
ARTICLE OPEN

Detecting positive quantum capacities of quantum channels
Satvik Singh 1✉ and Nilanjana Datta1✉

Determining whether a noisy quantum channel can be used to reliably transmit quantum information is a challenging problem in
quantum information theory. This is because it requires computation of the channel’s coherent information for an unbounded
number of copies of the channel. In this paper, we devise an elementary perturbative technique to solve this problem in a wide
variety of circumstances. Our analysis reveals that a channel’s ability to transmit information is intimately connected to the relative
sizes of its input, output, and environment spaces. We exploit this link to develop easy tests which can be used to detect positivity
of quantum channel capacities simply by comparing the channels’ input, output, and environment dimensions. Several noteworthy
examples, such as the depolarizing and transpose-depolarizing channels (including the Werner-Holevo channel), dephasing
channels, generalized Pauli channels, multi-level amplitude damping channels, and (conjugate) diagonal unitary covariant
channels, serve to aptly exhibit the utility of our method. Notably, in all these examples, the coherent information of a single copy
of the channel turns out to be positive.
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INTRODUCTION
The capacity of a noisy communication channel quantifies the
fundamental physical limit on noiseless communication through
it. Shannon proved that every noisy classical channel has a unique
capacity which is given in terms of the mutual information
between the random variables characterizing the channel’s input
and output1. In contrast, a quantum channel has many different
kinds of capacities. These depend on a variety of factors, for
example, on the type of information (classical or quantum) which
is being transmitted, whether or not this information is private, the
nature of the input states (entangled or not), and whether any
auxiliary resource is available to assist the transmission. Auxiliary
resources like prior shared entanglement between the sender and
the receiver can enhance the capacities of a quantum channel.
This is in contrast to the case of a classical channel where auxiliary
resources, such as shared randomness between the sender and
the receiver, fail to enhance the capacity.
The quantum capacity of a quantum channel quantifies the

maximum rate (measured in bits per use of the channel) of noiseless
and coherent quantum communication through it, in the limit of
asymptotically many uses of the channel and in the absence of any
auxiliary resource. By the seminal works of Lloyd2, Shor3, and
Devetak4, we know that the quantum capacity of a channel Φ is
given by the following regularized entropic expression:

QðΦÞ ¼ lim
n!1

Qð1ÞðΦ�nÞ
n

; (1)

where

Qð1ÞðΦÞ :¼ max
ρ

Icðρ;ΦÞ and Icðρ;ΦÞ :¼ S½ΦðρÞ� � S½ΦcðρÞ�:
(2)

Here, Φc denotes a channel that is complementary to Φ (see
Section “Prerequisites” for the precise definition), and for any
quantum state ρ, SðρÞ :¼ �Trðρ log ρÞ denotes its von Neumann
entropy. A channel’s complement models the loss of information
by the channel to the environment and hence crucially affects the
channel’s ability to transmit information. The quantity Qð1ÞðΦÞ is

called the coherent information of Φ and provides a lower bound
to the quantum capacity: QðΦÞ � Qð1ÞðΦÞ. This is because
Qð1ÞðΦ�nÞ � nQð1ÞðΦÞ for all n. Computing Qð1ÞðΦÞ is a challenge
in itself, since it involves solving a non-concave optimization
problem. On top of it, the coherent information is usually
superadditive, i.e. Qð1ÞðΦ�nÞ>nQð1ÞðΦÞ. This means that the
regularization in Eq. (1) is necessary in order to compute the full
capacity QðΦÞ, thus making it notoriously difficult to do so.
The same difficulties carry over to the task of checking if a given

channel has non-zero quantum capacity. In particular, it is known
that for any finite n, there exist channels Φ for which Qð1Þ ðΦ�nÞ ¼
0 yet Q(Φ) > 05. Furthermore, it has been shown that there exist
pairs of quantum channels (say Φ1 and Φ2), each of which has zero
quantum capacity, but which can be used in tandem to transmit
quantum information, i.e. QðΦ1 � Φ2Þ> 0. This startling effect
(known as superactivation6) is a purely quantum phenomenon
because classically, if two channels have zero capacity, the
capacity of the joint channel must also be zero. Such extreme
examples of superadditivity make it extremely non-trivial to detect
if a channel has non-zero quantum capacity.
Only two kinds of channels are currently known to have zero

quantum capacity, namely PPT and anti-degradable channels7.
Checking if a given channel is PPT is equivalent to checking if
the channel’s Choi matrix and its partial transpose are positive
semidefinite. The task of determining if a given channel is anti-
degradable can be modeled as a semidefinite program8.
However, the question of whether there exist channels that
are neither PPT nor anti-degradable but still have zero capacity
is wide open. To date, there is no general procedure or
algorithm known which can detect if a given channel has
positive quantum capacity, except in special circumstances
where some numerical techniques can be employed to
compute or provide lower bounds on the coherent informa-
tion9,10. However, when one wants to detect arbitrarily small
positive values of quantum capacities, numerical methods can
not only become unreliable, but also computationally expen-
sive in higher dimensions.
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In light of the above discussion, it is clear that our under-
standing of the set of zero capacity quantum channels is still in its
nascent phase. The main result of this paper sheds light on the
structure of this set by providing a powerful sufficient condition to
guarantee positivity of quantum capacities for a wide variety of
quantum channels and their complements; see Theorem II.7 in the
main text, which is also stated below for convenience. Recently,
Siddhu has also made interesting progress on the stated problem
of quantum capacity detection11. The ideas employed in Siddhu11

are similar in essence to the key ingredient that we use to obtain
our main result. However, our approach is mathematically more
rigorous and our results have much wider applicability. Explicit
comparisons between our results and those presented in Siddhu11

are made at relevant places in the sequel.

Theorem I.1
Let Φ and Φc be complementary quantum channels. For a pure
state ψj i ψh j, denote the orthogonal projections onto ker Φð ψj i ψh jÞ
and ker Φcð ψj i ψh jÞ by Kψ and Kc

ψ, respectively. Then,

● QðΦÞ � Qð1ÞðΦÞ> 0 if there exist states ψj i ψh j and σ such
that TrðKψΦðσÞÞ> TrðKc

ψΦcðσÞÞ.
● QðΦcÞ � Qð1ÞðΦcÞ> 0 if there exist states ψj i ψh j and σ such

that TrðKψΦðσÞÞ< TrðKc
ψΦcðσÞÞ.

The primary tool employed in the proof of Theorem II.7 is a
seminal result (by Rellich) from the theory of analytic perturba-
tions of Hermitian matrices. Put simply, if a Hermitian matrix A0
with an eigenvalue λ of multiplicity n is subjected to a linear
(Hermitian) perturbation A(ϵ)= A0+ ϵA1 in a real parameter ϵ,
then the perturbed matrix has exactly n eigenvalues converging to
λ as ϵ→ 0, all of which, rather remarkably, admit convergent
power series expansions in a neighborhood of ϵ= 0; see Theorem
IV.1. Now, for a given channel Φ, it is trivial to see that Ic(ρ;Φ)= 0
for all pure input states ρ ¼ ψj i ψh j. It turns out that if we choose
ρðϵÞ ¼ ð1� ϵÞ ψj i ψh j þ ϵσ as a slight perturbation of an arbitrarily
chosen pure state ψj i ψh j with an arbitrary mixed state σ, then the
first-order correction terms in the eigenvalue expansions of the
perturbed outputs Φ[ρ(ϵ)] and Φc[ρ(ϵ)] can be analyzed to yield a
simple condition which guarantees that Ic(ρ(ϵ);Φ) > 0 for suffi-
ciently small values of ϵ, so that Qð1ÞðΦÞ> 0 ) QðΦÞ> 0.
An equivalent formulation of the above theorem yields a first-

of-its-kind necessary condition for membership in the set of zero
capacity quantum channels; see Theorem II.14. As a sanity check,
we prove that some of the few known classes of channels with
zero capacity satisfy this condition; see Lemma II.15. Notably, the
main result in Siddhu11 arises as an immediate consequence of
Theorem II.7, which can be applied to detect positive quantum
capacity of a given channel (or its complement) if the channel’s
output and environment dimension are unequal and if there exists
a pure state whose image under the channel has the maximum
possible rank; see Corollary II.8. Furthermore, we prove that the
aforementioned pure state exists for all channels with sufficiently
large input dimensions, so that any such channel (or its
complement) with unequal output and environment dimension
must have positive quantum capacity, irrespective of the specific
form of the channel; see Corollary II.12. Similar results were
obtained in Siddhu11 for channels with large output and
environment dimensions, which are derived again in Corollary
II.10 with simpler proofs. These results constitute a family of
simple dimensional tests which can be used to detect positive
quantum channel capacities simply by comparing the dimensions
of the channels’ input, output, and environment spaces. Clearly,
our results exhibit an intimate connection between the ability of a
channel to transmit information and the relative sizes of the
channel’s input, output, and environment spaces.

Our methods can be easily applied to several concrete examples
of important quantum channels and their complements as well.
The following is a list of main results in this direction. We should
mention that in all these examples, the coherent information of a
single copy of the relevant channel turns out to be positive.

● In Leung and Watrous12, the qubit depolarizing channel Dp :
M2 ! M2 was shown to have positive complementary
quantum capacity (the complementary quantum capacity of
a channel refers to the quantum capacity of anyone of its
complements) for all non-zero values of the noise parameter
p > 0. We extend this result to show that the qudit
depolarizing and transpose-depolarizing channels (Dp :

Md ! Md and D>
q : Md ! Md , respectively) have positive

complementary quantum capacities for all p > 0 and q < d
d�1;

see Theorem II.17. Moreover, the Werner-Holevo channel
ΦWH � D>

d
d�1

: Md ! Md is shown to have positive comple-

mentary quantum capacity for all d ≥ 4; see Theorem II.19.
● In12, the qubit Pauli channel ΦP : M2 ! M2 was also shown

to have positive complementary quantum capacity whenever
the defining probability matrix P 2 M2 has at least three non-
zero entries. An extension of this result for generalized qudit
Pauli channels ΦP : Md ! Md with a much simpler proof is
presented in Theorem II.20.

● For a multi-level amplitude damping channel Φ
γ! : Md !

Md , we establish simple constraints on the decay rate vector
γ!2 Rdðd�1Þ=2 which ensure the positivity of its quantum
capacity and its complementary quantum capacity; see
Theorem II.22.

● We show that a generalized dephasing or Hadamard channel
ΦB : Md ! Md (parametrized by a correlation matrix
B 2 Md) has zero quantum capacity if and only if it is
entanglement-breaking; see Theorem II.28.

● Recently, the family of (conjugate) diagonal unitary covariant
(dubbed (C)DUC) quantum channels was introduced in Singh
and Nechita13. A rich variety of channels, such as the
depolarizing and transpose-depolarizing channels, amplitude
damping channels, dephasing channels etc. are known to
belong in this family. In Proposition II.26, we completely
characterize the class of (C)DUC channels for which there
exists a pure input state which gets mapped to a maximal rank
output state, so that Corollary II.8 can be applied to infer
positivity of the quantum capacities of these channels and
their complements; see Theorem II.27.

Moreover, Theorem II.7 has various interesting ramifications,
which are studied in Section III. For instance, it leads to simplified
proofs of certain existing structure theorems for the class of
degradable quantum channels, and an extension of their applic-
ability to the larger class of more capable quantum channels.
Before wrapping up the introduction, we must emphasize that

this paper is not targeted towards the problem of computing
lower bounds on quantum channel capacities. While this is
certainly an interesting question to think about, here we are
interested in something even more fundamental: When is the
quantum capacity of any given channel non-zero? Tackling this
basic yes/no question is the primary aim of our work. We do so by
devising a simple perturbative technique to detect positivity (no
matter how small it might be) of quantum channel capacities.

