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Abstract
Motivation: The search for repeated patterns in DNA and
protein sequences is important in sequence analysis. The
rapid increase in available sequences, in particular from
large-scale genome sequencing projects, makes it relevant to
develop sensitive automatic methods for the identification of
repeats.
Results: A new method for finding periodic patterns in
biological sequences is presented. The method is based on
evolutionary distance and ‘phase shifts’ corresponding to
insertions and deletions. A given sequence is aligned to itself
in a certain sense, trying to minimize a distance to
periodicity. Relationships between different such periodicity
measures are discussed. An iterative algorithm is used, and
the running time is nearly proportional to the sequence
length. The alignment produces a periodic consensus
pattern. A ‘phase score’ is used to indicate a statistical
significance of the periodicity. Three examples using both
DNA and protein sequences illustrate how the method can be
used to find patterns.
Availability: On request from the authors.
Contact: eivindc@math.ntnu.no; finn.drablos@unimed.sin-
tef.no

Introduction

The search for repeated patterns in DNA and protein se-
quences is an important problem in biology. When the pat-
terns to look for are unknown and the repeats are not exact,
this can be difficult.

We present a method for searching for such repeats. It
works best when they are approximate tandem repeats, i.e.
the repeated units occur one after another, or with few letters
between. This is a common situation in practice. The method
is pragmatic in the sense that it is reasonably fast, but does
not guarantee to find all repeats with up to a given number
of mismatches.
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Another algorithm for finding approximate tandem repeats
has been presented previously (Benson and Waterman,
1994). It involves a rigorous alignment by dynamic pro-
gramming, but certain heuristics have to be made to decide
where and what to align. A simple but crucial step is the cre-
ation of a consensus pattern from an alignment, and we use
essentially the same principle for creating our consensus pat-
tern.

Phase alignment and distance to periodicity

Our goal is to identify periodic patterns that may be partially
hidden by evolution. We need a measure of the degree of
periodicity of a given DNA or protein sequence, and we will
formulate this in terms of distance to the nearest periodic se-
quence.

A DNA sequence is considered here as a sequence from
the four-letter alphabet {A, C, G, T}. Similarly, a protein se-
quence can be considered as a sequence from a 20-letter al-
phabet. Other alphabets can also be used, e.g. the two-letter
purine–pyrimidine alphabet. We therefore consider the gen-
eral case of sequences from an arbitrary finite alphabet � of
N letters, and denote by � the set of all finite sequences of
letters from �. A sequence in � is typically written a = a1 a2
… an, where ai  � �, and n = |a| is the length of the sequence.

For comparing biological sequences, it is natural to use as
our distance function a metric based on sequence alignment,
first introduced by Sellers (1974). Smith and Waterman
(1981) have shown that the Needleman and Wunsch maxi-
mum similarity alignment is equivalent to the minimization
of the metric of Sellers. For the algorithm presented here, we
could also have used an equivalent similarity score.

The sequence metric depends on a choice of a basic metric
d on the alphabet � and a gap penalty. A dynamic program-
ming technique is then used to minimize the sum of pairwise
distances and gap penalties in the two sequences. This mini-
mum defines the distance D, and it can be shown to be a
metric (see Waterman, 1989).

For each period length p � �, let �p be the set of all p-peri-
odic sequences in �:

�p � �a � � | ai�p � ai, i � 1, 2, . . . , |a| � p�
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A natural measure of ‘nearness to p-periodicity’ for a se-
quence a � � is the aligned distance to the nearest p-periodic
sequence:

Dp(a) � min
b � �p

D(a, b)

Unfortunately, this is very time consuming to compute. For a
linear gap penalty function, the best alignment algorithms are
O(n2) (Waterman, 1989) (the length of the sequences b under
consideration will be near n). Since we do not know the mini-
mizing b in advance, we will have to test a lot of such sequences.
The straightforward approach is to test all Np sequences, which
is a huge number, even for modest p. It is possible to avoid
testing all sequences by using cleverer algorithms, but it is un-
likely that a very efficient algorithm can be found.

Instead, we use a different kind of alignment especially
tailored for this problem. It is not equivalent to the Needle-
man–Wunsch alignment, but it is based on the same ideas of
an initial metric d on the alphabet and a mechanism similar
to gaps.

