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Detecting protein and DNA/RNA structures in
cryo-EM maps of intermediate resolution using
deep learning
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An increasing number of density maps of macromolecular structures, including proteins and

DNA/RNA complexes, have been determined by cryo-electron microscopy (cryo-EM).

Although lately maps at a near-atomic resolution are routinely reported, there are still

substantial fractions of maps determined at intermediate or low resolutions, where extracting

structure information is not trivial. Here, we report a new computational method,

Emap2sec+, which identifies DNA or RNA as well as the secondary structures of proteins in

cryo-EM maps of 5 to 10 Å resolution. Emap2sec+ employs the deep Residual convolutional

neural network. Emap2sec+ assigns structural labels with associated probabilities at each

voxel in a cryo-EM map, which will help structure modeling in an EM map. Emap2sec+

showed stable and high assignment accuracy for nucleotides in low resolution maps and

improved performance for protein secondary structure assignments than its earlier version

when tested on simulated and experimental maps.
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R
ecent years have witnessed rapid advances in the structural
determination of biological molecules using cryo-electron
microscopy (cryo-EM)1,2. The number of determined cryo-

EM maps deposited in the public database, EMDB3, is growing
exponentially; and moreover, the fraction of high resolution (e.g.,
better than 4 Å) maps among them shows a steady increase.
Despite the remarkable progress of cryo-EM, there is still a
substantial fraction of maps determined at intermediate or low
resolutions. Different factors control the achieved resolution of
EM maps including conformational or compositional hetero-
geneity of EM samples, noise level introduced by low electron
doses, and inaccurate alignment of the two-dimensional particle
images4.

Depending on the resolution of an EM map, structural infor-
mation that can be extracted from the map and computational
tools appropriate for the task will apparently differ5. For maps at
a near-atomic resolution (better than 3 Å) or at the subsequent
level of the resolution (~4 Å), full atom structure models can be
usually built using tools for atomic structure modeling6–8, de
novo main-chain tracing9,10, structure refinement11,12 or com-
binations of them. As the resolution becomes worse, extracting
structure information becomes more challenging. In a map of
intermediate resolution (~4–10 Å), protein secondary structure
elements can be often detected even in cases where tracing a full
sequence is difficult. Tools for this task include those which detect
typical local densities that correspond to an α-helix and β-
sheet13,14. Recent methods benefit from the strong image recog-
nition capabilities of deep learning to extract the local and global
density features of EM maps15,16. Identified structural fragments
in a map can be used as clues for tracing a full-length protein
chain, to identify known structures from the database that agree
with the fragments17, or to identify structural domains of a
complex in the map by their secondary structure content.

Previously, we have developed a method named Emap2sec16

for detecting protein secondary structure elements in EM maps of
intermediate resolutions. Emap2sec showed promising results
and provided a novel approach to the structural interpretation of
maps at intermediate resolution. However, Emap2sec’s detection
was limited only to maps of proteins. Here, we have extended the
method to detect both protein secondary structure elements and
nucleic acids in EM maps of intermediate resolution. The new
method, Emap2sec+, uses a more advanced convolutional neural
network architecture, Resnet18, than its predecessor, Emap2sec,
and performs a four-class classification, α-helix, β-strand, coil
(other structure type), or DNA/RNA, for each voxel in an EM
map. Protein nucleic-acid interactions are the core of many
essential biological processes including transcription, translation,
cell division, and replication. Despite the importance of investi-
gating structures of protein-nucleic acid interactions, there are
not many tools available for DNA/RNA structure modeling.
Currently, 1340 EM map entries in EMDB have protein-nucleic
acid complexes, which is around 13% of the total number of EM
maps at EMDB. Recently, a similar tool, Haruspex19, was devel-
oped, which detects nucleotides and protein secondary structure
in EM maps. However, Haruspex is designed for high-resolution
EM maps of 4 Å or better; thus the aim of the current tool,
Emap2sec+ is very different. Emap2sec+ is more suitable for
maps of intermediate resolution by design, as we will show later.

We tested Emap2sec+ on two datasets, a dataset of simulated
EM maps from 108 complex structures of proteins and nucleic
acids at resolution 6 and 10 Å as well as a dataset of 84 experi-
mental EM maps of a resolution between 5 and 10 Å. Emap2sec+
showed high accuracy for nucleotide detection while maintaining
comparable, if not achieving better, protein secondary structure
detection performance to Emap2sec.

Results
The architecture of Emap2sec+. To use Emap2sec+, the grid
size of an input cryo-EM map needs to be adjusted to 1.0 Å.
Emap2sec+ takes an input voxel of 113 Å3 extracted from the
input EM map and outputs a detected structure at the center of
the voxel, which is either DNA/RNA or a protein secondary
structure (α-helices, β-sheets, and what we term ‘other struc-
tures’). Thus, Emap2sec+ classifies a voxel into four different
structural classes. The input voxel is slid with a stride of 2 Å to
each of the three orthogonal directions in the map and output is
computed at each position after a shift. Since the grid space is 1.0
Å, structure assignment is given to every other grid point in
the map.

The deep neural network architecture of Emap2sec+ is
illustrated in Fig. 1. Emap2sec+ has two phases: In the first
phase, Emap2sec+ performs five independent evaluations for an
input voxel (Fig. 1b). Among the five evaluations, four evaluations
are from binary classifiers, where each of them outputs a
probability that the voxel contains a particular structure class
(e.g., a residue in an α-helix). The fifth evaluation is by a multi-
class classifier, which outputs four probabilities for the four
structure classes (Fig. 1b). We show later that combining binary
classifiers with the multi-class classifier performed better than
using only the multi-class classifier.