RESULTS
Prerequisites
In this section, we briefly review the basics of quantum channels
and their quantum capacities. A more thorough discussion on
these topics can be found in Watrous14.
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We denote the set of all d1 × d2 complex matrices by Md1 ´ d2 .
When d1= d2= d, we denote the corresponding matrix space by
Md :¼ Md ´ d . For A; B 2 Md , A ≤ B means that B− A is positive
semi-definite. The convex set of quantum states (positive semi-
definite matrices with unit trace) in Md and M�n

d (for n 2 N) will
be denoted by Sd and Sd�n , respectively. The vectorization map
vec : Md1 ´ d2 ! Cd1 �Cd2 is a linear bijection defined as

8X 2 Md1 ´ d2 : vecX ¼
Xd�1

i;j¼0

Xij ijj i; (3)

where f ij igi2½d� denotes the standard orthonormal basis ofCd and

[d]:= {0, 1,…, d− 1}. For any given ψj i 2 Cd1 �Cd2 , one can use
the singular value decomposition of vec�1 ψj i 2 Md1 ´ d2 to obtain
the Schmidt decomposition of ψj i ¼Pn�1

i¼0
ffiffiffi
si

p
ij i1 ij i2, where

f ij i1gi2½n� � Cd1 and f ij i2gi2½n� � Cd2 are orthonormal sets, si ≥ 0
and n ¼ minfd1; d2g. The number of non-zero si is called the
Schmidt rank of ψj i, and is equal to rankðvec�1 ψj iÞ � minfd1; d2g.
A quantum channel is a completely positive and trace-

preserving linear map Φ : Md1 ! Md2 . Φ is said to be unital if
Φð1d1Þ ¼ 1d2 , where 1d 2 Md is the identity matrix. Its adjoint
Φ	 : Md2 ! Md1 is a unital completely positive linear map
defined uniquely by the following relation:

8X 2 Md1 ; 8Y 2 Md2 : Tr½ΦðXÞY� ¼ Tr½XΦ	ðYÞ�: (4)

Two quantum channels Φ : Md ! Mdout and Φc : Md ! Mdenv
are said to be complementary to each other if there exists an
isometry (often called a Stinespring isometry) V : Cd ! Cdout �
Cdenv such that

8X 2 Md : ΦðXÞ ¼ TrenvðVXVyÞ and ΦcðXÞ ¼ TroutðVXVyÞ:
(5)

In the above scenario, all input states are first isometrically
embedded into the combined output-environment space, with
the action of Φ and Φc then retrieved by partially tracing out the
environment and the output space, respectively15,16. For a given
channel Φ : Md ! Mdout , the collection of all channels that are
complementary to Φ is denoted by CΦ.

Remark II.1. To every channel Φ : Md ! Mdout , we can uniquely
associate two sets of channels CΦ and CΦc , where Φc 2 CΦ is
complementary to Φ. These sets are non-empty, since the
Stinespring dilation theorem guarantees that Φ can be expressed
as in Eq. (5) for some isometry V : Cd ! Cdout �Cdenv (Watrous14,
Corollary 2.27). Furthermore, different choices of Φc 2 CΦ yield the
same set CΦc . Finally, it is straightforward to show that

● any two channels Φ1;Φ2 2 CΦ (or CΦc ) with Φ1 : Md ! Md1 ,
Φ2 : Md ! Md2 , and d1 ≤ d2 are isometrically related, i.e. ∃ an
isometry W : Cd1 ! Cd2 such that Φ2(X)=WΦ1(X)W†.

● any two channels Φ1 2 CΦ and Φ2 2 CΦc are complementary
to each other.

We define the minimal environment and output dimension of Φ as

d	envðΦÞ :¼ minfdenv : 9Φc 2 CΦ;Φc : Md ! Mdenvg and

d	outðΦÞ :¼ d	envðΦcÞ;
(6)

respectively, where Φc 2 CΦ. It is clear from Remark II.1 that the
above definition is independent of the choice of Φc, see also
Lemma II.3. We say that two complementary channels Φ : Md !
Mdout and Φc : Md ! Mdenv are minimally defined if d	envðΦÞ ¼
denv and d	outðΦÞ ¼ dout. If two complementary channels Φ and Φc

are minimally defined, then they are isometrically related to every
channel in the sets CΦc and CΦ, respectively, in the sense of
Remark II.1.

Remark II.2. Intuitively, one can think about the minimal output
dimension of Φ : Md ! Mdout as the minimal size of the output
space that can accommodate all the channel outputs. More
precisely, we show in Lemma II.3 that

8ρ 2 Sd : rangeΦðρÞ � rangeΦð1dÞ: (7)

Thus, even though Φ is originally defined with an output space of
dimension dout, a smaller size d	outðΦÞ ¼ dim rangeΦð1dÞ actually
suffices to fully accommodate the output from Φ.
The Choi matrix of a quantum channel Φ : Md ! Mdout is

defined as refs. 17,18

JðΦÞ :¼ ðΦ� idÞ Ωj i Ωh j; where Ωj i :¼
Xd�1

i¼0

ij i ij i 2 Cd �Cd

(8)

denotes a maximally entangled state and id : Md ! Md is the
identity map. The rank of the Choi matrix of a channel is called
the Choi rank of the channel. The minimal environment
dimension of a channel is related to its Choi rank via the
following crucial lemma.

Lemma II.3. For a channel Φ : Md ! Mdout and some comple-
mentary channel Φc 2 CΦ,
d	envðΦÞ ¼ rank JðΦÞ ¼ rank Φcð1dÞ (9)

d	outðΦÞ ¼ rank JðΦcÞ ¼ rank Φð1dÞ: (10)

Proof. See the Methods section “Minimal output and environment
dimensions”.

Remark II.4. We note some straightforward consequences of
Lemma II.3 below:

● If Φ : Md ! Mdout is a unital channel, then d	outðΦÞ ¼ dout.
● If a channel Φ : Md ! Mdout admits a Kraus representation

ΦðXÞ ¼Pk
i¼1 AiXA

y
i , where fAigki¼1 is a linearly independent

set of dout × d matrices, then d	envðΦÞ ¼ k.
● For a channel Φ : Md ! Mdout , its adjoint Φ

* has d	envðΦ	Þ ¼
d	envðΦÞ and d	outðΦ	Þ ¼ d.

The coherent information of a state ρ 2 Sd with respect to a
channel Φ : Md ! Mdout is defined as Ic(ρ;Φ):= S[Φ(ρ)]− S
[Φc(ρ)], where Φc 2 CΦ is complementary to Φ and SðρÞ ¼
�Trðρ log ρÞ denotes the von Neumann entropy of ρ 2 Sd . The
coherent information of Φ is defined to be

Qð1ÞðΦÞ :¼ max
ρ2Sd

Icðρ;ΦÞ: (11)

The quantum capacity of Φ admits the following regularized
expression:

QðΦÞ ¼ lim
n!1

Qð1ÞðΦ�nÞ
n

; (12)

where, for n 2 N, the coherent information of the product
channel Qð1ÞðΦ�nÞ is called the n− shot coherent information
of Φ. Clearly, Qð1ÞðΦ�nÞ � nQð1ÞðΦÞ. However, it may happen
that the coherent information is superadditive: Qð1ÞðΦ�nÞ>
nQð1ÞðΦÞ, in which case the task of evaluating QðΦÞ becomes
intractable5,19. The regularization in Eq. (12) is not required
only for certain special channels for which the coherent
information is additive: Qð1ÞðΦ�nÞ ¼ nQð1ÞðΦÞ. Consequently,
the quantum capacities of these channels admit nice single-
letter expressions in terms of the channels’ coherent informa-
tion QðΦÞ ¼ Qð1ÞðΦÞ.
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Remark II.5. Since for a given channel Φ, all complementary
channels Φc 2 CΦ are isometrically related (in the sense of Remark
II.1), the stated capacity expressions do not depend on the choice
of Φc. More generally, the quantum capacities of any two
isometrically related channels are identical. Hence, while comput-
ing quantum capacities, one can choose to work with channels
Φ : Md ! Mdout and Φc : Md ! Mdenv that are minimally
defined (i.e. denv ¼ d	envðΦÞ and dout ¼ d	outðΦÞ).
Degradable channels are the quintessential examples of

channels that have additive coherent information20. A quantum
channel Φ : Md ! Mdout is said to be degradable if there exists a
channel N : Mdout ! Mdenv such that Φc ¼ N 
 Φ for some
complementary channel Φc : Md ! Mdenv . Quantum channels
that are complementary to degradable channels are known as
anti-degradable. In other words, a channel Φ : Md ! Mdout is
said to be anti-degradable if there exists a channel N : Mdenv !Mdout such that Φ ¼ N 
 Φc for some complementary channel
Φc : Md ! Mdenv . If such a channel could be used for reliable
quantum communication, then its environment would be able to
replicate all the transmitted information by applying the anti-
degrading map N , thus violating the no-cloning theorem7,21.
Hence, anti-degrading channels have zero quantum capacity.
More generally, all the currently known classes of channels with
additive coherent information lie within the strict superset of more
capable channels22 (see Fig. 1), which are defined by the property
that their complementary channels have zero quantum capacity.
Apart from anti-degradable channels, only PPT channels23 are

known to have zero capacity. A channel Φ : Md ! Mdout is said
to be PPT if > 
 Φ is again a quantum channel, where > : Mdout !Mdout is the transpose map. Equivalently, Φ is PPT if and only if its
Choi matrix JðΦÞ 2 Mdout �Md and its partial transposite are
positive semi-definite. Such channels cannot have positive
capacity because if they did, one would be able to distill
maximally entangled pure states from the PPT Choi matrices of
these channels, which is impossible24. The well-known family of
entanglement-breaking channels25 – which consists of channels
whose Choi matrices are separable – is strictly contained within
the the intersection of the anti-degradable and PPT families, see
Fig. 2.

Remark II.6. In Brádler et al.26, the authors introduced another
class of quantum channels with additive coherent information,
namely conjugate degradable channels. According to their
definition, a channel Φ : Md ! Mdout is conjugate degradable if
there exists a channel N : Mdout ! Mdenv such that

C 
 Φc ¼ N 
 Φ; (13)

where C denotes (entrywise) complex conjugation on Mdenv and
Φc : Md ! Mdenv is complementary to Φ. In an analogous
fashion, the class of conjugate anti-degradable channels was
defined, and these channels were claimed to have zero quantum
capacity. However, there is a fundamental problem with the stated
definitions, which stems from the fact that the map C is anti-linear.
Therefore, Eq. (13) is invalid, since it is equating an anti-linear map
on its left hand side with a linear map on its right hand side. This
issue can be easily resolved if we just replace the anti-linear
operation of complex conjugation by the linear operation of
transposition. Hence, we are led to the following definitions of
transpose degradable and transpose anti-degradable channels.
We say that a channel Φ : Md ! Mdout is transpose degradable

(resp. transpose anti-degradable) if there exists a channel N :
Mdout ! Mdenv (resp. N : Mdenv ! Mdout ) such that > 
 Φc ¼
N 
 Φ (resp. > 
 Φ ¼ N 
 Φc) for some complementary channel
Φc : Md ! Mdenv , where ⊤ denotes the transpose map on the
relevant matrix spaces. It is easy to show that transpose
degradable channels have additive coherent information, while
transpose anti-degradable channels have zero quantum capacity.
In this regard, note that all transpose anti-degradable channels are
PPT as well. It would be interesting to see if these classes are
actually different from their non-transposed counterparts.

Main results
Let Φ : Md ! Mdout be a quantum channel and let Φc 2 CΦ be a
complementary channel. Our goal is to check if QðΦÞ> 0. Since
QðΦÞ � Qð1ÞðΦÞ, we proceed by checking if Qð1ÞðΦÞ> 0. For a
pure input state ψj i ψh j 2 Sd , it is easy to show that
Icð ψj i ψh j;ΦÞ ¼ 0, since the non-zero eigenvalues of Φð ψj i ψh jÞ
and Φcð ψj i ψh jÞ (counted with multiplicities) are identical, see
Lemma IV.3. Now, the idea is to cleverly choose a pure input state
and perturb it along the direction of a suitable mixed state in
order to obtain a positive value for the coherent information. With
this end in sight, let us break the technical aspects of this idea into
the following steps:

● For a pure input state ψj i ψh j and a mixed state σ, define the
one-parameter family of states ρðϵÞ ¼ ð1� ϵÞ ψj i ψh j þ ϵσ,
where ϵ∈ [0, 1] is the perturbation parameter.

Fig. 1 The set of more capable (MC) quantum channels, i.e.
channels with zero complementary quantum capacity22. Degrad-
able (DG) and transpose degradable (TDG) channels lie strictly
within this set. The relationship between the sets of DG and TDG
channels is currently unestablished.

Fig. 2 The set of quantum channels with zero quantum capacity:
PPT and anti-degradable (ADG) channels are the only kinds of
channels that are currently known to belong in this set7.
Entanglement-breaking (EB) channels form a strict subset of the
intersection of the PPT and anti-degradable sets of channels. The
question mark indicates that it is not currently known if there exist
quantum channels that are neither anti-degradable nor PPT but still
have zero quantum capacity.
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● Focus on the zero eigenvalue of Φð ψj i ψh jÞ and Φcð ψj i ψh jÞ with
respective multiplicities κ ¼ dim kerΦð ψj i ψh jÞ and
κc ¼ dim kerΦcð ψj i ψh jÞ.

