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ABSTRACT

Motivation: Periodic patterns in time series resulting from biological

experiments are of great interest. The commonly used Fast Fourier

Transform (FFT) algorithm is applicable only when data are evenly

spaced and when no values are missing, which is not always the

case in high-throughput measurements. The choice of statistic to

evaluate the significance of the periodic patterns for unevenly spaced

gene expression time series has not been well substantiated.

Methods:The Lomb–Scargle periodogramapproach is used to search

time series of gene expression to quantify the periodic behavior of

every gene represented on theDNAarray. The Lomb–Scargle periodo-

gram analysis provides a direct method to treat missing values and

unevenly spaced time points. We propose the combination of a

Lomb–Scargle test statistic for periodicity and a multiple hypothesis

testing procedure with controlled false discovery rate to detect signific-

ant periodic gene expression patterns.

Results: We analyzed the Plasmodium falciparum gene expression

dataset. In the Quality Control Dataset of 5080 expression patterns,

we found 4112 periodic probes. In addition, we identified 243 probes

with periodic expression in the Complete Dataset, which could not be

examined in the original study by the FFTanalysis due to an excessive

number of missing values. While most periodic genes had a period of

48 h, some had a period close to 24 h. Our approach should be appli-

cable for detection and quantification of periodic patterns in any

unevenly spaced gene expression time-series data.

Availability: The computations were performed in R. The R code

is available from http://research.stowers-institute.org/efg/2005/

LombScargle

Contact: chenj@umkc.edu

Supplementary information: The online supplement is available at

http://research.stowers-institute.org/efg/2005/LombScargle

INTRODUCTION

Rhythmic processes occur at all levels of biological organization

with periods ranging from less than a second to years (Goldbeter,

2002). Time-series experiments are a common way to study rhyth-

mic processes, and inherent periodicity in such data is indicative of

the underlying ‘clocks’. Examples of biological rhythms include

cell division (Mitchison, 2003), circadian rhythms (Crosthwaite,

2004; Prolo et al., 2005), morphogenesis of periodic structures,

such as somites in vertebrates (Dale et al., 2003), complex life

cycles of some microorganisms (Lakin-Thomas, 2004; Rovery

et al., 2005) and many others.

With the help of gene expression technology, biologists can study

the mechanisms that control a particular biological rhythm more

closely. For instance, to study how the major oscillator in the supra-

chiasmatic nuclei (SCN) and in the liver regulates behavioral and

physiological rhythms in the whole organism, Panda et al. (2002)

used high-density oligonucleotide arrays to measure gene expres-

sion in the mouse tissue samples taken every 4 h during two com-

plete circadian cycles and applied a cosine wave-fitting algorithm

(Harmer et al., 2000) to identify clusters of circadian-regulated

genes among more than 7000 genes. They found that about 650

cycling transcripts were under circadian regulation specific to either

the SCN or the liver.

As with many other types of high-dimensional data, the choice of

algorithm and statistic to identify significantly periodic patterns of

gene expression is a challenge (Wichert et al., 2004). Zhao et al.
(2001) used a single-pulse model (SPM) to identify periodic tran-

scripts in the Saccharomyces cerevisiae yeast microarray data based

on the assumption that the cell-cycle-regulated transcripts will peak

only once per cycle. Bar-Joseph et al. (2003) developed an algo-

rithm to represent time series of gene expression as continuous

curves using a cubic spline method and used this algorithm to

estimate missing values in time series. Langmead et al. (2003)

proposed an algorithm that uses autocorrelation to perform

linear-time search in frequency and phase, and then use the undir-

ected Hausdroff distance as a similarity measure to cluster genes of

similar cyclic patterns together. Johansson et al. (2003) used a

multivariate partial least squares regression model to identify cell

cycle-regulated genes in the S.cerevisiae yeast data. Luan and Li

(2004) proposed to use the shape-invariant model of Lawton et al.
(1972) and Wang and Brown (1996) combined with a B-spline

estimation to model periodic gene expression profiles. Luan and

Li (2004) also applied their approach to several publicly available

microarray data including the S.cerevisiae yeast data.

