does not correspond to a facility outage but rather a

re-routing of paths from a major Tier-1 AS. At time C, when the

second outage happens, we witness a major drop only through TH

East. Kepler identi�es correctly the A and C signals as PoP-speci�c

and the B signal as AS-speci�c, and instead of inferring either LINX

or TH East as the potential sources of the outages it proceeds to the

signal localization by examining the impact of the outage on the

far-end ASes against the facilities where these ASes are co-located.

This process is illustrated in Figure 9b, where it becomes clear

that at time A and C two major subsets of the ASes at TC HEX8/9

and at TH North are a�ected. The far-end ASes in other London

facilities (not depicted) show no concurrent signs of outage, al-

lowing us to identify correctly TC HEX8/9 and TH North as the

outage sources. Also note that at time B only a single AS is a�ected.

This plot also highlights that ASes handle outages di�erently. Some

return to their “stable” path once the outage is over, while other

remain with their new path. This set of outages illustrates Kepler’s

ability to disambiguate the source of outage signals to facilities.

6.3 Outages in Depth: Active Measurements

Next, we highlight the bene�ts of incorporating active measure-

ments in Kepler . We focus on the outage at AMS-IX.

Backup paths: Figure 10a shows the BGP path changes while

Figure 10b shows the traceroute path changes. While the overall

path changes follow the same trend, the backup paths that are

activated di�er. The BGP Communities are mainly provided by

large ASes with very diverse peering connectivity, allowing them

to activate alternative peering links at remote IXPs. On the other

hand, the majority of traceroute probes are hosted in local ASes,

and so are the targets, and thus most, 75% of the alternate routes

are via the transit interconnections.

Path restoration time: BGP path re-convergence took about 4

hours until 95% of the paths returned. Approximately 5% of the

paths did not return even days after the outage. Such permanent

route changes are either due to manual intervention or by the BGP

decision process that prefers the newest path to break ties and min-

imize route �apping. Although, 85% of the traceroute paths return

within one hour back to AMS-IX, a signi�cant fraction continues to

cross transit links. These results show that the actual impact of an

outage on both control-plane and data-plane routing paths signi�-

cantly outlasts the root cause of the outage, possibly necessitating

a review of the SLAs provided by infrastructure operators.

Impact on End-to-end Delays: Kepler uses the traceroute data

to assess the impact of an outage in round-trip time (RTT). While

we acknowledge that RTTs from traceroute may not re�ect RTTs

as seen by TCP, they serve as indications of performance changes.

Figure 10c shows the empirical cumulative distribution function of

the RTT delays for the paths that traverse AMS-IX. We distinguish

three time periods: (i) 20 minutes before the outage, (ii) during

the outage, and (iii) 20 minutes after the outage, i.e., 10 minutes

after the operation returned to normal. Moreover, we separated the
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paths into those that use AMS-IX (AMS-IX) and those that do not

(No AMS-IX) during and after the outage. During the outage the

median RTT rises by more than 100 msec for rerouted paths. For

unchanged paths, the median RTT increase is moderate, and while

some experience signi�cant increase the tail does not grow as much.

After the outage, this RTT increase disappears. Moreover, paths

that returned to AMS-IX within 20 minutes experience roughly the

same RTT as before the outage. However, 30% of the paths that still

use the alternative interconnections continue to see increased RTTs

of about 40 msecs due to sub-optimal routing in terms of distance.

6.4 Outages: Remote Impact

Remote Networks: To understand the impact of infrastructure

outages we study the locations of the ASes that have been a�ected

by the two London outages. We localize the IPs of the far-end

interfaces of the a�ected ASes identi�ed by Kepler’s traceroute

using DRoP [58]. Figure 9c plots the distance from London in km vs.

the number of a�ected ASes. Surprisingly, only 44% of the far-end

interfaces are also in London. More than 45% of the interfaces are

in a di�erent country with more than 20% outside Europe. The

main reason for such a widespread impact of localized failures is

the increasing popularity of remote peering, an interconnection

practice that allows ASes without physical presence at a peering

hub to interconnect through layer-2 transport providers that resell

peering ports across remote facilities [65]. Castro et al. estimated

that 20% of the members in large IXPs connect remotely [16], which

is consistent with our �ndings. This underlines the importance

of understanding the facility-level topology when analyzing the

impact of an outage.

Remote Infrastructures: To further challenge the expectation

that a “local outage has only local impact”, we complement Kepler

with passive measurements from a major European IXP (EU-IXP).