● Once the perturbation is turned on,

Φ½ρðϵÞ� ¼ ð1� ϵÞΦð ψj i ψh jÞ þ ϵΦðσÞ and

Φc½ρðϵÞ� ¼ ð1� ϵÞΦcð ψj i ψh jÞ þ ϵΦcðσÞ
(14)

will have exactly κ and κc eigenvalues, respectively, which
converge to zero as ϵ→ 0. Remarkably, these eigenvalues
admit convergent power series expansions in the perturbation
parameter ϵ (in a neighborhood of ϵ= 0), see Theorem IV.1.
Furthermore, if Kψ and Kc

ψ denote the orthogonal projections
onto the unperturbed eigenspaces ker Φð ψj i ψh jÞ and ker
Φcð ψj i ψh jÞ, respectively, then the non-zero eigenvalues of KψΦ
(σ)Kψ and Kc

ψΦðσÞKc
ψ determine the first-order correction

constants in the aforementioned eigenvalue expansions, thus
giving rise to the following crucial term in the derivative of the
coherent information:

I0cðρðϵÞ;ΦÞ ¼ ½TrðKψΦðσÞÞ � TrðKc
ψΦcðσÞÞ� log 1

ϵ

� �
þ ¼ (15)

● All the higher order corrections above can be shown to be
bounded in ϵ, so that the derivative becomes positive for
sufficiently small values of ϵ if TrðKψΦðσÞÞ> TrðKc

ψΦcðσÞÞ.
Hence, Ic(ρ(ϵ);Φ) is strictly increasing when 0 < ϵ < δ (for some
small δ > 0), which implies that it has a positive value in the
stated range (recall that at ϵ= 0, Ic(ρ(ϵ);Φ)= 0).

We should note that in Siddhu11, Sections Discussion and
Methods, the first-order corrections in the eigenvalues of Φ[ρ(ϵ)]
and Φc[ρ(ϵ)] which give rise to the trace factor in Eq. (15) are
referred to as the rates of the ϵ-log singluarities of the output
entropies S[Φ(ρ(ϵ))] and S[Φc(ρ(ϵ))].
In order to formulate the above discussion in a mathematically

rigorous fashion, a significant number of non-trivial intermediate
steps are required, which are presented in the Methods section
“Analytic perturbation theory and the proof of Theorem II.7”. The
final theorem stated below is the primary result of this paper.

Theorem II.7. Let Φ : Md ! Mdout and Φc : Md ! Mdenv be
complementary channels. For a pure input state ψj i ψh j 2 Sd ,
denote the orthogonal projections onto ker Φð ψj i ψh jÞ and ker
Φcð ψj i ψh jÞ by Kψ and Kc

ψ, respectively. Then,

● QðΦÞ � Qð1ÞðΦÞ> 0 if there exist states ψj i ψh j; σ 2 Sd such
that

TrðKψΦðσÞÞ> TrðKc
ψΦcðσÞÞ: (16)

● QðΦcÞ � Qð1ÞðΦcÞ> 0 if there exist states ψj i ψh j; σ 2 Sd such
that

TrðKψΦðσÞÞ< TrðKc
ψΦcðσÞÞ: (17)

Before proceeding further, let us note that for a given channel
Φ : Md ! Mdout and an arbitrary pure state ψj i ψh j 2 Sd , Lemma
II.3 and Lemma IV.3 can be exploited to deduce that the maximal
possible rank of Φð ψj i ψh jÞ is minfd	outðΦÞ; d	envðΦÞg. In other
words,

8 ψj i ψh j 2 Sd : rank Φð ψj i ψh jÞ � minfd	outðΦÞ; d	envðΦÞg: (18)

It is not easy to determine if there exists a pure state for which the
above bound gets saturated. However, if we assume that such a pure
state exists, a simple application of the previous theorem yields a very
useful corollary, which we now state and prove. We should mention
that this result has been derived independently in Siddhu11.

Corollary II.8. Let Φ : Md ! Mdout be a channel such that there
exists a pure state ψj i ψh j 2 Sd with rankΦð ψj i ψh jÞ ¼
minfd	outðΦÞ; d	envðΦÞg and Φc 2 CΦ. Then,
● QðΦÞ � Qð1ÞðΦÞ> 0 if d	outðΦÞ>d	envðΦÞ.
● QðΦcÞ � Qð1ÞðΦcÞ> 0 if d	outðΦÞ<d	envðΦÞ.

Proof. We only prove the second part here and leave a similar
proof of the first part to the reader. Firstly, without loss of
generality, we can assume that Φ : Md ! Mdout and Φc : Md !
Mdenv are minimally defined, so that d	outðΦÞ ¼ dout and
d	envðΦÞ ¼ denv (see Remark II.5). Now, if there exists ψj i ψh j 2
Sd with rankΦð ψj i ψh jÞ ¼ dout, then ker Φð ψj i ψh jÞ ¼ f0g. More-
over, since dout < denv, Lemma IV.3 tells us that ker
Φcð ψj i ψh jÞ≠ f0g. Hence, in the notation of Theorem II.7, we
have Kψ = 0 but Kc

ψ ≠ 0. Finally, Lemma II.3 tells us that Φcð1dÞ
has full rank in Mdenv , so that

TrðKc
ψΦcð1dÞÞ> 0 ¼ TrðKψΦð1dÞÞ ) Qð1ÞðΦcÞ> 0: (19)

Remark II.9. Theorem II.7 is more general than Corollary II.8, since
it can be used to detect positivity of the quantum capacity of
channels that lie outside the realm of applicability of Corollary II.8,
especially of channels Φ with d	outðΦÞ ¼ d	envðΦÞ. In Theorem II.28,
we show that the class of dephasing or Hadamard channels
contains such examples; see also example “A family of channels
with equal output and environment dimensions”. Moreover, there
exist channels Φ for which even though d	outðΦÞ≠ d	envðΦÞ, there is
no pure state that gets mapped to an output state with maximal
rank, so that Corollary II.8 cannot be applied. The well-known
Werner-Holevo channel provides such an example. Using Theorem
II.7, we obtain positivity of the quantum capacity of its
complement for all input dimensions d ≥ 4 in Theorem II.19.
Whenever d	outðΦÞ≠ d	envðΦÞ for some channel Φ, Corollary II.8

can be applied if the existence of a pure input state that gets
mapped to a state with maximal rank in the output space can
be guaranteed, see Eq. (18). However, this condition can be
difficult to check in practice. In order to see why, let us consider
a pair of complementary channels Φ : Md ! Mdout and Φc :
Md ! Mdenv with d	outðΦÞ ¼ dout and d	envðΦÞ ¼ denv. Then, the
associated isometry V : Cd ! Cdout �Cdenv which defines these
channels (see Eq. (5)) identifies the input space Cd with a d−
dimensional subspace range V � Cdout �Cdenv , which can
further be identified with a d− dimensional matrix subspace
vec�1ðrange VÞ � Mdout ´ denv via the inverse of the vectorization
map, see Eq. (3). Since

8 ψj i ψh j 2 Sd : rank Φð ψj i ψh jÞ ¼ Schmidt rankðV ψj iÞ ¼ rankðvec�1V ψj iÞ;
(20)

establishing the existence of a pure state with maximal output
rank is equivalent to establishing the existence of a full rank matrix
in the subspace vec�1ðrange VÞ � Mdout ´ denv , which is known to
be hard27,28. This is why the simple dimensional inequalities given
below are so convenient. Put simply, they ensure the existence of
the desired pure input state whenever d	outðΦÞ or d	envðΦÞ is
sufficiently large for an arbitrary channel Φ. We should point out
that the following inequalities were also derived in Siddhu11,
albeit in a different way.

Corollary II.10. Let Φ : Md ! Mdout and Φc : Md ! Mdenv be
complementary channels. Then,

● QðΦÞ � Qð1ÞðΦÞ> 0 if d	outðΦÞ>d	envðΦÞ and d	outðΦÞ>d
ðd	envðΦÞ � 1Þ.
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● QðΦcÞ � Qð1ÞðΦcÞ> 0 if d	envðΦÞ>d	outðΦÞ and d	envðΦÞ>d
ðd	outðΦÞ � 1Þ.

Proof. Let us begin with the second part. Assume that the channels
are minimally defined; see Remark II.5. In view of Corollary II.8, our
goal is to show that if denv > dout and denv > d(dout− 1), then there
exists ψj i ψh j 2 Sd such that rankΦð ψj i ψh jÞ ¼ dout. Suppose that
this is not the case. Then, for every ψj i 2 Cd , Φð ψj i ψh jÞ 2 Mdout
must be singular ) kerΦð ψj i ψh jÞ ≠ f0g ) there exists 0≠ ϕj i 2
kerΦð ψj i ψh jÞ such that

0 ¼ TrðΦψ ϕj i ϕh jÞ ¼ Tr Φψ � ϕ
�� � ϕ
� ��� 	

Ωj i Ωh j
 � ¼ Tr ψϕ
�� �

ψϕ
� ��JðΦ	Þ
 �

;

(21)

where Φψ ¼ Φð ψj i ψh jÞ, Ωj i 2 Cdout �Cdout is defined as in Eq. (8),
and JðΦ	Þ ¼ ðΦ	 � idÞ Ωj i Ωh j. Hence, for every ψj i 2 Cd , there
exists ϕj i 2 Cdout such that ψϕj i 2 ker JðΦ	Þ. In particular, there
are at least d linearly independent vectors in ker J(Φ*), so that
according to the rank-nullity theorem, denv= rank J(Φ)= rank J
(Φ*) ≤ d(dout− 1), which contradicts our original assumption. An
identical argument can be used to prove the first part as well.
By exploiting an intriguing matrix-theoretic result (Lemma II.11),

we next derive an interesting dimensional inequality in Corollary
II.12, which ensure the existence of the sought-after pure state (i.e.
the state which gets mapped onto an output state with maximal
rank) for any given channel. Unlike Corollary II.10, the inequality in
Corollary II.12 implies that all channels with sufficiently large input
dimension must either have positive quantum capacity or positive
complementary quantum capacity. To see how these two
corollaries nicely complement each other, see Remark II.13.

Lemma II.11. Let S � Md1 ´ d2 (with d1 ≤ d2) be a matrix subspace
such that max

X2S
rankX ¼ r. Then, dimS � rd2.

Proof. See the Methods section “Matrix subspaces and the proof of
Lemma II.11”.

Corollary II.12. Let Φ : Md ! Mdout and Φc : Md ! Mdenv be
complementary channels. Then,

● QðΦÞ � Qð1ÞðΦÞ> 0 if d	outðΦÞ>d	envðΦÞ and d > d	outðΦÞðd	envðΦÞ � 1Þ.
● QðΦcÞ � Qð1ÞðΦcÞ> 0 if d	envðΦÞ>d	outðΦÞ and d > d	envðΦÞðd	outðΦÞ � 1Þ.

Proof. We only prove the first part here, and leave an analogous
proof of the second part to the reader. As usual, we assume that
the channels Φ : Md ! Mdout and Φc : Md ! Mdenv are mini-
mally defined, so that dout ¼ d	outðΦÞ and denv ¼ d	envðΦÞ (see
Remark II.5). Then, if V : Cd ! Cdout �Cdenv is the associated
Stinespring isometry, the matrix subspace S ¼ vec�1ðrange VÞ �
Mdout ´ denv has dimS ¼ d > doutðdenv � 1Þ. Since denv < dout,
Lemma II.11 tells us that there exists X 2 S with rankX= denv, so
that for ψj i 2 Cd such that V ψj i ¼ vecX , we have

rank Φð ψj i ψh jÞ ¼ Schmidt rankðV ψj iÞ ¼ rank X ¼ denv: (22)

Hence, Corollary II.8 can be readily applied to obtain the desired
result.

Remark II.13. Let us fix two positive integers dout > denv and
consider the set of all channels Φ with d	outðΦÞ ¼ dout and
d	envðΦÞ ¼ denv. Then, the input dimension of these channels can
be any positive integer d � d	outðΦÞd	envðΦÞ. Barring the d= 1 case,
Corollaries II.10 and II.12 show that whenever d lies within the two

opposite extremes of this range: d < d	outðΦÞ=ðd	envðΦÞ � 1Þ or
d > d	outðΦÞðd	envðΦÞ � 1Þ, the corresponding channel Φ has
positive quantum capacity.
By exploiting Theorem II.7, we now introduce a powerful

necessary condition for a quantum channel to have zero capacity.