A common computational technique to study periodic data is the

Fast Fourier Transform (FFT) algorithm (Priestley, 1981), which

finds periodicities by searching for sharp peaks in the ordinary

periodograms calculated from the Fourier transform of the time�To whom correspondence should be addressed.
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series (Durbin, 1967). For example, Spellman et al. (1998) studied

cell cycle-regulated genes in S.cerevisiae gene expression data

using Fourier analysis and found about 800 periodic genes.

Straume (2004) compared four algorithms used in circadian gene

expression analysis and pointed out that FFT performs well when

time points are evenly spaced. Wichert et al. (2004) defined an

average periodogram based on the ordinary periodograms or clas-

sical periodograms (Priestley, 1981; Scargle, 1982) and used it as a

graphical tool for finding possible periodic signals in yeast and

human cells.

One limitation of the FFT algorithm and the ordinary periodo-

grams is that it requires evenly spaced time series (Priestley, 1981).

Time series produced by biological experiments are, however,

often unevenly spaced, for a variety of reasons, many of which

have to do with the limitations of the instruments and with

inherent experimental constraints on biological samples. Another

limitation of the FFT algorithm is that it does not tolerate missing

values. When missing values in the time series are present, data

must be imputed prior to the application of the FFT algorithm.

The effects of data imputation and the optimal way to do so,

however, are generally not known. Moreover, FFT scores do not

directly address the significance of the observed periodicity and

have to be validated by a heuristic cutoff score or permutation

studies.

These limitations can be overcome using the statistical approach

first introduced in astrophysics, the Lomb–Scargle periodogram.

When studying variable stars in astronomy, Lomb (1976) sought

a way to find periodicities in unevenly spaced data. Astronomers

could not always control viewing times, telescope availability and

the position of an object in the sky—all of which is reminiscent of

similar experimental problems in biology. In an attempt to find an

alternative to imputing pseudo-data in sinusoidal models, Lomb

(1976) proposed to use least-squares fits to sinusoidal curves.

Scargle (1982) extended Lomb’s work by defining the Lomb–

Scargle periodogram and by deriving the null distribution for it.

The p-value of the Lomb–Scargle periodogram can be obtained

using these results. Horne and Baliunas (1986) noted a particular

standardization of the periodogram that resulted in known statistical

properties. Press and Rybicki (1989) proposed a practical mathem-

atical formulation, later implemented in C (Press et al., 2002).

Ruf (1999) was one of the first to use Lomb–Scargle periodo-

grams to analyze biological data. Ruf applied the technique to

telemetric temperature data of an alpine marmot over more than

12 days prior to hibernation and detected a circadian rhythm with a

period of 24 h. Van Dongen et al. (1999) analyzed the data of human

oral temperatures in search of a circadian rhythm. Periodicity of

24 h was successfully identified in the unevenly spaced time series

using the Lomb–Scargle method. In their attempt to detect rhythmic

components in the circadian cycle of the Crassulacean acid meta-

bolism plants, Bohn et al. (2003) used Lomb–Scargle method for

periodogram estimation.

In this paper, we propose to use the Lomb–Scargle periodogram

to search for periodic patterns in unevenly spaced time series that

represent gene expression profiles. As gene expression data have

typically large dimensionality (hundreds to thousands of profiles),

searching for all periodic genes under such conditions requires

statistical multiple hypothesis testing, which can be achieved

using the multiple comparison procedure that controls the false

discovery rate (FDR) (Benjamini and Hochberg, 1995). Our

main example is gene expression in the malaria parasite, recorded

by Bozdech et al. (2003). The techniques and the software that we

developed, nevertheless, are readily applicable to periodic pattern

discovery in any time series.