We first extend the domain of the alphabet metric d to se-
quences of the same length by:

d(a, b) ��
i

d(ai, bi)

This is the same as the metric D when there are no gaps.
Consider a sequence a and a fixed period length p. Assume

that the length of a is a multiple of p, |a| = n = rp, deleting the
last few elements of a if necessary. We divide a into consecu-
tive subsequences a1,a2, … , ar of length p each and use the
notation:

ai � ai
1a

i
2 ��� ai

p � a(i–1)p�1a(i–1)p�2 ��� aip�1

As a measure of the ‘mutual agreement’ between the
subsequences, we define:

�p(a) ��
j�i

d(ai, aj)

If a is p-periodic, al = a2 = … = an, so that Mp(a) = 0. If a
is periodic except for a few substitutions, Mp(a) will still be
small. However, an insertion or a deletion in a will influence
Mp(a) greatly. We will therefore allow for a phase shift φk of
each ai. For an arbitrary sequence b = b1b2 … bp, we define:

�kb � bp–k�1bp–k�2 ��� bpb1b2 ��� bp–k,
k � 0, 1, ��� , p� 1

In other words, a circular right shift of k positions (where
k is always taken modulo p, to allow for, for example, nega-
tive shifts). When a phase shift ki  is applied to each ai , we get
a phase alignment of a, denoted by:

�ka � �k1
a1��� �kra

r, k � [k1, k2, ��� , kr]

The effect of an insertion or a deletion in a periodic se-
quence can be compensated in the succeeding subsequences
by a right or left shift. Motivated by this, we define:

�*
p(a) � min

k
�p(�ka) � min

k1, . . . ,kr

�
j�i

d(�ki
ai,�kj

aj)

Since each of the r subsequences can have p different
phases, there are pr different phase alignments, and again it
is normally too time consuming to test all of them. The fol-
lowing iterative method is therefore used.

Let k1 = 0. For each m = 2, … , r, choose km to minimize
∑ j�i�md(�kj

aj,�ki
ai) with k1, … , km–1 fixed. For the follow-

ing iterations, minimize the sum for all j < i ≤ r. Note that only
∑ j d(�kj

aj,�kmam) needs to be calculated in each step (and

this can be done quickly, see the section on implementation
and complexity).

We continue to iterate until the sum does not decrease (or
until a maximum number of iterations have been performed).
The iteration will always converge, since Mp decreases for
each phase change. However, it is not guaranteed to converge
to M*

p (a) corresponding to an optimal phase alignment.
When the optimal phase alignment is known (by testing all
possibilities, necessarily for very modest r), preliminary
studies indicate that in most cases an optimal or near-optimal
alignment is found.

Determining a consensus pattern

When we have found our phase alignment of a, we want to
determine a candidate for the underlying periodic pattern (as-
suming it exists). A natural choice is the sequence p which
minimizes ∑ i d(�ki

ai,p). This is simple and fast, since each
of the p letters in p can be found independently of the others
(by trial and error).

The minimized sum can now be interpreted as another
measure of the degree of periodicity of the sequence. We de-
fine:

Cp(�ka) � minp �
i

d(�ki
ai, p)

and

C*
p(a) � min

k
Cp(�ka)

Even if we knew the Φ that minimizes Mp, this would not
necessarily minimize Cp. If we want to improve our phase
alignment after determining our consensus pattern, we can
go back and align our sequence to the fixed pattern p, poss-
ibly reducing Cp (but Mp might increase). A new, possibly
different, consensus can be determined, and the whole pro-
cess may be iterated. Again, it will always converge, since Cp
decreases if a change is made.
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The connection between two periodicity distances

We have the following connection between Mp and Cp.
Proposition 1 For every phase alignment Φk of a sequence

a of length n = pr we have

r
2

Cp(�ka) � �p(�ka) � (r � 1)Cp(�ka) (1)

The inequalities cannot be improved, except that for odd
r, we can in some cases change r/2 on the left-hand side to
at most (r + 1)/2.

Proof: Let b � �ka,bi � �ki
ai. By the triangle inequality

for the metric d we have:

�p(b) ��
j�i

d(bi, bj) � 1
2
�
j�i

(d(b i, p) � d(p, bj))

� (r � 1)�
i

d(bi,p) � (r � 1)Cp(b)

which proves the right inequality. Since p is chosen to mini-
mize Σ d(bi, p), we get

Cp(b) ��
i

d(bi, p) � min
j
�

i

d(bi, bj)

� 1
r�

i,j

d(bi,bj) � 2
r �p(b)

using the fact that the minimum is less than or equal to the
average. This proves the left inequality.