Figure 10d depicts the tra�c volumes in Gbps at EU-IXP during the

AMS-IX outage based on IPFIX data collected at its switching fabric

with sampling rate 1/10K [21]. The two IXPs are 360 kilometers

away. During the AMS-IX outage (t0), we notice a sharp drop in

IPv4 tra�c—about 10% (215 Gbps). After 10 minutes – when the

AMS-IX outage stopped (t1) the tra�c is rising above the expected

average volume. This lasts for approximately 15 minutes. After the

outage was restored (t2), the tra�c returns to normal levels.

To scrutinize this counter-intuitive observation we study the per

member tra�c. Only 136/533members have a signi�cant reduction

in tra�c (mean loss is 1 Gbps, max. loss 25 Gbps), with the rest

seeing a mean growth of 188 Mbps (max.12 Gbps). However, tra�c

losses dominate even though moderate tra�c increases are typical

during this time of the day. The top 25 ASes with a tra�c decrease

account for 83% of the total loss. The outage above is no singular

event. During other outages we observe similar tra�c reductions,

albeit smaller as the distance increases.

Remote Impact Explained: The conventional wisdom is that net-

work operators should use separate edge routers for each colocation

facility or IXP. However, due to the high cost of edge routers, op-

erators often use a single router for multiple facilities introducing

interdependencies among peering infrastructures, especially when

they have common members. In addition, operational best practice

prioritizes peering over upstream to keep tra�c local and to reduce

cost. Thus, pre�xes reachable via IXPs will use the IXP rather than

an upstream provider. Consider a scenario where an ISP uses two

IXPs and the capacity of neither is su�cient for the total tra�c of

the ISP. While using peering links beyond 50% violates best prac-

tices, price pressure may force operators to ignore such guidelines.

During outages ISPs may rely on their upstream causing a tra�c

drop at the other IXP, without extra cost for short outages due to

the 95th percentile [86] pricing.

The most important reason is asymmetric paths [80], which are

common in today’s Internet. For peering infrastructures we call a

path asymmetric if one direction only involves facility A and the

reverse path only involves facility B. An outage at either of the two

facilities causes a reduction of tra�c at the other. We �nd that more

than 10% of all (source, destination) combinations between AMS-IX

and EU-IXP members have asymmetric routes, which account for

most of the tra�c losses at EU-IXP.

7 IMPLICATIONS

Implications for Policymakers: The operation of our system,

Kepler , and our analysis increases the transparency in Internet

infrastructure outages. This can inform best practices for improving

resilience, and would be of use to regulators and policy makers

given the critical role of such infrastructures [30, 39]. In addition,

with Kepler one can provide testimony based on hard evidence to

assess the degree of violation of service level agreements, e.g., the

5 nines reliability, and to characterize an outage as full or partial,

and to assess the impact on the operation of a network.

Implications for Peering: Our analysis shows that redundant

peering strategies may increase the resilience to outages. Still, in

some cases, we observed peering disruptions even when redundant

peering was available. We argue that there is signi�cant space for

improving peering resilience by taking into account the physical

isolation of peering infrastructures. Unfortunately, the interdepen-

dency among the various peering infrastructures is often not well

known, and thus greater resilience might be achieved with more col-

laboration between peering infrastructure operators and network

operators.

Implications for Operation: Our study shows that an increasing

number of networks tag their BGP announcements with commu-

nities, and that about half of the pre�x announcements include

location-based communities. This practice is of great help for de-

tecting outages. However, we should point out that the propagation

of location-based communities has a downside. The leakage of this

information enables easier detection by third parties of the location

where two networks establish interconnections. This leakage can

be used for business intelligence, and for targeted attacks. Hence,

we will make Kepler available via an interactive interface. But we

will only share our dictionary of location-based communities on

request.

8 CONCLUSION

Outages at colocation facilities and IXPs a�ect the operation of

hundreds of networks. In this paper, we show that control-plane

messages provide an excellent, yet unexplored source of informa-

tion that can be utilized to detect peering infrastructure outages

in the wild. We develop a methodology to analyze the values of
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Figure 10: AMS-IX outage seen by Kepler (a)-(c), and by IPFIX tra�c at EU-IXP (d).

the BGP Communities attribute to accurately detect the location

of a peering outage at the level of a building. While our method

is general enough to be applied to any stream of BGP data, we

show that the implementation is far from trivial. Based on our

methodology, we built and operate Kepler for detecting peering

infrastructure outages. Over a 5-year period, we detected about

160 colocation facility or IXP outages, which is four times what

could be discerned from operator mailing lists and related sources.

Our results show that local outages at these peering infrastructures

can have an impact on remote networks and seemingly unrelated

remote peering infrastructures. Thus, Kepler can provide feedback

to operators, researchers, and policy makers alike to improve the

understanding of the Internet’s resilience.
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