METHODS

Lomb–Scargle periodogram

For a gene g and expression level observed at time ti, we denote the time

series by Yg(ti) for i ¼ 1, . . . ,N and g ¼ 1, . . . ,G. To model Yg(ti) for

periodicity, we assume

YgðtiÞ ¼ hgðtiÞ + «gðtiÞ‚

where hg(ti) is a periodic function with a smallest positive period Tg for gene

g, i.e. hg(ti + Tg) ¼ hg(ti) for all ti; and «g(ti) is assumed to be a sequence of

non-observable normal random errors with mean 0 and homogenous vari-

ance s2 for all g and ti (Scargle, 1982). Let the expression of gene g at time ti
be yg(ti), and the average gene expression for gene g be

�yyg ¼
1

N

XN
i¼1

ygðtiÞ‚

then the error variance can be estimated by the sample variance as follows:

ŝs2 ¼ 1

N � 1

XN
i¼1

½ygðtiÞ � �yyg�
2:

Unlike Fourier analysis, in which the Fourier frequencies are used, we

assume that there are M test frequencies, f1, f2, . . . , fM and their correspond-

ing angular frequencies are vj ¼ 2pfj, for j ¼ 1, . . . ,M.

The Lomb–Scargle periodogram is defined in Press and Rybicki

(1989) as

PgðvjÞ ¼
1

2ŝs2

ð
PN

i¼1 ½ygðtiÞ � �yyg� cos½vjðti � tÞ�Þ2PN
i¼1 cos2½vjðti � tÞ�

(

+
ð
PN

i¼1 ½ygðtiÞ � �yyg� sin½vjðti � tÞ�Þ2PN
i¼1 sin2½vjðti � tÞ�

) ð1Þ

for j ¼ 1, . . . ,M, where t is defined by

tanð2vjtÞ ¼
PN

i¼1 sinð2vjtiÞPN
i¼1 cosð2vjtiÞ

:

The choice of M depends on the number of independent frequencies,

N0 (Press et al., 2002). Horne and Baliunas (1986) performed extensive

Monte Carlo simulations to investigate the relationship between M and

N0. They gave a simple least squares formula to estimate the number of

independent frequencies N0 from the number of observations, N, in a time

series:

N0 � � 6:362 + 1:193N + 0:00098N2:

This empirical deterministic formula is adequate for most purposes of choos-

ing M by actually taking M as N0 (Press et al., 2002).

Statistical hypothesis testing for periodicity using

Lomb–Scargle periodogram

Scargle (1982) showed that the null distribution of the Lomb–Scargle peri-

odgram Zj ¼ Pg(vj) at a given frequency vj is exponentially distributed, i.e.

the cumulative distribution function (CDF) of Zj is

FðzÞ ¼ Pr½Zj � z�
¼ 1 � e�z:

ð2Þ

To search for periodic gene expression, we test the null hypothesis that gene

g is non-periodic versus the alternative that it is periodic. We calculate how
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likely it is for an observed peak in the Lomb–Scargle periodogram of gene g
to occur by chance. If the peak in the Lomb–Scargle periodogram of gene g is

attained at frequency vk among M independent frequencies, we denote such

a peak by Xg ¼ maxj Pg(vj) ¼ Pg(vk). Then, for independently normally

distributed noise «g, if there were M independent frequencies to test, the

probability that the peak Lomb–Scargle periodogram Xg is smaller than xg is

given by

Pr½Xg � xg� ¼ Pr½Zj � xg‚ j ¼ 1‚ . . . ‚M� ¼ ð1 � e�xg ÞM‚

in view from Equation (2). Thus, the observed statistical significance level,

the p-value, of testing the null hypothesis that such a peak in Lomb–Scargle

periodogram of gene g is due to chance is calculated by

pg ¼ p-value ¼ 1 � ð1 � e�xg ÞM‚ ð3Þ

for gene g with g ¼ 1, . . . ,G.