The following example demonstrates that the right in-
equality cannot be improved. Let b1 = b2 = … = br – 1 = AAA
… A, and br = CCC … C, to be specific. Then p = AAA …
A (for r ≥ 3). Normalizing d(A, C) to one, we find that Cp(b)
= p and Mp(b) = (r – 1)p, giving Mp(b) = (r – 1)Cp(b).

The following example demonstrates that the left inequal-
ity cannot be improved if we assume that r is even. Let b1 =
b2 = … = br/2 = AAA … A, and br/2 + 1 = … = br = CCC …
C. Normalizing as before, we get Mp(b) = r2p/4. The consen-
sus p can be chosen as some combination of these two letters
(the triangle inequality implies that other letters are no
better). In any case, we get Cp(b) = rp/2 and Mp(b) = r

2
 Cp(b).

For odd r, the subsequences AAA … A and CCC … C split
into uneven parts of (r + 1)/2 and (r – 1)/2, yielding Mp(b)
=  (r + 1) (r – 1)p/4 and Cp(b) = (r – 1)p/2; hence, Mp(b) =
r � 1

2
 Cp(b). This is the ‘worst case’ for a two-letter alphabet.

However, if r is divisible by, say, three, and there are three
letters in the alphabet with mutual distances one, an equal
division into three groups will give Mp(b) = r

2
 Cp(b) again.

The same is true for any number, so the exact left inequality
will depend on the alphabet and the metric in addition to r.

�

In particular, the proposition is valid for the phase align-
ment �k

�
  minimizing Mp, and for the phase alignment �kC

minimizing Cp, but these two alignments may also be com-
pared.

Corollary 1 For a sequence a of length n = pr we have

r
2

C*
p(a) � �*

p(a) � (r � 1)C*
p(a)

The inequalities cannot be improved, except that for odd
r, we can in some cases change r/2 on the left-hand side to
at most (r + 1)/2.

Proof: The inequalities follow from equation (1), using the
minimum properties �*

p(a) � �p(�kC
a) and

C*
p(a) � Cp(�k

�
a). To show that they cannot be improved,

we can use the same examples as in the preceding proof,
since all the subsequences are invariant to phase shifts.

�

Phase coincidence as a measure of periodicity

Testing of the described method on both simulated and real
sequences shows that the quantities Mp and Cp work well for
finding the underlying periodicity when p is known. How-
ever, comparing values for different p is difficult and does
not always give a clear conclusion, and deciding whether the
result is significant is even harder. For this purpose, we use
another quantity, which measures to what extent the phases
agree. This quantity has the advantage of being easier to ana-
lyze statistically.

Suppose we have found a candidate Φk for the best align-
ment to period p, where k = [k1, k2, … , kr ] If the sequence
is exactly p-periodic, we have k1 = k2 = … = kr. If the se-
quence is almost p-periodic, we expect that many of the ki
agree. Let the indicators Ii ,j  be defined by:

I i,j � �1 if ki � j,
0 if ki � j,

1 � i � r, 0� j � p� 1

Furthermore, we define the phase score as:

Y��
p�1

j�0

X2
J, Xj ��

r

i�1

I i,j

While ΣXj  = r always, Y indicates whether or not the sum
is evenly distributed among the Xj. A large phase score
means that the alignment is concentrated on a few phases,
which we will interpret as a sign of periodicity. An underly-
ing assumption is that insertions and deletions are relatively
rare.

When the sequence is random and uncorrelated (but not
necessarily with a uniform letter distribution), the Xj  have a
multinomial distribution, and each of the p phases occurs
with the same probability 1/p, independently of the phase of
other subsequences. With some modification (see below),
this is also used as a model for other non-periodic sequences.
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Under these assumptions, straightforward but tedious cal-
culations show that:

E(Y) � r	1� r–1
p 


Var(Y) �
2r(r–1)

p 	1� 1
p


We want to compute p-values of different scores, so we
need the cumulative distribution function. Finding a closed
formula is difficult or impossible, but with some combina-
torial reasoning one can group the pr different phase align-
ments into a computer-manageable number of groups with
the same score and thus tabulate an exact distribution func-
tion for each occurring (r,p) pair (see the Appendix).