Theorem II.14. Let Φ : Md ! Mdout and Φc : Md ! Mdenv be
complementary channels. For a pure input state ψj i ψh j 2 Sd�n ,
denote the orthogonal projections onto rangeΦ�nð ψj i ψh jÞ and
rangeΦ�n

c ð ψj i ψh jÞ by Rψ and Rcψ, respectively. Then, if QðΦÞ ¼ 0,
the following relation holds

8n 2 N; 8 ψj i ψh j 2 Sd�n : ðΦ�n
c Þ	ðRcψÞ � ðΦ�nÞ	ðRψÞ: (23)

proof. Since QðΦÞ ¼ 0 ) Qð1ÞðΦ�nÞ ¼ 0 for all n 2 N, we can
apply Theorem II.7 to Φ⊗n for each n to obtain the required
implication. Let us spell out the details for the n= 1 case. Here,
Theorem II.7 forces TrðKψΦðσÞÞ � TrðKc

ψΦcðσÞÞ for all ψj i ψh j; σ 2 Sd ,
where Kψ and Kc

ψ are as defined in Theorem II.7. Hence, the following
equivalences hold for each pure state ψj i ψh j 2 Sd :

8σ 2 Sd : Tr½ðΦ	
cðKc

ψÞ � Φ	ðKψÞÞσ� � 0 () Φ	
cðKc

ψÞ � Φ	ðKψÞ
() Φ	

cðRcψÞ � Φ	ðRψÞ;
(24)

where the equivalence of the latter two operator inequalities in
Md is a consequence of the fact that both Φ* and Φ	

c are unital,
Rψ þ Kψ ¼ 1dout and Rcψ þ Kc

ψ ¼ 1denv .
As a sanity check, the next lemma shows that anti-degradable

and transpose anti-degradable channels (which are known to
have zero capacity, see Section “Prerequisites”) satisfy the
necessary condition stated in Theorem II.14.

Lemma II.15. Let Φ : Md ! Mdout be an anti-degradable or
transpose anti-degradable channel and Φc : Md ! Mdenv be
complementary to Φ. Then,

8n 2 N; 8 ψj i ψh j 2 Sd�n : Φ�n
c

� 		ðRcψÞ � Φ�n� 		ðRψÞ; (25)

where Rψ and Rcψ are as defined in Corollary II.14.

Proof. We prove the result for anti-degradable channels and leave
an almost identical proof of the transposed version to the reader.
It suffices to obtain the result for n= 1, since if Φ is anti-
degradable, then Φ⊗n is also anti-degradable for all n 2 N. To
begin with, note that the anti-degradability of Φ : Md ! Mdout
implies that there exists a channel N : Mdenv ! Mdout such that
Φ ¼ N 
 Φc and Φ	 ¼ Φ	

c 
 N 	. Hence, for every pure state
ψj i ψh j 2 Sd , we can exploit Lemma IV.4 to obtain the following
sequence of implications:

rangeNðRcψÞ ¼ range Rψ ) NðRcψÞKψ ¼ 0

) TrðN ðRcψÞKψÞ ¼ 0 ¼ TrðRcψN	ðKψÞÞ
) RcψN	ðKψÞ ¼ 0

) rangeN	ðKψÞ � ker Rcψ ¼ range Kc
ψ:

(26)

Observe that while obtaining the implications above, we used the
fact that for A, B ≥ 0, AB ¼ 0 () TrðABÞ ¼ 0. Now, since N	 is
unital and completely positive (being the adjoint of a quantum
channel), it is contractive in the operator norm (see Bhatia29,
Theorem 2.3.7), which implies that kN 	ðKψÞk � kKψk � 1. Com-
bining Eq. (26) with the previous result, we obtain N	ðKψÞ �
Kc
ψ ) Φ	ðKψÞ ¼ Φ	

cðN 	ðKψÞÞ � Φ	
cðKc

ψÞ ) Φ	
cðRcψÞ � Φ	ðRψÞ.

Remark II.16. It would be desirable to obtain a result
analogous to Lemma II.15 for PPT channels, which also have
zero quantum capacity. Observe that Lemma II.15 already
contains the desired result for transpose anti-degradable
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channels, which form a subclass of PPT channels. We should
emphasize, however, that the relationship between a (trans-
pose) anti-degradable channel and its complement – which is
crucially exploited in the proof of Lemma II.15 – does not hold
for PPT channels in general. Hence, the aforementioned proof
would not work in this case.
In the following sections, we apply our main results to detect

positive quantum capacities of several different families of
quantum channels. We will also give a miscellaneous applica-
tion of our main result by extending certain existing structure
theorems for the class of degradable quantum channels to the
strictly larger class of more capable quantum channels.

Depolarizing and transpose-depolarizing channels
The depolarizing channels Dp : Md ! Md and the transpose-
depolarizing channels D>

q : Md ! Md form one-parameter
families of completely positive and trace-preserving linear maps
within their respective parameter ranges p 2 ½0; d2

d2�1
� and

q 2 ½ d
dþ1 ;

d
d�1�, and are defined as follows:

8X 2 Md : DpðXÞ ¼ ð1� pÞX þ pTrðXÞ1d

d
and

D>
q ðXÞ ¼ ð1� qÞX> þ qTrðXÞ1d

d
:

(27)

These families of channels are arguably two of the most
prominent noise models in quantum information theory. While
considerable effort has gone into computing the quantum
capacity of depolarizing channels30–32, an analysis of their
complementary quantum capacities has largely evaded the
spotlight. Recently, by carefully scrutinizing the coherent
information of the qubit depolarizing channels Dp : M2 !
M2, Watrous and Leung have shown that the these channels
have positive complementary quantum capacities for all p > 0
(Leung and Watrous12,Theorem 1). A similar analysis has also
been performed for the qubit D>

q : M2 ! M2 and qutrit D>
q :

M3 ! M3 transpose-depolarizing channels to establish posi-
tivity of their complementary quantum capacities for certain
values of the parameter q, (see Brádler33,Section 3.1). We now
substantially generalize the above results to obtain positivity of
the complementary quantum capacities of depolarizing and
transpose-depolarizing channels in arbitrary dimensions while
also providing much simpler proofs.

Theorem II.17. Let Dp : Md ! Md and D>
q : Md ! Md be the

qudit depolarizing and transpose-depolarizing channels with p 2
½0; d2

d2�1
� and q 2 ½ d

dþ1 ;
d

d�1�. Then,
● if p > 0, any complementary channel Dc

p 2 CDp has positive
quantum capacity.

● if q < d
d�1, any complementary channel ðD>

p Þ
c 2 CD>

p
has

positive quantum capacity.

Proof. Firstly, observe that for all allowed p, q, both Dp and D>
q are

unital so that d	outðDpÞ ¼ d	outðD>
q Þ ¼ d, see Remark II.4. Moreover,

the Choi matrices of these channels can be written as

JðDpÞ ¼ p
d
ð1d � 1dÞ þ ð1� pÞ

Xd�1

i;j¼0

iij i jjh j and

JðD>
q Þ ¼

q
d
ð1d � 1dÞ þ ð1� qÞ

Xd�1

i;j¼0

ijj i jih j:
(28)

These are, respectively, the well-known Isotropic34 and Werner35

matrices, which admit nice block diagonal decompositions so that
their ranks can be easily computed (see Singh and Nechita13,

(Example 3.3 and Corollary 4.2) or Lemma II.25):

d	envðDpÞ ¼ rankJðDpÞ ¼
1 if p ¼ 0

d2 if 0< p< d2

d2�1

� d2 � d þ 1 if p ¼ d2

d2�1

8><>:
(29)

d	envðD>
q Þ ¼ rankJðD>

q Þ ¼
dðd þ 1Þ=2 if q ¼ d

dþ1

d2 if d
dþ1 < q< d

d�1

dðd � 1Þ=2 if q ¼ d
d�1

8><>:
(30)

Now, since for all p > 0 and d
dþ1 < q< d

d�1, we have
d	envðΦÞ> d	outðΦÞ and d	envðΦÞ>d½d	outðΦÞ � 1� for Φ 2 fDp;D>

q g,
the desired results hold because of Corollary II.10. For q ¼ d

dþ1, it is
easy to see that D>

q maps any pure state to a full rank state on the
output, so that Corollary II.8 can be applied to obtain positivity of
the complementary quantum capacity.

Remark II.18. The depolarizing- and transpose-depolarizing
channels have the following covariance property for all U 2 Ud
and X 2 Md :

DpðUXUyÞ ¼ UDpðXÞUy and D>
q ðUXUyÞ ¼ UD>

q ðXÞU>; (31)

where Ud is the unitary group in Md . Upon relaxing the above
covariance condition to hold only for the smaller group of diagonal
unitary matricesDUd � Ud , we obtain substantially bigger classes of
channels which are defined by ~ d2 real parameters (as opposed to
the single real parameters p and q in the depolarizing and
transpose-depolarizing families). Theorem II.27 serves as an analog
of Theorem II.17 for these larger classes of channels.
Let us now analyze the depolarizing- and transpose-depolarizing

channels present at the extreme ends of their respective parameter
ranges. For p= 0, Dp ¼ id : Md ! Md is the identity channel and
d	envðDpÞ ¼ 1 for all d 2 N, so that any complementary channel has
zero quantum capacity. The q ¼ d

d�1 case of the transpose-
depolarizing channel D>

q is much more subtle. For d= 2, the
channel D>

2 : M2 ! M2 has d	envðD>
2 Þ ¼ 1 so that any comple-

mentary channel has zero capacity. When d= 3, it is known that
D>

3=2 : M3 ! M3 is both degradable and anti-degradable36 (in fact,
there exists a complementary channel ½D>

3=2�
c

such that
½D>

3=2�
c ¼ D>

3=2) and hence any complementary channel again has
zero capacity. For all d ≥ 4, Theorem II.19 below settles the question.
It is perhaps worthwhile to point out that the transpose-depolarizing
channel at the extreme parameter value q ¼ d

d�1 is more widely
known as the Werner-Holevo channel37.

8X 2 Md : ΦWHðXÞ � D>
d

d�1
ðXÞ ¼ TrðXÞ1d � X>

d � 1
: (32)

Theorem II.19. Any complementary channel to the Werner-
Holevo channel ΦWH : Md ! Md has positive quantum capacity
when d ≥ 4.

Proof. Let us denote the Werner-Holevo channel simply by
Φ : Md ! Md . We already know that dðd � 1Þ=2 ¼
d	envðΦÞ> d	outðΦÞ ¼ d whenever d ≥ 4. However, Corollary II.8
cannot be applied to this channel, since it maps every pure state
to a state with rank= d− 1, see Eq. (32). Thus, our aim is to exploit
Theorem II.7 instead. Let us consider the pure state 0j i 0h j 2 Sd ,
(recall that f kj igd�1

k¼0 denotes the standard basis of Cd), so that the
orthogonal projection onto ker Φð 0j i 0h jÞ becomes K0 ¼ 0j i 0h j.
Now, it was shown in Holevo16 that Φ admits a complementary
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channel Φc : Md ! Md �Md of the following form:

8X 2 Md : ΦcðXÞ ¼ 1
2ðd � 1Þ ð1d � 1d � FÞðX � 1dÞð1d � 1d � FÞ;

(33)

where F : Cd �Cd ! Cd �Cd is the flip operator whose action
on the canonical basis f ij i � jj igd�1

i;j¼0 of Cd �Cd is defined as
F ij i � jj i ¼ jj i � ij i. Let us now see how Φc acts on 0j i 0h j:
Φcð 0j i 0h jÞ ¼ 1

2ðd�1Þ ½ 0j i 0h j � 1d � ð 0j i 0h j � 1dÞF � Fð 0j i 0h j � 1dÞ þ Fð 0j i 0h j � 1dÞF�

¼ 1
2ðd�1Þ

Pd�1

i¼0
½ 0ij i 0ih j � 0ij i i0h j � i0j i 0ih j þ i0j i i0h j�

¼ 1
2ðd�1Þ

Pd�1

i¼0
ð 0ij i � i0j iÞð 0ih j � i0h jÞ:

(34)

Clearly, rangeΦcð 0j i 0h jÞ lies within the anti-symmetric subspace
of Cd �Cd . If

jψþ
ij i ¼

ðjiji þ jjiiÞ= ffiffiffi
2

p
; if i < j

jiii; if i ¼ j

(
and jψ�

ij i ¼
jiji � jjiiffiffiffi

2
p for i < j;

(35)

then the orthogonal projections onto the symmetric and anti-
symmetric subspaces of Cd �Cd can be written as Ps ¼P

i� jjψþ
ij ihψþ

ij j and Pa ¼
P

i < jjψ�
ij ihψ�

ij j, respectively. Using Eq.
(34), we can express the orthogonal projection onto ker Φcð 0j i 0h jÞ
as follows

Kc
0 ¼ Ps þ

X
i≠0;i<j

jψ�
ij ihψ�

ij j: (36)

Finally, since Φð1dÞ ¼ 1d and Φcð1dÞ ¼ 1
d�1 ð1d � 1d � FÞ, the

required trace expressions can be easily calculated. We have
TrðK0Φð1dÞÞ ¼ 1 and for all d ≥ 4,

TrðKc
0Φcð1dÞÞ ¼ 1

d�1 Tr Ps þ
P

i≠0;i<j
jψ�

ij ihψ�
ij j

 !
ð1d � 1d � Ps þ PaÞ

" #

¼ 2
d�1 Tr

P
i≠0;i<j

jψ�
ij ihψ�

ij j
" #

¼ 2
d�1

dðd�1Þ
2 � ðd � 1Þ

h i
¼ d � 2> 1:

(37)

A direct application of Theorem II.7 suffices to conclude that
Qð1ÞðΦcÞ> 0.