In genome-wide datasets, G ranges from 103 to 106, and a multiple testing

approach must be employed to control the family-wise error rate when

comparing G profiles simultaneously. Dudoit et al. (2003) surveyed several

different approaches to multiple hypothesis testing for finding differentially

expressed genes in microarray experimental data. The well-known

Bonferroni adjustment, when applied to gene expression analysis is some-

what conservative in the sense that too many genes will be rejected for

periodicity (Tsai et al., 2003; Knudsen, 2004). Benjamini and Hochberg

(1995) proposed another approach to multiple testing by controlling the

FDR, the rate of expected proportion of errors among the rejected hypo-

theses. It is a step-down type of multiple testing procedures in combination

with Bonferroni approach. The Benjamini and Hochberg FDR approach is

less stringent than the family-wise error rate and more powerful than the

methods proposed in Holm (1979), Hochberg (1988) and Hommel (1988).

Storey and Tibshirani (2003) proposed an extension of the FDR, called q-

value, to give each test its own individual measure of significance. For

analyzing large-scale gene expression time-series data, we suggest to use

the Benjamini and Hochberg FDR approach in combination with a

periodicity-searching method.

The approach of searching for periodic genes proposed in this paper

consists of the following steps:

(1) For each gene expression time series, calculate the normalized

Lomb–Scargle periodogram, Pg(vj), given by Equation (1), for

j ¼ 1, . . . ,M, and g ¼ 1, . . . ,G; and find the peak Lomb–Scargle

periodogram, Pg(vk), for each gene g.

(2) For each of the Pg(vk) obtained in step 1 above, calculate the p-value,

pg, according to Equation (3).

(3) For the p-values obtained in step 2, obtain the ordered p-values:

p(1) � p(2) � . . . � p(G). Then, find according to k̂k according to

k̂k ¼ arg max
1�k�G

fk : pðkÞ � qk=Gg ð4Þ

for a desired FDR level q.

(4) Identify the genes whose p-values correspond to p(1), p(2), . . . , p(k̂k );

these genes can be claimed to show statistically significant periodic

behavior for the given FDR level q according to Benjamini and

Hochberg (1995).

NUMERICAL EXPERIMENTS

Several numerical experiments were performed to assess the

effectiveness of the Lomb–Scargle periodogram procedure. This

section summarizes the main results of applying the Lomb–

Scargle periodogram to search for periodicity in simulated

signals taken on unevenly spaced time points; the details and

the case of evenly spaced time points data are included in the

online supplement (http://research.stowers-institute.org/efg/2005/

LombScargle).

Single periodicity detection with unevenly

spaced time points

A cosine curve is often used to model an ‘ideal’ periodic gene

expression (Ueda, 2002). Since the Plasmodium falciparum dataset

used in this study contained data from 48 hourly samples, a 48-point

cosine signal mixed with normal noise (mean 0 and variance 1) was

simulated. Figure 1a shows such a simulated expression profile for

a gene that has a 48 h period with data values taken randomly in

the 48 h interval. Figure 1b shows a peak near a frequency of

0.0208 per hour �1/48 per hour, or a period of 48 h in the

Lomb–Scargle periodogram. A p-value curve (Fig. 1c) is obtained

for different frequencies; the lowest p-value (highest significance)

of 0.0211 is achieved at peak frequency 1/48 per hour.

The highest frequency for which the unevenly spaced data may be

evaluated (Van Dongen et al., 1999) is called the Nyquist frequency.

The Nyquist frequency for data spaced by an interval Dt, an approx-

imation of the mean of an unevenly time interval, is

f nyquist ¼ 1=ð2DtÞ:

Spurious peaks can be seen in a periodogram near or above the

Nyquist limit. To avoid these problems near the Nyquist limit, and

because longer-period biological signals may be of more interest,

the frequency range for periodograms was restricted from just

above 0 to 0.20 per hour.