There may be many such pairs, but when r >> p we need
not calculate the exact distribution. It then follows from stan-
dard asymptotic theory that the Xj  tend to a multi-normal dis-
tribution. Moreover, if

Z � 1
r�
�X0 �

r
p , X1 �

r
p , ��� , Xp–1 �

r
p�

then pZTZ tends to be χ2 distributed with p – 1 degrees of
freedom. But

pZTZ �
p
r�

p–1

j�0

	Xj �
r
p


2

�
p
r 	�X2

j �
2r
p � r � r2

p2 � p
 � p
r Y� r

which is obtained by using ΣXj  = r.
When analyzing protein-coding DNA sequences, it is no

surprise to find that there is almost always a significant peri-
odicity three, and this also affects the scores for all period
lengths divisible by three. We are not normally interested in
this periodicity, and we want to filter out this effect in order
to be able to detect codon periodicities of six, nine and so on.
Our method is to divide the aligned rows into three groups.
Group 0 consists of rows with phase 0, 3, 6, etc., group 1
contains the rows with phase 1, 4, 7, etc., and group 2 the
rows with phase 2, 5, 9, etc. Owing to the underlying period-
icity three, most of the rows are usually in one of the three
groups. We choose the biggest group and discard the other
rows. The phase score is now computed using the p/3 differ-
ent phases of the remaining group, thus replacing p by p/3 in
the calculation of the p-value.

Of course, this method can also be used to filter out the
effect of a dominant periodicity of length other than three.

Phase alignment with gap penalty

Sequence alignment involves a gap penalty to balance the
search for good letter agreement against the avoidance of
large and numerous gaps. The gap penalty for each gap is

added to the letter distances. It is an increasing function of the
gap length, often of the form g(k) = a + bk for a gap of length
k.

In the same manner, it is possible to introduce a gap penalty
in the phase alignment, where a gap corresponds to the phase
difference between two consecutive subsequences. This will
disfavor frequent phase changes. For the distance to consen-
sus, this can be introduced as:

C
^

p(�ka) � Cp(�ka) � G(k)

G(k) ��
r

i�1

g(|ki � ki–1|p)

where g is the gap penalty function and the phase difference
|ki  – ki  – 1|p is the shortest distance between ki  and ki  – 1, when
counting modulo p (such that |1 – 8|9 = |8 – 1|9 = 2, for
example). For the mutual distance we define:

�
^

p(�ka) � �p(�ka) � crG(k)

where c is a constant. If we choose 1
2
 ≤ c ≤ 1 – 1r , equation (1)

implies that

r
2

C
^

p(�ka) � �
^

p(�ka) � (r � 1)C
^

p(�ka)

The inequalities are still sharp in the same sense as in the
Proposition, because G(k) may be zero.

If we compare this with the Smith–Waterman alignment
distance Dp to the periodic sequence with the same alphabet
metric and the same gap penalty, it is not difficult to see that

Dp defines a lower limit for the phase alignment distance C
^

p

(because every phase alignment can be transformed into an
ordinary sequence alignment in a natural way). On the other
hand, if the periodicity is distinctive and the gaps are not too
frequent (rarely more than one in each period), the difference

between Dp and C
^

p tends to be small.
While introducing a gap penalty might look like a good

idea for obtaining a better phase alignment, it has serious
drawbacks. It is difficult for the iterative algorithm to find the
optimal alignment because it would usually have to ‘climb
a hill’ (make several expensive phase shifts) before the re-
ward is paid. Moreover, the alignment to consensus after-
wards has the same problem and is no longer a straightfor-
ward one-sweep procedure. In addition, computing p-values
from phase scores would be much more complicated because
the phases are dependent on each other.

Implementation and complexity

We have implemented the phase alignment, the consensus
search and the phase coincidence score in a C program run-
ning on a UNIX machine. The program can analyze either
one specific sequence or a collection of sequences in a data-
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base file. Since a periodic pattern is often present only locally
in a sequence, every sequence can be split into subsequences
of a given length, partially overlapping if desired. The user
can specify the alphabet metric, which period lengths to in-
vestigate and several other parameters. The amount of output
can be regulated, ranging from detailed phase alignment in-
formation for each iteration for a single sequence and a few
period lengths, to a one-line summary for each sequence
when investigating a large database.

The following main steps are carried out for each period
length p given, and for each (sub)sequence:

� phase alignment;
� determination of the consensus pattern;
� adjustment of phase alignment according to the con-

sensus pattern (optional);
� computation of phase score with corresponding p-

value.