Generalized Pauli (or Weyl Covariant) channels
For an entrywise non-negative matrix P 2 Md satisfying ∑ijpij= 1,
the generalized Pauli channel ΦP : Md ! Md associated with P is
a mixed unitary channel defined as follows:

8X 2 Md : ΦPðXÞ ¼
X

0�i;j�d�1

pijUijXU
y
ij; (38)

where fUijgd�1
i;j¼0 is the unitary orthogonal basis of Md formed by

the discrete Heisenberg-Weyl operators:

Uij ¼ XiZj; where X ¼
Xd�1

k¼0

k þ 1j i kh j and Z ¼
Xd�1

k¼0

ωk kj i kh j (39)

are the so-called shift and clock matrices, respectively. Note that in
the above definition, addition inside kets happens modulo d and
ω= e2πi/d is the dth root of unity. The orthogonality of the unitary
basis fUijgd�1

i;j¼0 can be easily verified by showing that TrðUy
ijUklÞ ¼

dδikδjl . When d= 2, these unitary matrices are identical to the
familiar 2 × 2 pauli matrices. In this case, a sophisticated analysis of
the coherent information of the qubit Pauli channels reveals that
these channels have positive complementary quantum capacity
whenever the associated matrix P 2 M2 has at least three non-
zero entries (Leung and Watrous12, Theorem 2). Our next theorem

extends this result for generalized Pauli channels acting in
arbitrary dimensions.

Theorem II.20. Let ΦP : Md ! Md be a generalized Pauli
channel associated with P 2 Md . If P has at least d+ 1 non-
zeros entries distributed in such a way that either every row or
every column of P is non-zero, then any complementary channel
Φc

P 2 CΦP has positive quantum capacity.

Proof. Firstly, since ΦP is unital, we have d	outðΦPÞ ¼ d. In
addition, if P has at least d+ 1 non-zero entries, then
d	envðΦPÞ � d þ 1 (see Remark II.4), so that Corollary II.8 can
be applied to obtain the desired result if there exists a pure
state ψj i ψh j 2 Sd such that ΦPð ψj i ψh jÞ 2 Sd has full rank. Now, if
P has a non-zero entry piki ≠ 0 for each i ∈ {0, 1,…, d− 1}, then
every power of the shift matrix X is present in the Kraus
decomposition of ΦP (see Eq. (38)). Hence, by choosing ψj i to
be an eigenvector of the clock matrix Z (say ψj i ¼ 0j i), we get a
full rank state on the output: ΦPð 0j i 0h jÞ �Pd�1

i¼0 piki ij i ih j.
Similarly, if every column of P has a non-zero entry, then an
eigenvector of the shift matrix X, say ψj i ¼ 1ffiffi

d
p
Pd�1

i¼0 ij i, would
result in a full rank output.

Multi-level amplitude damping channels
Multi-level amplitude damping (MAD) channels are employed to
model the decay dynamics of a particle in a d-level quantum
system with the associated Hilbert space Cd ¼ spanf ij igd�1

i¼0 . A
total of d(d− 1)/2 real numbers fγj!ig0�i < j�d�1

are used to
parameterize the decay rates of the particle from a higher jth level
to a lower ith level, so that the MAD channel Φ

γ! : Md ! Md
admits the following Kraus representation

8X 2 Md : Φ
γ!ðXÞ ¼ A0XA

y
0 þ

X
0�i<j�d�1

AijXA
y
ij; (40)

where γ!2 Rdðd�1Þ=2, A0 ¼ 0j i 0h j þPd�1
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Pi < jγj!i

q
jj i jh j

and Aij ¼ ffiffiffiffiffiffiffiffi
γj!i

p ij i jh j for all i < j. Complete positivity and trace-
preserving property of Φ

γ! implies that

8i < j : γj!i � 0 and 8j 2 ½d� :
X
i<j

γj!i � 1: (41)

We say that a level j ∈ {1,…, d− 1} gets totally depleted
under the channel Φ

γ! if for all k > j, γk→j = 0 (i.e., no higher

level has a positive rate of decaying to the jth level) and ∑i<jγj→i

= 1 (i.e., the sum of decay rates from the jth level to all the
lower levels equals one). Since there are no levels below the
ground level j= 0, it can never get totally depleted. Given Φ

γ!,

we denote the number of levels which do not get totally
depleted (including the ground level) by n1ð γ!Þ. We denote the
total number of non-zero decay rates in γ! by n2ð γ!Þ. The
following lemma relates these newly defined parameters with
the minimal output and environment dimensions of Φ

γ!.

Lemma II.21. Let Φ
γ! : Md ! Md be a MAD channel

parameterized by γ!2 Rd ðd�1Þ=2. Then,

d	outðΦ γ!Þ ¼ n1ð γ!Þ and d	envðΦ γ!Þ ¼ 1þ n2ð γ!Þ: (42)

Proof. Apply the channel Φ
γ! on the identity matrix 1d 2 Md to

deduce that rank Φ
γ!ð1dÞ ¼ d	outðΦ γ!Þ ¼ n1ð γ!Þ. To obtain the

expression for d	envðΦ γ!Þ, observe that the number of linearly
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independent Kraus operators in the Kraus representation of Φ
γ!

(see Eq. (40)) is 1þ n2ð γ!Þ, so that rank JðΦ
γ!Þ ¼ d	envðΦ γ!Þ ¼

1þ n2ð γ!Þ, see Remark II.4.
The quantum capacity of the 2-level (or qubit) amplitude damping

channels is quite well understood38. This is because any such channel
is completely determined by a single decay rate γ 2 R, so that
d	envðΦγÞ � 2 and these types of channels are known to be either
degradable or anti-degradable39. Unfortunately, the same cannot be
said for MAD channels in higher dimensions. Hence, their capacity
analysis has recently started attracting significant interest from the
community, see40 and references therein. However, to the best of our
knowledge, virtually nothing is known about the complementary
quantum capacities of these channels. In the following theorem, we
obtain the first results in this direction by deriving simple sufficient
conditions on the decay rate vector γ!2 Rdðd�1Þ=2 which ensure that
the associated MAD channel Φ

γ! has positive (complementary)
capacity.

Theorem II.22. Let Φ
γ! : Md ! Md be a MAD channel

parameterized by γ!2 Rdðd�1Þ=2.

● If 1þ n2ð γ!Þ>n1ð γ!Þ and for every j∈ {0, 1,…, d− 2} which
does not get totally depleted, there exists a non-zero decay
rate γk→j for some k > j, then any complementary channel
Φc

γ! 2 CΦ
γ! has positive quantum capacity.

● If 1þ n2ð γ!Þ<n1ð γ!Þ and every j∈ {0, 1,…, d− 2} which does
not get totally depleted receives a decay contribution from
not more than one higher level, then the channel Φ

γ! has

positive quantum capacity.

Proof. Let ej i ¼Pd�1
i¼0 ij i and Γj i ¼ 0j i þPd�1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Pi < jγj!i

q
jj i,

so that

Φ
γ!ð ej i eh jÞ ¼

X
j

X
k>j

γk!j jj i jh j þ Γj i Γh j; (43)

and the conditions stated in the theorem ensure that

rankΦ
γ!ð ej i eh jÞ ¼ n1ð γ!Þ if 1þ n2ð γ!Þ>n1ð γ!Þ

1þ n2ð γ!Þ if 1þ n2ð γ!Þ< n1ð γ!Þ

(
: (44)

Then Lemma II.21 and Corollary II.8 can be readily applied to
obtain the required results.

Remark II.23. Theorem II.22 can be considered as a special case of a
more general result which holds for the class of (conjugate) diagonal
unitary covariant channels, see Proposition II.26 and Theorem II.27.

(Conjugate) diagonal unitary covariant channels
Let us denote the group of diagonal unitary matrices in Md by
DUd . A channel Φ : Md ! Md is said to be diagonal unitary
covariant (DUC) (resp. conjugate diagonal unitary covariant
(CDUC)) if for all U 2 DUd and X 2 Md ,

ΦðUXUyÞ ¼ UyΦðXÞU resp. ΦðUXUyÞ ¼ UΦðXÞUy: (45)

It is easy to see that if Φ is DUC (resp. CDUC), then for all U 2 DUd ,

ðU � UÞJðΦÞðUy � UyÞ ¼ JðΦÞ resp. ðU � UyÞJðΦÞðUy � UÞ ¼ JðΦÞ:
(46)

These channels and their corresponding Choi matrices have
recently been examined quite thoroughly in refs. 13,41–43. In
particular, it has been shown that the action of a DUC (resp. CDUC)
channel can be parameterized by two matrices A; B 2 Md with

equal diagonals:

ΨA;BðXÞ ¼ diagðA diagXj iÞ þ eB� X> �
X
i;j

AijXjj ij i ih j þ
X
i≠j

BijXji ij i jh j

(47)

resp. ΦA;BðXÞ ¼ diagðA diagXj iÞ þ eB� X �
X
i;j

AijXjj ij i ih j þ
X
i≠j

BijXij ij i jh j:

(48)

where eB ¼ B� diag B and⊙ denotes the entrywise or Hadamard
matrix product.

Remark II.24. ΦA,B (resp. ΨA,B) is completely positive and trace
preserving if and only if

● A is entrywise non-negative (denoted A≽ 0) and B ≥ 0, see
(Singh and Nechita13, Lemma 6.11).

● resp. A≽ 0, B= B†, and AijAji ≥ ∣Bij∣2 for all i, j∈ [d], see (Singh
and Nechita13, Lemma 6.10).

A plethora of different classes of quantum channels can be shown
to belong to the families of DUC and CDUC channels; (see Singh and
Nechita13, Section 7). In particular, the previously considered classes of
depolarizing- and MAD channels are CDUC, while the transpose-
depolarizing channels are DUC. In this section, we derive very general
sufficient conditions on the matrices A; B 2 Md which ensure that
the associated DUC and CDUC channels have positive complemen-
tary quantum capacity. Theorems II.17 and II.22 would then pop out
as special cases of these more general results. To this end, let us first
see how the minimal output and environment dimensions of these
channels can be obtained from the associated matrices A; B 2 Md .

Lemma II.25. For a DUC channel ΨA;B : Md ! Md and a CDUC
channel ΦA;B : Md ! Md ,

d	outðΨA;BÞ ¼ jfi 2 ½d� : 9j 2 ½d�;Aij ≠ 0gj ¼ d	outðΦA;BÞ (49)

d	envðΨA;BÞ ¼ jfi 2 ½d� : Aii ≠ 0gj þ
X
i<j

rank
Aij Bij
Bji Aji

� 
(50)

d	envðΦA;BÞ ¼ rank Bþ jfði; jÞ 2 ½d� ´ ½d� : i ≠ j andAij ≠ 0gj (51)

Proof. Apply the channels ΦA,B and ΨA,B on the identity matrix 1d 2
Md to conclude that their minimal output dimensions are both equal
to the number of non-zero rows present in A, see Lemma II.3. The
expressions of the minimal environment dimensions can be derived
by computing the relevant Choi ranks, see (Singh and Nechita13,
Theorem 6.4 and Corollary 4.2) and Lemma II.3.
Equipped with the necessary background, we are now ready to

characterize the class of (C)DUC channels Φ for which there exist a
pure state ψj i ψh j such that rankΦð ψj i ψh jÞ ¼ minfd	outðΦÞ; d	envðΦÞg,
so that Corollary II.8 can be invoked to obtain positivity of the
(complementary) capacities of these channels whenever
d	outðΦÞ≠ d	envðΦÞ. Recall the discussion following Remark II.9, where
the difficulty in obtaining such a characterization for arbitrary
channels is clearly highlighted. More often than not, one can only
hope to obtain some sufficient conditions on the channel under
consideration (like the one presented in Theorem II.20) to guarantee
that the required pure state exists. This fact makes the following
Proposition all the more important, since it contains a simple
necessary and sufficient condition to ensure the existence of the
desired pure state for arbitrary (C)DUC channels.