A 48-point (unevenly spaced) cosine signal with the period of

24 h mixed with Gaussian noise was also simulated to study for a

dominant frequency. The periodograms performed as expected with

a single high peak and the p-value curve gave the lowest value of

0.000925 at frequency 1/23.4 per hour (Fig. 2).
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Fig. 1. Simulated cosine signal taken on unevenly spaced time points mixed

with Gaussian noise.
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Multiple periodicities detection with

unevenly spaced time points

Although the biology of the malaria parasite suggests one dominant

frequency of periodic gene expression (Bozdech et al., 2003), we

cannot exclude the possibility that different genes have different

expression periodicity and that expression of some genes may

reflect two or more periodic processes with different frequencies.

Van Dongen et al. (1999) have proposed a procedure of multiple

periods searching in an unequally spaced human oral temperature

time-series data using Lomb–Scargle method.

A simulated profile (on unevenly spaced time points) with three

periodicities of 8-, 24-, and 48 h (mixed with a Gaussian noise) was

obtained (Fig. 3). All three periods had equal contributions in

Figure 3 and the Lomb–Scargle periodogram p-value curve showed

two low p-values that indicated at least two dominant frequencies in

the signal. Additional results of the numerical experiments on mul-

tiple periodicities are in the online supplement.

When the simulated observations were purely Gaussian noise

taken on unevenly spaced time points, the Lomb–Scargle periodo-

gram showed no significant peak, and the corresponding p-value

curve had a lowest p-value of 0.763 (Fig. 4) indicating no significant

periodic signal.

ANALYSIS OF THE PLASMODIUM FALCIPARUM
INTRAERYTHROCYTIC GENE EXPRESSION

While studying the transcriptional program of the asexual

intraerythrocytic developmental cycle (IDC) of malaria parasite

P.falciparum, Bozdech et al. (2003) obtained expression profiles

using a DNA microarray. The profiles represent the expression of

nearly every gene in that species. Since the symptomology and

pathogenesis of malaria are strongly periodic, the study attempted

to identify genes that were also strongly periodic, which might be

useful for understanding the transcriptional program of Plasmodium
IDC and for drug intervention. The data (available at http://

malaria.ucsf.edu/SupplementalData.php) include three datasets:

Complete, Quality Control, and Overview (see online supplement

for more discussion). Gene expression was measured every hour

throughout the 48 h IDC. The Complete dataset of 7091 probes had
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Fig. 2. Simulated cosine signal taken on unevenly spaced time points (mixed

with Gaussian noise) with single dominant period.
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Fig. 3. Simulated cosine signal taken on unevenly spaced time points (mixed

with Gaussian noise) with multiple periods.
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Fig. 4. Simulated Gaussian noise taken at unevenly spaced time points with

no periodicity.

Detecting periodic gene expression

313

http://


18.23% missing values, including all time points at hour 23 and hour

29. The large number of missing values motivates us to use the

Lomb–Scargle periodogram analysis for searching for periodic

patterns in this same dataset.

Instead of imputing the missing values, we treated any two

points with a missing value in-between as two unevenly spaced

time points. The Lomb–Scargle algorithm was implemented in ‘R’

(R Development Core Team, 2004, www.R-project.org), largely

based on MatLab code by Glover (2000, http://w3eos.whoi.edu/

12.747/notes/lect07/l07s05.html), with additional information

from Horne and Baliunas (1986) and Press et al. (2002). Several

extreme points in the Complete Bozdech dataset of 7091 profiles

were identified and profiles with empty Oligo_ID were ignored (see

supplement), resulting in a set of 6875 profiles. These 6875 profiles

in the Complete dataset (with 15.66% missing values) were later

used in our analysis of periodic patterns. More details about the data

processing are provided in the online supplement.