Most of the consumed time is spent on the phase align-
ment. As above, the sequence length is n = rp, deleting left-
overs if p does not divide n evenly. For one iteration of the
phase alignment procedure, each of the r subsequences is
aligned by minimizing the sum of the distances to the rest of
them. The minimization implies trying all p phases, but the
sum of distances can in fact be calculated in O(p) time if the
distances are tabulated for each of the N letters in the al-
phabet. This gives a complexity of each iteration of O(rp2 +
rpN), or O(np + nN), where the last term is for making the
distance table. The number of iterations seems to be slowly
growing with n. An upper limit may of course be specified.
Experience shows that DNA sequences of 10 000 bases may
need up to 30–40 iterations, 100 base sequences less than
five.

The consensus pattern is determined by trying each of the
N bases for each of the p positions. Again the distance sum
is calculated by using the table, so the complexity is just
O(pN), independent of sequence length (because the table is
made during the alignment).

The optional adjustment to the consensus pattern can be
done if the alignment itself is of interest (e.g. for calculating
the phase score) and one considers the consensus to be a
better criterion than the alignment algorithm. The phase of
each subsequence is chosen to minimize the distance to the
consensus, this is done in O(np) time.

After computing the phase score, we want a p-value to
indicate its significance. If r ≥ 5p, we use the χ2 approxima-
tion. The χ2 distribution function can be evaluated efficiently
(see Press et al., 1992). If r < 5p, the approximation is not so
good, and we need the exact distribution. We store the dis-
tributions in tabular form in a separate file for each (r,p) pair.
If the requested table does not exist, it is created once and for
all (see the Appendix).

Fig. 1. Structure of the ribonuclease inhibitor. The structure of the
ribonuclease inhibitor with secondary structure elements high-
lighted. The drawing was generated using Molscript (Kraulis, 1991).

Since running time is almost linear with respect to se-
quence length (only a slight increase for longer sequences
due to more iterations), the length of split sequences is not
very important for the time consumption. The choice should
be based on the expected length of periodic patterns.

Examples

Three examples from using this approach on real DNA and
protein sequences are shown. The first example is the porcine
ribonuclease inhibitor. The protein sequence of this molecule
[SwissProt (Bairoch and Boeckmann, 1992) entry
RINI_PIG] is 456 residues long, and the coding region from
the corresponding DNA entry (EMBL entry SSRI) was used
for this analysis. The ribonuclease inhibitor is one of several
proteins with leucine-rich repeats. In the ribonuclease inhibi-
tor, there is an alternating pattern of ‘A’ and ‘B’ repeats, and
the repeats are 29 and 28 residues long, respectively. This
makes an effective repeat length of 57 residues, and there are
7.5 such repeats. The three-dimensional (3D) structure of
this molecule is known (Kobe and Deisenhofer, 1993), and
shows that the protein is horseshoe shaped with the interior
face formed by a parallel β sheet of 17 individual β strands,
and the exterior from 16 α helices (Figure 1). Therefore, each
‘AB’ repeat corresponds to a strand–helix–strand–helix
motif.

The sequence was analyzed as described in this paper.
Periods from nine to 300 in steps of three were tested, in
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Fig. 2. The p-values for phase scores of the ribonuclease inhibitor. The p-values of all phase scores, P(all), and of phase scores from phase shifts
corrected for a periodicity of three, P(mod 3), as described in the text. The p-values are plotted as a function of the assumed period.

Fig. 3. Alignment of repeats in the ribonuclease inhibitor. The size of the alignment has been reduced by cutting out part of the sequence (indicated
with a ‘–’). For each line of the alignment, the start of the section in the full sequence and the phase shift are shown. Sequence positions identical
to the consensus sequence are shown as a dot, for non-conserved positions the base code is given. An uppercase base code or a ‘:’ indicates the
real start of the sequence, this becomes relevant if circular shifts are used in the alignment. The zero phase shifts in this example indicate simple
repeats of constant length.

order to focus on properties related to the protein structure.
The p-values corresponding to phase scores for different
periodicities are plotted (Figure 2), showing very small p-va-
lues for periodicities that are multiples of 57, representing
different integer fractions and combinations of the ‘true’ re-
peat, which is found at periodicity 171 (corresponding to a
protein sequence of 57 residues) (Figure 3). For the true peri-
odicity, all phase shifts in the repeat region are zero (because
the repeat length is constant), for the other periodicities there

are non-zero phase shifts. This makes the correct repeat
length easy to identify.