Proposition II.26. Let Φ : Md ! Md be a DUC or a CDUC channel
and ej i ¼Pi ij i 2 Cd . Then,

max
ψj i ψh j2Sd

rank Φð ψj i ψh jÞ ¼ rank Φð ej i eh jÞ: (52)
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Proof. In order to prove the proposition, it suffices to show that for
a DUC or a CDUC channel Φ, if rankΦð ej i eh jÞ< r, then for all
ψj i ψh j 2 Sd , rankΦð ψj i ψh jÞ< r as well. Moreover, since a positive
semi-definite matrix X 2 Md has rankX < r if and only if all its r × r
principal submatrices are singular, we can choose to work with r ×
r principal submatrices corresponding to an arbitrary selection of r
rows and columns indexed by some I⊆ [d] with ∣I∣= r. Hence, we
only need to prove that (see the Methods section “(C)DUC
channels and the Proof of Proposition II.26” for the relevant
notation):

Φð ej i eh jÞ½I� is singular ) Φð ψj i ψh jÞ½I� is singular for all ψj i ψh j 2 Sd:

(53)

The following proof is split into two cases, and can be found in the
Methods section “(C)DUC channels and the Proof of Proposition
II.26”.

Theorem II.27. Let ej i ¼Pi ij i 2 Cd and Φ : Md ! Md be a
DUC or a CDUC channel such that

max
ψj i ψh j2Sd

rank Φð ψj i ψh jÞ ¼ rank Φð ej i eh jÞ ¼ minfd	outðΦÞ; d	envðΦÞg:
(54)

Then,

● if d	outðΦÞ> d	envðΦÞ, the channel Φ has positive quantum
capacity.

● if d	outðΦÞ<d	envðΦÞ, any complementary channel Φc 2 CΦ has
positive quantum capacity.

Proof. The proof is a straighforward consequence of Proposition
II.26 and Corollary II.8.

Generalized dephasing or Hadamard channels
Generalized dephasing or Hadamard channels (also known as
Schur multipliers) ΦB : Md ! Md have the effect of diminishing
the magnitude of the off-diagonal entries of the input states while
perfectly preserving their diagonal elements. These channels are
parameterized by a correlation matrix B 2 Md (i.e., B ≥ 0 and all its
diagonal entries are equal to one):

8X 2 Md : ΦBðXÞ ¼ B� X: (55)

Note that⊙ above denotes the Hadamard or entrywise matrix
product. It is clear that a dephasing channel ΦB=ΦA,B is CDUC (see
Eq. (48)) with A ¼ 1d . Complementary channels to the dephasing
channels are known to be entanglement-breaking (and hence also
antidegradable); so they have zero quantum capacity. This, in
particular, implies that the dephasing channels themselves are all
degradable and hence their quantum capacities admit a single-letter
expression in terms of the channels’ coherent information
QðΦBÞ ¼ Qð1ÞðΦBÞ. In the following theorem, we obtain a complete
characterization of the set of zero capacity dephasing channels.

Theorem II.28. Let ΦB : Md ! Md be a dephasing channel
associated with B 2 Md . Then,

QðΦBÞ ¼ 0 () ΦB is entanglement-breaking () ΦB is PPT () B ¼ 1d:

Proof. It is well-known that the final three equivalences hold, see
[Singh and Nechita13, Example 7.3] for instance. Moreover, if ΦB is
entanglement-breaking, then it clearly has zero capacity. Hence, to
prove the theorem, it suffices to show that if ΦB is not
entanglement-breaking, then QðΦBÞ> 0. Now, since ΦB is unital,
d	outðΦBÞ ¼ d (see Remark II.4). Moreover, it is easy to see that the
Choi matrix JðΦBÞ ¼

Pd�1
i;j¼0 Bij iij i jjh j has the same rank as B, so that

according to Lemma II.3, d	envðΦBÞ ¼ rankB. Let us split the
remaining proof into two cases.
Case 1. rank B < d.
Since d	envðΦBÞ<d	outðΦBÞ, the result follows by noting that

ΦBð ej i eh jÞ ¼ B, see Theorem II.27.
Case 2. rank B= d.
In this case, we have d	envðΦBÞ ¼ d	outðΦBÞ ¼ d, so Corollary II.8

can no longer be applied. Let f ϕij igd�1
i¼0 � Cd be a set of d linearly

independent unit vectors such that B> ¼ gramf ϕij igd�1
i¼0 , i.e., ∀ i, j:

Bij= 〈ϕj∣ϕi〉. Then, we can define an isometry V : Cd ! Cd �Cd

by setting V ij i ¼ ij i � ϕij i as its action on the standard basis of
Cd , so that

8X 2 Md : ΦBðXÞ ¼ Tr2ðVXVyÞ and Φc
BðXÞ ¼ Tr1ðVXVyÞ;

(56)

where Tr1ð2Þ denote the partial trace over the first (second) system
and Φc

B 2 CΦB .
Now, since Φ is not entanglement breaking and hence B≠1d ,

there exist indices i ≠ j such that Bij ≠ 0. Choose ψj i ¼ ij i, so that in
the notation of Theorem II.14, Rψ ¼ ij i ih j and Rcψ ¼ ϕij i ϕih j. Let us
now analyze the action of the adjoint maps Φ	

B and ðΦc
BÞ	 on the

projectors Rψ and Rcψ:

VΦ	
BðRψÞVy ¼ VVyðRψ � 1dÞVVy VðΦc

BÞ	ðRcψÞVy ¼ VVyð1d � RcψÞVVy

¼ Pd�1

k¼0
VVy ikj i ikh jVVy ¼ Pd�1

k¼0
VVy kϕij i kϕih jVVy

¼ iϕij i iϕih jPd�1

k¼0
jhϕijkij2 ¼ Pd�1

k¼0
kϕkj i kϕkh jjhϕk jϕiij2:

(57)

In the above calculation, we have used the fact that VVy ¼Pd�1
l¼0 lϕlj i lϕlh j acts as the orthogonal projection onto

range V � Cd �Cd . As 〈ϕj∣ϕi〉 ≠ 0, the number of terms in the
second sum above is at least two, so that VðΦc

BÞ	ðRcψÞVy has rank at
least two. Therefore, VðΦc

BÞ	ðRcψÞVy ≰ VΦ	
BðRψÞVy ) ðΦc

BÞ	ðRcψÞ≰
Φ	

BðRψÞ, since VΦ	
BðRψÞVy is of unit rank. Theorem II.14 then tells us

that Qð1ÞðΦBÞ> 0, and the proof is complete.

A family of channels with equal output and environment
dimensions
Consider a unitary operator V : C4 ! C2 �C2, and a pure state
ψj i 2 C4 such that V ψj i ¼ 0j i � 1j i, where f 0j i; 1j ig denotes the
computational basis of C2. Then, for the quantum channel Φ :
M4 ! M2 and its complement Φc : M4 ! M2 defined as
follows, d	outðΦÞ ¼ d	envðΦÞ ¼ 2:

8X 2 M4 : ΦðXÞ ¼ Tr2ðVXVyÞ ; ΦcðXÞ ¼ Tr1ðVXVyÞ: (58)

the orthogonal projections onto rangeΦð ψj i ψh jÞ and
rangeΦcð ψj i ψh jÞ are given by Rψ ¼ 0j i 0h j and Rcψ ¼ 1j i 1h j,
respectively. It is clear that the adjoints of Φ and Φc act on these
projectors as follows:

Φ	ðRψÞ ¼ VyðRψ � 12ÞV ; Φ	
cðRcψÞ ¼ Vyð12 � RcψÞV : (59)

Now, by using the fact that VVy ¼ 14 (since V is unitary), we obtain

VΦ	ðRψÞVy ¼ VVyðRψ � 12ÞVVy ¼ ðRψ � 12Þ ¼ 0j i 0h j � ð 0j i 0h j þ 1j i 1h jÞ
and VΦ	

cðRcψÞVy ¼ VVyð12 � RcψÞVVy ¼ ð12 � RcψÞ ¼ ð 0j i 0h j þ 1j i 1h jÞ � 1j i 1h j:
(60)

Hence, VΦ	
cðRcψÞVy ≰ VΦ	ðRψÞVy, and therefore Φ	

cðRcψÞ≰Φ	ðRψÞ. By
Theorem II.14, we then conclude that such a channel Φ has
Qð1ÞðΦÞ> 0. The same argument applied to the complementary
channel shows that Qð1ÞðΦcÞ> 0 as well.
By considering unitary mappings V : Cd2 ! Cd �Cd and

following the same steps as above, it is easy to infer that for
any channel Φ : Md2 ! Mdout with d ¼ d	outðΦÞ ¼ d	envðΦÞ, both
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Qð1ÞðΦÞ andQð1ÞðΦcÞ are positive. In particular, such a channel can
neither be degradable nor anti-degradable.

Structure theorems for more capable quantum channels
Cubitt et al. proved two structure theorems for degradable
channels (see Cubitt et al.36,Theorem 3 and 4), which we extend in
this section to the strictly larger class of more capable quantum
channels. Their proofs follow simply from our results in Section II.

Theorem II.29. Let Φ : Md ! Mdout be a more capable quantum
channel. If there exists a pure state ψj i ψh j 2 Sd such that
rankΦð ψj i ψh jÞ ¼ d	outðΦÞ, then d	outðΦÞ ¼ d	envðΦÞ.

Proof. By Lemma IV.3, we known that for all ψj i ψh j 2 Sd ,
rankΦð ψj i ψh jÞ ¼ rankΦcð ψj i ψh jÞ. Hence, we must have
d	envðΦÞ � d	outðΦÞ. However, if d	envðΦÞ>d	outðΦÞ, then according
to Corollary II.8, QðΦcÞ> 0, which leads to a contradiction. Hence,
d	envðΦÞ ¼ d	outðΦÞ.

Theorem II.30. Let Φ : Md ! Mdout be a more capable quantum
channel with d	outðΦÞ ¼ 2. Then d	envðΦÞ � 2 and d ≤ 3.

Proof. If there exists a pure state ψj i ψh j 2 Md such that
rankΦð ψj i ψh jÞ ¼ 2, then Theorem II.29 implies that d	envðΦÞ ¼ 2.
If no such pure state exists, then it must be the case that Φ always
maps pure states to pure states. Then by (Cubitt et al.36,Theorem
1), either (i)Φ(X)= UXU†, where U : Cd ! Cdout is an isometry, in
which case Lemma II.3 tells us that d	envðΦÞ ¼ 1, or (ii)Φ is the
completely noisy channel which maps everything to a single fixed
pure state: ΦðXÞ ¼ TrðXÞ ϕj i ϕh j, which cannot be true since
d	outðΦÞ ¼ 2. Hence, we always have d	envðΦÞ � 2. Now, let V :
Cd ! C2 �Cdenv be the Stinespring isometry which defines the
minimally defined complementary pair Φ : Md ! M2 and Φc :
Md ! Mdenv (i.e. denv ¼ d	envðΦÞ), see Eq. (5). Then,

d � 2d	envðΦÞ ) d � 2 if d	envðΦÞ ¼ 1

4 if d	envðΦÞ ¼ 2

�
: (61)

If d= 4, V : C4 ! C2 �C2 becomes a unitary map, which implies
that Qð1ÞðΦcÞ> 0 and hence leads to a contradiction (see Section
“A family of channels with equal output and environment
dimensions”). Thus, d ≤ 3 and the proof is complete.

DISCUSSION
In this paper, we have employed some basic techniques from
analytic perturbation theory of Hermitian matrices (Theorem IV.1) to
derive a powerful sufficient condition for a quantum channel (or its
complement) to have positive quantum capacity (Theorem II.7). An
equivalent formulation of this condition equips us with a first-of-its-
kind necessary condition for membership in the set of zero capacity
quantum channels (Theorem II.14). These are significant results
because to date, no systematic procedure is known to check if a
given quantum channel can be used to reliably transmit quantum
information, and this is precisely because of our limited under-
standing of the set of zero capacity quantum channels. Notably, the
main result in Siddhu11 pops out as an immediate consequence of
Theorem II.7, which can be used to detect positive quantum
capacities of channels (or their complements) with unequal output
and environment dimensions for which there exists a pure input
state which gets mapped to a maximal rank output state (Corollary
II.8). Obtaining a complete characterization of channels for which
such a pure state exists is a rather formidable task. Nevertheless, we
have derived simple inequalities between the input, output, and
environment dimensions of a given channel that suffice to ensure
the existence of the sought-after pure state, irrespective of the

specific structure of the channel (Corollaries II.10 and II.12). By
exploiting our main results, we have shown that a variety of
interesting examples of quantum channels have positive quantum
capacity. Moreover, our results lead to simplified proofs of certain
existing structure theorems for the class of degradable quantum
channels, and an extension of their applicability to the larger class of
more capable quantum channels.
Listed below are some of the open problems that stem from our

research.