Discoveries

Of the 6875 probes in the Complete dataset we found that 4355

probes, or 63%, were considered to be significantly periodic

with FDR level q ¼ 1 · 10�4, and 2520 were not considered as

significantly periodic. Figure 5 summarizes the results from the

Lomb–Scargle algorithm for the Bozdech’s Complete dataset of

6875 probes compared with the results of Bozdech et al. (2003)

based on the Quality Control dataset.

Bozdech et al. (2003) did not analyze the Complete dataset for

periodic genes, but rather a subset of the Complete dataset known

as the Quality Control dataset. They found that 3719 profiles (the

Overview dataset) in the Quality Control dataset of 5080 probes

were periodic using a 70% FFT score cutoff and a 75% maximum

frequency magnitude cutoff. Using the Lomb–Scargle method, we

found that of the 5080 probes in the Quality Control dataset, 4112

were periodic.

One typical periodic gene (probe ID i3518_1) with its corres-

ponding Lomb–Scargle periodogram and p-value curve is given in

Figure 6. A non-periodic gene (probe ID j167_5) along with its

corresponding Lomb–Scargle periodogram and p-value curve is

given in Figure 7.

Bozdech Complete set 6875 probes 

Small
 "N" 
1795 

Quality Control  
Set 5080 

243 501 3611

108

Overview  Set

4355
Lomb-Scargle

Periodic

3719
Bozdech
Periodic

Fig. 5. Periodic gene sets identified by the two methods.
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Fig. 6. Periodic gene expression pattern of i3518_1 in the P. falciparum gene

expression dataset.
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Fig. 7. Non-periodic gene expression pattern of j167_5 in the P. falciparum

gene expression dataset.
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Of the 4355 probes that we selected as periodic from the Com-

plete dataset, 744 now identified as periodic were not considered

periodic by Bozdech et al. (2003). See the supplement for the gene

list and the representative periodograms in this selected set. Among

these 744 probes, 243 were processed by the Lomb–Scargle algo-

rithm with a sample size less than 43. These 243 probes resolved to

151 distinct genes. The analysis of these 151 distinct genes presents

a picture of sequence conservation generally similar to Plasmodium
genome as a whole (Aravind et al., 2003), with 26% of proteins

apparently unique to plasmodia, 36% shared only with other api-

complexan species, and the rest broadly conserved across the phylo-

geny. Predicted molecular functions of the latter group of genes,

however, show uneven distribution of different functional classes of

transcripts: the single largest category (13 genes, accounting for 9%

of all newly identified periodic genes and for more than one-quarter

of genes with predicted molecular function) consists of genes

involved in ribosome assembly and RNA maturation (supplement-

ary table). There were no other overrepresented functional categor-

ies in the set of 243. Some late trophozoite or early schizont-specific

functions highlighted by Bozdech et al. (2003), e.g. proteasome

subunits and TCA cycle enzymes, were missing from the newly

recovered periodic gene set altogether. This suggests that the newly

recovered 243 periodic genes perhaps mostly come from the ring or

early trophozoite stage (compare Fig. 2 in Bozdech et al., 2003).

The reasons for that are not clear at present, but most likely they

include experimental artifacts and early phase shift for some genes

(see supplement).

A histogram by period (see supplement) of the 4355 selected

probes shows a dominant frequency at 48 h, as expected. A histo-

gram of p-value shows two peaks and suggests a mixture of two

distributions (see supplement).

Since the Overview dataset was the most restrictive Bozdech

dataset, the 108 probes identified as non-periodic by the

Lomb–Scargle algorithm were studied (see supplement). Most of

these probes may be claimed as periodic by the Lomb–Scargle test

with slightly more lenient selection criteria.

Fourier analysis directly provides an approximate value for the

phase of a periodic curve. In the Lomb-Scargle computation, such a

phase value is not provided directly, but it can be approximated by

the location of the peak value in the expression profile after appro-

priate smoothing (see supplement).