The second example is the PIR1 gene from the complete
genome sequence of yeast (Saccharomyces cerevisiae). This
gene codes for a heat shock protein, although the exact func-
tion of this protein is unknown. The protein is known to con-
tain eight tandem repeats, most of them 19 residues long,
although repeat 3 is 24 residues long (corresponding to 57
and 72 bases, respectively). A separate investigation using
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Fig. 4. Identification of repeats with phase shifts (PIR1). Testing for periodicity using different periods in PIR1. In (a), the assumed period is
45, and the apparent lack of any pattern in the phase shifts indicates that 45 is not a true periodicity of PIR1. This may be compared to (b), where
the assumed period is 57. Although the first and the last lines of the alignment seem to be random, the regular pattern of the eight lines in the
middle is a strong indication of a repeat. The phase shift in three of the lines is further explained in (c), where it is shown how a short insertion
in the repeat region is compensated for with circular shifts.

c)

the approach described here in an automatic large-scale
screening process for the identification of repeats in genomes
identified this as one of a large number of repeats in the yeast
genome (Coward, 1998). To use it as an example in this
study, a part of the gene sequence known to contain this re-
peat was analyzed as already described. The output for two
different periodicities is shown (Figure 4). For a period of 45,
there is no corresponding periodicity in the DNA sequence,
and the phases are mainly random. This may be compared to
the output for a periodicity of 57, which is equivalent to the
dominating repeat length. Here the phases are zero for most
of the repeat region. However, the increased length of repeat
3 is compensated for by a phase shift of 42 bases, correspon-
ding to the difference between the dominating repeat length
and the 15 extra bases found in repeat 3.

The final example shows how this tool may be used for
analyzing protein sequences. An amino acid distance matrix

was generated from the Blosum-50 mutation matrix (Heni-
koff and Henikoff, 1992) by using a normalized negation as
described by Taylor and Jones (1993). This distance matrix
was used to search the NRL_3D database (Pattabiraman et
al., 1990) of protein sequences extracted from the PDB data-
base (Bernstein et al., 1977; Abola et al., 1987). The com-
plete sequences were tested for repeats. Several protein se-
quences were identified as repetitive, and one of these, the
sequence for UDP-N-acetylglucosamine acyltransferase
(PDB code 1LXA), was selected for further analysis. The
plot of p-values versus assumed period length (Figure 5)
shows the dominating repeat to be of length 6, with the next
possibly significant score at length 18, indicating triplets of
the basic repeat length. The listing of the search result for
repeat length 18 (Figure 6) shows that the repeat is only
weakly conserved with respect to sequence, it is probably
found only in the first 180 residues, and the phase shifts indi-
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Fig. 5. Plot of phase score p-value versus assumed period length for the sequence of UDP-N-acetylglucosamine acyltransferase.

Fig. 6. Alignment of possible repeats for period length 18 in the sequence of UDP-N-acetylglucosamine acyltransferase. The phase shifts indicate
insertions after the first four repeats, the relatively random phase shifts for the last four segments (after residue number 180) indicate that this
region is not repetitive. Please observe that the consensus sequence is estimated so that the total distance to all subsequences is minimized,
therefore it may not correspond exactly to a more traditional consensus sequence based on the most frequent residue at each position. This can
be seen in the first position of this alignment, where threonine (T) is used in the consensus, although glutamic acid (E) is the most frequent residue
at this position.

cate two insertions after the first four 18 residue repeats. This
may be compared to the 3D structure (Raetz and Roderick,
1995) of this protein. A TOPS (Flores et al., 1994) cartoon
of the structure (Figure 7) shows that the first domain of the
structure is a left-handed parallel β helix, there are nine turns
in this helix, and each turn consists of three β strands of six
residues each. In the 3D structure itself (not shown), inser-
tions after turn 4 and 5 can easily be seen. This shows that our
tool identifies a repeat pattern which is consistent with 3D
structure, and it is also consistent with previous studies of this

pattern (Vuorio et al., 1994). It is important to realize that this
pattern was easily identified by automatic non-supervised
screening of a database, despite the facts that the repeat re-
gion is only partly conserved, it contains insertions, and it
does not cover the entire protein sequence that was tested.