● Show that PPT channels satisfy the necessary condition of
Theorem II.14 for membership in the set of zero capacity
quantum channels.

● Look for other quantum channels which satisfy the condition
stated in Theorem II.14. This could potentially lead to new
examples of channels that are neither anti-degradable nor
PPT, but still have zero quantum capacity.

● Obtain examples of channels that satisfy the condition stated
in Theorem II.14 for all positive integers n ≤m for some fixed
m 2 N, but not for n >m. Such channels, if they exist, would
have positive n-shot coherent information for all n >m but at
the same time, would satisfy the necessary condition for
having zero n-shot coherent information for all n ≤m, and
hence could potentially shed light on the superadditivity of
coherent information.

● Investigate whether Theorem II.7 can be used to detect
positive quantum capacity of a (C)DUC channel when
Theorem II.27 is inapplicable.

● Check if the perturbative techniques applied in this paper can
be extended to not only detect positivity of quantum channel
capacities but also to provide meaningful lower bounds on
the quantum capacities.

In Singh and Datta44, we apply the techniques developed in this
paper to random quantum channels to show that typically, the
coherent information of a single copy of a randomly selected channel
is guaranteed to be positive if the channel’s output space is larger
than that of its environment. This is very interesting since in general, it
is known that the coherent information needs to be computed for an
unbounded number of copies of a given channel in order to detect its
capacity5. Hence, whenever the channel’s output space is larger than
the environment, we can be almost sure that a single copy of the
channel has positive coherent information. Further work on applying
the techniques developed in this paper to quantum channels acting
on infinite dimensional Hilbert spaces is currently in progress.

METHODS
Minimal output and environment dimensions
Proof of Lemma II.3. Let us begin with the expression for the minimal
environment dimension. For any channel Φ : Md ! Mdout , the Stinespring
dilation theorem tells us that there exists an isometry V : Cd ! Cdout �
Cdenv with rank J(Φ)= denv such that ΦðXÞ ¼ TrenvðVXVyÞ for all X 2 Md ,
(see Watrous14,Corollary 2.27). Moreover, any other isometry V : Cd !
Cdout �Cdenv that defines the channel as above must be such that rank J
(Φ) ≤ denv, so that d	envðΦÞ ¼ rank JðΦÞ.
Now, let r ¼ rankΦcð1dÞ for some Φc 2 CΦ . Then, since all complemen-

tary channels Φc : Md ! Mdenv are isometrically related (see Remark II.1),
we have r ¼ rankΦcð1dÞ � denv for all Φc 2 CΦ , so that r � d	envðΦÞ. To
establish the reverse inequality, observe that for any positive semi-definite
X 2 Md and Φc : Md ! Mdenv complementary to Φ, there exists a small
enough δ > 0 such that

δX � 1d ) δΦcðXÞ � Φcð1dÞ ) rangeΦcðXÞ � rangeΦcð1dÞ: (62)

If W : rangeΦcð1dÞ ! Cdenv denotes an isometric embedding of
rangeΦcð1dÞ into Cdenv , then the channel Φ0

c : Md ! Mr defined as
Φ0

cðXÞ ¼ WyΦcðXÞW is also complementary to Φ, so that d	envðΦÞ � r.
Finally, the expression for the minimal output dimension can be derived by
applying the formula for the minimal environment dimension to any
complementary channel Φc 2 CΦ .
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Analytic perturbation theory and the proof of Theorem II.7
The main tool that we employ in the proof of Theorem II.7 is the following
seminal result from analytic perturbation theory.

Theorem IV.1. (Baumgärtel45, Introduction, Theorem 1) or (Rellich and
Berkowitz46, Chapter 1, Theorem 1) Let A(ϵ)= A0+ ϵA1, where A0; A1 2 Md
are Hermitian matrices and ϵ 2 R. Let λ0 be an eigenvalue of A0 of
multiplicity n and let P0 be the orthogonal projection onto the
corresponding n− dimensional eigenspace. Then, for sufficiently small
∣ϵ∣, A(ϵ) has exactly n analytic eigenvalues (counted with multiplicities) in
the neighborhood of λ0 with convergent power series expansions:

λiðϵÞ ¼ λ0 þ λi1ϵþ λi2ϵ
2 þ ¼ ; i ¼ 1; 2; ¼ ; n: (63)

Further, the non-zero first-order correction terms λi1 are the non-zero
eigenvalues of P0A1P0.
Before proving our main theorem, we need to develop a few auxiliary

lemmas.

Lemma IV.2. Let R > 0 and f 2 Cω 0; R½ Þ be a non-negative real analytic
function (not identically equal to zero) with the following power series
expansion:

f ðϵÞ ¼ f 0 þ f 1ϵþ f 2ϵ
2 þ ¼ ; ϵ 2 ½0; RÞ (64)

Then, there exists r∈ (0, R) such that gðϵÞ ¼ f ðϵÞ log f ðϵÞ is real analytic on
the interval (0, r), i.e. g∈ Cω(0, r). Moreover, the derivative g0 2 Cωð0; rÞ is
unbounded if and only if f0= 0 and f1 ≠ 0.

Proof. This proof exploits some basic properties of real analytic functions,
(see Krantz and Parks47, Chapter 1). Firstly, recall that since the Taylor series
of f converges in the interval [0, R), the derived series f 0 also converges in
the same interval. Hence, for every r∈ (0, R) we can uniformly bound both f
and f 0 on the domain [0, r]. Moreover, since the zeros of analytic functions
are isolated, it is easy to find an r∈ (0, R) such that no zeros of f lie within
the range (0, r], i.e. ∀ ϵ∈ (0, r]: f(ϵ) > 0. Hence, there exist constants c1, c2 >
0 such that ∀ ϵ∈ (0, r): c1 ≤ f(ϵ) ≤ c2, except possibly when f0= f(0)= 0, in
which case f is still strictly positive and bounded on (0, r) but f(ϵ)→ 0 as
ϵ→ 0.
Now, since log is real analytic on (0,∞) and f maps (0, r) within (0,∞), it

is clear that g is real analytic on (0, r). Then, g0 is also analytic on (0, r) and
admits an expression of the form

g0ðϵÞ ¼ f 0ðϵÞ log f ðϵÞ þ f 0ðϵÞ
¼ ðf 1 þOðϵÞÞ logðf 0 þ f 1ϵþOðϵ2ÞÞ þ f 1 þOðϵÞ
¼ f 1 logðf 0 þ f 1ϵþOðϵ2ÞÞ þ OðϵÞ logðf 0 þ f 1ϵþOðϵ2ÞÞ þ f 1 þOðϵÞ½ �;

(65)

where we have used the symbol OðϵkÞ as a placeholder for functions h for
which there exists 0 < r0 ≤ r and C > 0 such that ∀ ϵ∈ [0, r0): ∣h(ϵ)∣ ≤ Cϵk. It is
then straightforward to infer from our previous discussion that the terms in
the square brackets above are always bounded in the interval (0, r). Now, if
either f0 ≠ 0 or f1= 0, the first term is also bounded. However, if f0= 0 and
f1 ≠ 0, the first term splits up into f 1 log ϵþ f 1 logðf 1 þOðϵÞÞ, which blows
up as ϵ→ 0. Hence, we can write the derivative as follows

g0ðϵÞ ¼ f 1 log ϵþ K1ðϵÞ; if f 0 ¼ 0; f 1 ≠ 0

K2ðϵÞ; otherwise

�
(66)

where both K1 and K2 are bounded on (0, r).

Lemma IV.3. Let Φ : Md ! Mdout be a channel and Φc 2 CΦ . Then, for a
pure state ψj i ψh j 2 Sd , the non-zero eigenvalues (counted with multi-
plicity) of Φð ψj i ψh jÞ and Φcð ψj i ψh jÞ are identical.

Proof. Let V : Cd ! Cdout �Cdenv be the isometry that defines the
complementary channels Φ and Φc as in Eq (5). Using Schmidt
decomposition, we can express V ψj i ¼Pn

i¼1
ffiffiffi
si

p
ij iout ij ienv, where

f ij ioutgni¼1 � Cdout and f ij ienvgni¼1 � Cdenv are orthonormal sets, si ≥ 0 and
n � minfdout; denvg. Then, the desired result follows by noting that

Φð ψj i ψh jÞ ¼
X
i

si ij iout ih j and Φcð ψj i ψh jÞ ¼
X
i

si ij ienv ih j: (67)

Proof of Theorem II.7. We consider the one-parameter family of states
ρðϵÞ ¼ ð1� ϵÞ ψj i ψh j þ ϵσ within the range 0 ≤ ϵ ≤ 1, and analyze the

outputs under the given channels

Φ½ρðϵÞ� ¼ ð1� ϵÞΦð ψj i ψh jÞ þ ϵΦðσÞ
¼ Φð ψj i ψh jÞ þ ϵ½ΦðσÞ � Φð ψj i ψh jÞ�;

Φc½ρðϵÞ� ¼ ð1� ϵÞΦcð ψj i ψh jÞ þ ϵΦcðσÞ
¼ Φcð ψj i ψh jÞ þ ϵ½ΦcðσÞ � Φcð ψj i ψh jÞ�:

(68)

At ϵ= 0, both Φð ψj i ψh jÞ and Φcð ψj i ψh jÞ have the same non-zero spectrum
(Lemma IV.3):

specΦð ψj i ψh jÞ ¼ fs10; ¼ ; sn0; 0; ¼ ; 0g and

specΦcð ψj i ψh jÞ ¼ fs10; ¼ ; sn0; 0; ¼ ; 0g; (69)

where n 2 N is the number of non-zero eigenvalues counted with
multiplicities, so that Kψ and Kc

ψ are projectors onto the respective null
spaces of dimensions κ= dout− n and κc= denv− n. Observe that for our
purposes, the spectrum of a d × d matrix is just the (unordered) sequence
of all its eigenvalues counted with multiplicities. Now, once we turn on the
perturbation and ϵ is sufficiently small (say 0 ≤ ϵ < R), we get the following
analytic eigenvalue functions (see Theorem IV.1):

siðϵÞ ¼ si0 þ si1ϵþ si2ϵ2 ¼ λjðϵÞ ¼ 0þ λj1ϵþ λj2ϵ2 ¼
sci ðϵÞ ¼ si0 þ sci1ϵþ sci2ϵ

2 ¼ λckðϵÞ ¼ 0þ λck1ϵþ λck2ϵ
2 ¼

(70)

such that

specΦðρðϵÞÞ ¼ fsiðϵÞ; λjðϵÞg and specΦcðρðϵÞÞ ¼ fsci ðϵÞ; λckðϵÞg;
where i= 1, 2,…, n, j= 1, 2,…, dout− n and k= 1, 2,…, denv− n. Assume,
without loss of generality, that all the above functions are not identically
zero (otherwise, we can just restrict ourselves to those which are non-zero).
We are interested in analyzing the coherent information of ρ(ϵ) with
respect to Φ, which has the following form (see Section “Prerequisites”)

IðϵÞ :¼ IcðρðϵÞ;ΦÞ ¼ S½ΦðρðϵÞÞ� � S½ΦcðρðϵÞÞ�
¼P

i
sci ðϵÞ log sci ðϵÞ þ

P
k
λckðϵÞ log λckðϵÞ

�P
i
siðϵÞ log siðϵÞ �

P
j
λjðϵÞ log λjðϵÞ:

(71)

Observe that we can immediately apply Lemma IV.2 to each term in the
above sum, so that we obtain 0 < r < R such that I(ϵ) is analytic on (0, r) and
its derivative can be written as

I0ðϵÞ ¼
X
j:λj1≠0

λj1 �
X

k:λck1≠0

λck1

24 35 logð1=ϵÞ þ KðϵÞ; (72)

where K is bounded on (0, r), see Eq. (66). Now, Theorem IV.1 tells us that
the term in the brackets above is nothing but TrðKψΦðσÞÞ � TrðKc

ψΦcðσÞÞ.
Hence, if TrðKψΦðσÞÞ> TrðKc

ψΦcðσÞÞ, we can find a small enough 0 < δ < r
such that the first term above dominates the other when ϵ < δ and
consequently, 8ϵ 2 ð0; δÞ : I0ðϵÞ> 0. A simple application of the mean value
theorem then tells us that I(ϵ) is strictly increasing on the interval [0, δ].
Moreover, since I(0)= 0, we obtain 8ϵ 2 ð0; δ� : IðϵÞ> 0 ) Qð1ÞðΦÞ> 0.
The other case can be tackled similarly. □

Matrix subspaces and the proof of Lemma II.11
Proof of Lemma II.11 This result was first proven in Flanders48 for matrix
spaces over fields F with cardinality ∣F∣ ≥ r+ 1, and was later generalized to
work for arbitrary fields in Meshulam49. We nevertheless provide a simple
proof for the case when F ¼ C is the field of complex numbers. By
padding all the matrices in S with extra zero rows, we can assume that d1
= d2= d. Now, without loss of generality, we can further assume that the
following block matrix is contained in S

I ¼ 1r 0

0 0

� 
2 S; (73)

where 1r 2 Mr is the identity matrix. If S doesn’t contain such a matrix,
then it is easy to find non-singular matrices P;Q 2 Md such that the
subspace PSQ :¼ fPXQ : X 2 Sg, which has the same dimension as S,
contains the aforementioned matrix. Now, let

eS :¼ 0 By

B A

" #
2 Md : B 2 Mðd�rÞ ´ r ; A 2 Md�r

( )
(74)
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be a matrix subspace with dim eS ¼ rðd � rÞ þ ðd � rÞ2 ¼ dðd � rÞ. Then,
for 0≠ X 2 S \ eS,
X þ cI ¼ c1r By

B A

" #
2 S ) rankðX þ cIÞ � r; (75)

where the implication holds for all c 2 C. However, a simple application
of the Schur complements of block matrices reveals that rankðX þ cIÞ ¼
rank c1r þ rankðA� BBy

c Þ> r, where 0≠ c 2 C is such that A≠ ByB
c . This leads

to a contradiction, and hence S \ eS ¼ f0g. Hence, we arrive at the
desired conclusion: dimðS þ eSÞ ¼ dimS þ dim eS � d2 ) dimS � d2

�dðd � rÞ ¼ dr.