Missing value tolerance

As pointed out earlier, the P.falciparum gene expression Complete

dataset of 6875 probes contains 15.66% missing values. In Bozdech

et al. (2003), missing values in the profiles were imputed using

LOESS smoothing before the FFT algorithm was applied.

Bozdech et al. (2003) concluded that 79.5% of the profiles in the

Quality Control set of 5080 probes, or 54.10% of profiles in the

Complete set of 6875 probes, were periodic, where periodicity was

defined as the FFT score of the profile being higher than a heuristic

70% cutoff score and the profile being in the top 75% of the max-

imum frequency magnitudes. Heuristic rules have been used to

reject certain profiles from analysis if they contained too many

missing values and the LOESS smoothing failed to provide good

imputation for those missing values. Therefore, Bozdech et al.
(2003) only analyzed gene expression time series with at most

five missing values. The Lomb–Scargle method does not need miss-

ing value imputation and just treats a series with missing value as

unevenly spaced. Our above analysis illustrated the effectiveness of

Lomb–Scargle method in treating missing values.

We further examined extreme cases when many missing values

are consecutive in the time series (see supplement). As the original

data had missing values for all profiles at hour 23 and hour 29, we

deleted all 7 consecutive time points from hour 23 to hour 29 in the

Complete dataset of 6875 probes (with missing value rate increased

from 15.66 to 26.08% in the dataset), and found that at the FDR

level of q ¼ 1 · 10�4, the Lomb–Scargle method identified 3617

probes as periodic (53% periodic versus 54.10% in original ana-

lysis). Of the 3617 identified, 3609 were in the original set of 4355

identified periodic genes. When we deleted 11 consecutive time

points (with missing value rate increased from 15.66 to 34.41%)

from hour 21 to hour 31, the Lomb–Scargle method can still identify

2506 (or 36%) probes as periodic; and of the 2506 identified peri-

odic probes, 2502 were in the original set of 4355 identified periodic

genes. These studies indicated that the Lomb–Sargle method has

good ‘tolerance’ toward missing values.

DISCUSSION

The Lomb–Scargle periodogram is a promising technique of search-

ing for time series with periodic patterns. It requires no special

treatment of missing values and can be used in data taken on

unevenly spaced time points. Under the normal random noise

assumption, the p-value for labeling each gene as periodic is easily

calculated. There is no need for an ad hoc scoring system of power

in peaks or for use of random permutations to assess significance

of a peak. Weighting of data occurs on a ‘per point’ basis instead

of on a ‘per frequency interval’ basis (Press and Rybicki, 1989). As

all other methods in the search for periodic signals, the Lomb–

Scargle periodogram requires the assumption of Gaussian noise

on the error term. When the Gaussian noise assumption is invalid,

the conclusion of Lomb–Scargle method might be misleading.

Schimmel (2001a,b) also discussed the limitation of the Lomb–

Scargle method when the signal is periodic with non-sinusoidal

shapes or with outliers. These issues become topics of our further

investigation. Our current studies indicate that for the P.falciparum
dataset the Lomb–Scargle periodogram method is more appropriate,

as it is better suited to handle unevenly spaced time series.

The question of how many time points should be planned to

observe a particular periodical expression pattern might be raised

at the planning stage of the experiment. We provide a simple guide-

line for estimating the sample size N (number of time points) of one

profile for a given p-value as follows:

N � 5½1 � log10ð p-valueÞ�: ð5Þ

The derivation of Equation (5) is through a simple regression curve

and is given in the online supplement. This equation only provides a

guideline on how many data points should be planned if one given

profile will be viewed as significant at the given p-value. After a large

number of profiles are obtained, a given FDR level should be used to

identify actually how many profiles are significantly periodic.

CONCLUSION

The Lomb–Scargle periodogram algorithm is an effective tool

for finding periodic gene expression profiles in microarray data,

especially when data may be collected at arbitrary time points or

when a significant proportion of data is missing.
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