Discussion

The method presented in this paper can be used as a tool to
find repeated patterns in DNA and protein sequences. It turns
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Fig. 7. A TOPS cartoon of the structure of UDP-N-acetylglucosamine acyltransferase. The β strands are shown as triangles, α helices as circles.
The relative positions of the secondary structure elements correspond to the organization of the 3D structure. The figure shows clearly how the
nine turns of the β helix are built from three β strands each.

out to be most effective for tandem repeats of at least 12–15
bases. When there are few insertions and deletions, the phase
agreement is a good indicator of the presence of a repeat, and
this agreement can be analyzed statistically. The sensitivity
of the method is also good when there are many substitu-
tions.

Alternatively, we can use the distance Dc to consensus (or
the mutual distance Dm) as our indicator. Its statistical prop-
erties are more complicated and are not analyzed here. It is
complementary to the phase agreement in the sense that it
punishes substitutions, but not phase shifts, and in some situ-
ations this is important. An example is shown in Coward
(1998), where we have just three long repetitions with a
phase shift. Since only two phases agree, the phase agree-
ment would not be very significant. In many cases, however,
the phase agreement and the distance to consensus would
both indicate the correct periodicity.

The process of phase shifting is useful because it is simple
and splits the sequence into independent parts, making op-
timization as well as statistical analysis easier. It can be ar-
gued that phase shifts are artificial and do not correspond to
our understanding of biological sequences. This is a price we
have to pay for simplicity and efficiency, but for reasonably
nice almost periodic sequences (few insertions and deletions
compared to the period length) the resulting phase alignment
is close to an ordinary alignment.

Once a consensus sequence is found, an ordinary align-
ment could be produced if desired, using, for example, the
wraparound dynamic programming technique (see Benson
and Waterman, 1994).

Further work should be carried out in order to create a fully
automatic procedure to find and isolate repeated patterns in
long sequences. Some attempts in this direction are made in
Coward (1998).

The inclusion of gap penalties would also be a useful addi-
tion, but the global minimization problem of finding the opti-
mal alignment has to be solved.
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Appendix: Computing the exact phase score distribu-
tion

Consider a phase alignment Φk, where k = [ki, k2, …, kr ], and
each ki  ∈  {0, 1, …, p}. Assuming that every alignment is
equally probable, we want to find the distribution function of
the phase score Y, i.e. to count the number of phase align-
ments whose score is above (or below) a given value. There
are pr different phase alignments, so going through all of
them is soon unrealistic (for example, r = 50 and p = 30 give
7 × 1073 combinations).

Let rj  be the number of rows with phase j, i.e. rj  = #{i : ki
= j }, j =  0, 1, … , p – 1, Σj  rj  = r. The phase score is then y
= Σr 2

j , regardless of the order of the phases ki . The number
of such phase alignments is the number of permutations of
the given k1, k2, … kr, which is given by the multinomial
coefficient:

� r

r0, ���, rp–1

� � r!
r0!���rp–1!

� � r

r1

��r � r1

r2

��r � r1 � r2

r3

� ��� �rp–1

rp–1

�

Moreover, the order of the rj  (i.e. the labeling of the differ-
ent phases) does not matter either. Let pi  be the number of
row counts rj  that equal i, i.e. pi  = #{ j : rj  =  i}, i = 0, 1, …,
r, Σi  pi  = p. The values r0, r1, … , rp – 1 can be permuted in

� p
p0, ��� , pr

�
different ways. The total number of phase alignments with
score greater than or equal to y is then
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N(y) � 

r0 � ��� � rp–1


 r j � r


 r2
j � y

� r
r , . . . , rp–1

�� p
p0 , . . . , pr

�

The p-value for this score is N(y)/pr. Note that even after
this grouping of phase alignments, several terms in the sum
may still correspond to the same score.

To make a table of the distribution, we evaluate the term for
each r0 ≤ … ≤ rp – 1, with Σrj  = r and add it to the table in a
position depending on Σr2

j . The total number of terms equals
the number of partitions of r into at most p positive integers
or, equivalently, the number of partitions of r into any
number of the integers from 1 to p. No closed formula for this
number exists, but it is clearly bounded by the number p(r)
of all partitions of r into positive integers, which is approxi-
mated by the Hardy–Ramanujan formula:

p(r) � 1
4 3r	 e� 2r�3	

(see Cohen, 1978, pp. 73–79). The example with r = 50 and
p = 30 produced a sum with 202 139 terms, which can easily
be handled by a computer. Much larger cases may require
other techniques, like simulation, if a χ2 approximation is not
satisfactory.
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