An auxiliary lemma
Lemma IV.4. Let ρ 2 Sd and Rρ denote the orthogonal projection onto
range ρ. Then, for an arbitrary channel Φ : Md ! Mdout , the following
equality holds: rangeΦ(Rρ)= rangeΦ(ρ).

Proof. Spectrally decompose ρ ¼Pn
i¼1 λiPi , where λi > 0 are the distinct

non-zero eigenvalues of ρ and Pi are the orthogonal projections onto the
corresponding eigenspaces, so that Φ(Rρ)= ∑iΦ(Pi) and Φ(ρ)= ∑iλiΦ(Pi).
Now, the conclusion follows by noting that

ker
X
i

ΦðPiÞ ¼
\

i
kerΦðPiÞ ¼

\
i
ker λiΦðPiÞ ¼ ker

X
i

λiΦðPiÞ: (76)

(C)DUC channels and the Proof of Proposition II.26
Before proving the proposition, it is essential to introduce some notation.
Given a d1 × d2 matrix X and I⊆ [d1], J⊆ [d2], the ∣I∣ × ∣J∣ submatrix
containing the rows and columns of X corresponding to the indices i∈ I
and j ∈ J, respectively, is denoted by X[I∣J]. The basis vectors f ij igi2I and
f jj igj2J are then thought to lie in CjIj and CjJj , respectively, so that
X½IjJ� ¼Pi2I;j2JXij ij i jh j. If I= [d1] (or J= [d2]), the associated submatrix is
denoted by X[d1∣J] (or X[I∣d2]). If I= J, we use X[I]:= X[I∣I] to denote the
associated ∣I∣ × ∣I∣ principal submatrix. Let us also recall the definition of the
determinant function det : Md ! C:

detðXÞ ¼
X
π2Sd

sgnðπÞXπ ; (77)

where Sd denotes the permutation group of the set [d] and Xπ ¼Qi2½d�Xiπi .
Finally, let us prove a lemma regarding an intriguing matrix determinant.

Lemma IV.5. Let X 2 Md (d ≥ 2) be such that it has exactly two non-zero
entries in each row, i.e., ∀ i ∈ [d], there exist unique i1, i2 ∈ [d] such that Xij ≠
0⇔ j ∈ {i1, i2}. For ψj i 2 Cd , define

ψðXÞij ¼
0 if j∉fi1; i2g
Xii1ψi2 if j ¼ i1
Xii2ψi1 if j ¼ i2

8><>: (78)

Then,

detψðXÞ ¼
Y
i2½d�

ψni�1
i

0@ 1Adet X; (79)

where ni denotes the number of non-zero entries in the ith column of X.

Proof. Let us begin by observing that for every π∈ Sd, we must have

ψðXÞπ ¼ ðQi2½d�ψ
kiðπÞ
i ÞXπ , where fkiðπÞgi2½d� is a set of positive integers. This

is because the matrix ψ(X) has the same entries as X upto multiplication by
the entries of ψj i. Hence, our task is to show that

8i 2 ½d�;8π 2 Sd : kiðπÞ ¼ ni � 1; (80)

where ni denotes the number of non-zero entries in the ith column.
Firstly, note that if π is such that Xπ = 0, then ψ(X)π = 0 as well, so
there’s nothing to prove here. Hence, let π ∈ Sd be an arbitrary
permutation with Xπ ≠ 0. Now, suppose on the contrary that the desired
claim does not hold and there exists j ∈ [d] such that kj(π) ≠ nj − 1. Let
us collect all the rows i ∈ [d] with Xij ≠ 0 in the set Rj, so that nj = ∣Rj∣.
Then, for each row i ∈ Rj, one of the two non-zero entries is present in
the column i1 = j. Since Xπ ≠ 0, it must be the case that πi = i2 for all i ∈

Rj such that πi ≠ j= i1, which implies thatY
i2Rj
πi≠j

ψðXÞiπi ¼
Y
i2Rj
πi≠j

X ii2ψi1 ¼ ψ
nj�1
j

Y
i2Rj
πi≠j

X iπi : (81)

Since ψj cannot arise from any other term in the product
Q

i2½d�ψðXÞiπi ,
we arrive at a contradiction.
Proof of Proposition II.26 Recall that in order to prove the proposition, it

suffices to show that

Φð ej i eh jÞ½I� is singular ) Φð ψj i ψh jÞ½I� is singular for all ψj i ψh j 2 Sd ;

(82)

where I⊆ [d] is an arbitrary index set of size ∣I∣= r.
Case 1. Φ=ΦA,B is a CDUC channel with A≽ 0 and B ≥ 0.
Let us express ΦA;Bð ej i eh jÞ½I� ¼Pi2I

P
k≠iAik ij i ih j þ B½I� as a sum of two

r × r positive semi-definite matrices, so that ΦA;Bð ej i eh jÞ½I� is singular if and
only if the two matrices in the above sum have a non-trivial common
kernel. Since ker

P
i2I
P

k≠iAik ij i ih j ¼ spanf jj igj2InJ � Cr with J= {j∈ I : ∃
k∈ [d], k ≠ j, Ajk ≠ 0}, we obtain

ΦA;Bð ej i eh jÞ½I� is singular () fjB½I�jigj2InJ � Cr is linearly dependent ;

(83)

where jB½I�ji :¼ B½I� jj i is the jth column of B[I]. Now, for ψj i 2 Cd , we have

ΦA;Bð ψj i ψh jÞ½I� ¼
X
i2I

X
k≠i

Aik jψk j2 ij i ih j þ ðB� ψj i ψh jÞ½I�: (84)

Note that spanf jj igj2InJ � ker
P

i2I
P

k≠iAik jψk j2 ij i ih j and equality holds
whenever ψi ≠ 0 for all i ∈ [d]. Clearly, since the jth column of ðB�
ψj i ψh jÞ½I� is nothing but ψj jB½I�ji � ψ½I�j i, the column set fjðB� jψih
ψjÞ½I�jigj2InJ � Cr is linearly dependent as well, so that the two matrices
in the sum in Eq. (84) again have a non-trivial common kernel. Hence,
ΦA;Bð ψj i ψh jÞ½I� is singular.
Case 2. Φ=ΨA,B is a DUC channel with A≽ 0, B= B† and AijAji ≥ ∣Bij∣2.
In this case, since B is not positive semi-definite, the previous approach

would not work. Even so, let us still try to express ΨA;Bð ej i eh jÞ½I� as a sum of
positive semi-definite matrices:

ΨA;Bð ej i eh jÞ½I� ¼P
i2I

Aii þ
P
j≠i
j∉ I

Aij

0B@
1CA ij i ih j þP

i<j
i;j2I

Aij ij i ih j þ Bij ij i jh j þ Bji jj i ih j þ Aji jj i jh j� 	
¼P

i2I
λij i λih j þP

i < j
i;j2I

jλ1ijihλ1ij j þ jλ2ijihλ2ij j

¼ Λ>Λ;

(85)

where the vectors λij i 2 spanf ij ig � Cr (for i∈ I) and jλkiji 2
spanf ij i; jj ig � Cr (for i < j, i, j∈ I, and k∈ {1, 2}) form the rank one
decompositions of the corresponding positive semi-definite matrices from
the previous sum, and Λ 2 Mn ´ r stores these vectors in its rows. Notice
that the conditions A≽ 0, B= B† and AijAji ≥ ∣Bij∣2 ensure that all the
matrices in the two sums above are indeed positive semi-definite. Similar
decomposition can be obtained for an arbitrary pure input state
ψj i ψh j 2 Sd :

ΨA;Bð ψj i ψh jÞ½I� ¼P
i2I

Aiijψi j2 þ
P
j ≠ i
j ∉ I

Aij jψj j2
0@ 1A ij i ih j

þP
i < j
i;j2I

Aijjψj j2 ij i ih j þ Bijψjψi ij i jh j þ Bjiψiψj jj i ih j þ Aji jψi j2 jj i jh j
� � (86)

¼P
i2I

ψðλÞi
�� �

ψðλÞi
� ��þP

i<j
i;j2I

jψðλÞ1ijihψðλÞ1ij j þ jψðλÞ2ijihψðλÞ2ij j

¼ Λ>
ψΛψ;

(87)

where the vectors ψðλÞi
�� � 2 spanf ij ig � Cr (for i ∈ I), jψðλÞkiji 2

spanf ij i; jj ig � Cr (for i < j, i, j∈ I, k∈ {1, 2}) and the matrix Λψ 2 Mn´ r
are defined as before. Notice that for all i, j, k:

ψðλÞkij
��� E

¼ λkij

��� E� ðψj ij i þ ψi jj iÞ; (88)

where⊙ denotes the entrywise vector product with respect to the
standard basis in Cr . Now, if n < r, we have rankΨA;Bð ej i eh jÞ½I� ¼
rankΛ< r and rankΨA;Bð ψj i ψh jÞ½I� ¼ rankΛψ < r, so that both ΨA;Bð ej i eh jÞ½I�
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and ΨA;Bð ψj i ψh jÞ½I� are always singular. Otherwise, if n≥r, we need to show

that for r × r submatrices Λ[J∣r]:= Λ(r) and Λψ½Jjr� :¼ Λ
ðrÞ
ψ constructed by

arbitrarily choosing r rows according to some index set J⊆ [n] with ∣J∣= r,

detΛðrÞ ¼ 0 ) detΛðrÞ
ψ ¼ 0: (89)

If detΛðrÞ ¼ 0 because 8π 2 Sr : ΛðrÞ
π ¼ 0, then since Λ

ðrÞ
ij ¼ 0 ) ½ΛðrÞ

ψ �
ij
¼ 0

for all i, j, the desired claim is trivial to prove. Otherwise, there must exist at
least two distinct permutations π1, π2∈ Sr such that ΛðrÞ

π1
and ΛðrÞ

π2
are non-

zero. In this case, after suitable elementary row and column operations, Λ(r)

and Λ
ðrÞ
ψ can be brought, respectively, into the block diagonal forms

X 0

0 Y

� �
and

Xψ 0

0 Yψ

� �
; (90)

where X; Xψ 2 Mk are such that det X ¼ Xπ ≠ 0 and det Xψ ¼ ½Xψ�π for a
unique permutation π∈ Sk, and Y; Yψ ¼ eψðYÞ 2 Mr�k are of the form
described in Lemma IV.5, see Eq. (88). In the notation of Lemma IV.5, the
vector eψ 2 Cr�k which implements the transformation Y 7!eψðYÞ can be
obtained by choosing some r− k entries from ψ 2 Cd . Its exact form is
irrelevant for our purposes. When written in the above form, it should be
evident that detΛðrÞ ¼ 0 () det Y ¼ 0, in which case Lemma IV.5

informs us that det Yψ ¼ det eψðYÞ ¼ 0 ) detΛðrÞ
ψ ¼ 0, and the proof is

complete.
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