Then, the phase 2 network takes the eight probability values
from the five classifiers in the phase 1 network. The size of the
input voxel of the phase 2 network is 143 Å3, which is shifted with
a stride of 2 Å. Since the phase 1 network has assigned probability
values at every other grid point, the phase 2 input voxel contains
probability values of 73 grid points. The phase 2 network outputs
the final probability values of the four structure classes for the
center grid point of a query voxel (Fig. 1b). Since the phase 1
and 2 networks use the same stride of 2 Å, phase 2 overwrites
results by phase 1. The purpose of this network is to consider
detected structures of neighboring voxels in making the decision
of the query voxel, which consequently has a smoothing effect on
the structural assignment in the EM map.

A detailed architecture of the five classifiers in the phase 1
network is illustrated in Fig. 1c. For an input voxel of size 113 Å3,
a convolutional block is applied, which consists of a convolutional
layer with 64 filters of size 33 Å3, a 3D batch normalization
layer20 (the batch size is set to 256), and a ReLU activation, which
produces 64 voxels of 63 Å3. Then, the voxels are passed to a max-
pooling layer with size 23 Å3. After that, each voxel is connected
to 6 3D Residual blocks18,21 (Supplementary Fig. 1) with128, 256,
256, 512, 512, and 1024 filters of size 33 Å3. At the last step, an
average pooling layer of size 23 Å3 is applied resulting in a feature
vector of 1024 values, which is connected to a fully connected
layer to give the final probability values. The phase 2 network
incorporates probability values of 73 neighboring voxels. The
input is processed with a convolutional block that consists of a 3D
convolutional layer with 32 filters of size of 2, a 3D batch
normalization layer, and a ReLU activation layer (the batch size is
256), followed by a fully connected network (Fig. 1d). The stride
of the convolutional layer was 1. Finally, a softmax operation is
applied to the output probability values of the four structure
types. The networks were trained on simulated map data for
applying to simulated maps while for experimental maps training
was performed with experimental maps (Supplementary Table 1).
Training details are provided in Methods.

It took about 10–50 min to process one EM map including the
time for pre-processing to generate voxel data. The time for
structure detection through the phase 1 and 2 networks is
proportional to the number of voxels in a map (Supplementary
Fig. 2). Users can run Emap2sec+ on a personal computer with
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GPU. GPU memory size needed for inference is shown in
Supplementary Table 2.

Here we formulated the task as a classification problem and
used Resnet. However, the problem can be formulated differently
such as a segmentation problem with an encoder-decoder
framework using U-Net22 or U-Net+ +23. The main reason that
we used the classification architecture was because we had the
earlier successful experience of Emap2sec16 with the classification
framework. Another reason was because we thought classification
would work better than segmentation for intermediate
resolution maps.

Structure detection on simulated maps. We investigated the
performance of Emap2sec+ on a dataset of 108 non-redundant
simulated maps each at 6 and 10 Å as well as on a set of 84
experimental maps. The neural networks were trained separately
for simulated and experimental maps using independent training

sets. Refer to the Methods section for details of the dataset con-
struction and parameter training of the networks.

The performance of Emap2sec+ was evaluated at three
different levels, voxel-based, Q4 (residue/nucleotide-based), and
segment-based. F1 score is the harmonic mean of the precision
and recall, and a higher value indicates that the performance is
good in terms of both precision and recall. Q4 score is defined as
the fraction of residues with correctly identified secondary
structures of nucleotides the recall for residues in each secondary
structure class or nucleotides. In Fig. 2a, voxel-based F1-score and
residue-based accuracy are presented in bar graphs for simulated
maps at 6 Å and 10 Å. The segment-based accuracy and other
result values are provided in Supplementary Table 3. Accuracy
values of individual maps of 6 and 10 Å from the phase 1 and 2
networks are made available in Supplementary Data 1.

For the 6 Å maps, Emap2sec+ achieved an overall F1-score of
0.875 and Q4 score of 0.864. Comparing the four structure
classes, DNA/RNA had the highest F1-score (0.907) and the

Fig. 1 The network Architecture of Emap2sec+. Emap2sec+ scans an EM map with a voxel of 11*11*11 Å3 of size with a stride of 2 and outputs the

probabilities that the voxel has α helix, β strand, other structures, or DNA/RNA in the middle of the voxel. It consists of two networks, phase 1 and phase 2,

where the phase 2 network refines the initial output by considering assignments given to neighboring 7 × 7 × 7 voxels by the phase 1 network. a logical

steps of the pipeline. b the architecture of phase 1 and phase 2 networks. Phase 1 consists of 4 binary classifiers and one multi (four) -class classifier. The

phase 2 network takes outputs from the phase 1 network and outputs refined, final probability values. c a detailed network architecture of phase 1. It uses 6

Residual blocks (Supplementary Fig. 1). d a detailed architecture of phase 2. The main part is a fully connected network.
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Q4 score (0.944). The good performance on DNA/RNA detection
was not due to a distinct density from proteins. As shown in
Supplementary Fig. 3, the density distribution of DNA/RNA has
significant overlaps with protein structure classes and is not
distinctive particularly in simulated maps. On the other hand, in
experimental maps the density of nucleic acids tends to be higher
than proteins. Among the three classes in proteins, α helices, β
strands, and other structures, α helices were best detected, which
is consistent with the previous version of the software,
Emap2sec16. When only the three protein structure classes are
considered, the Q3 score were 0.846 and 0.780 for 6 Å and 10 Å
maps, respectively (Supplementary Data 1). These values are
comparable with the results shown in Table 1 of the Emap2sec
paper16 (Q3 of 0.831 and 0.798 for 6 Å and 10 Å maps,
respectively). Thus, adding the additional class of DNA/RNA in
Emap2sec+ did not deteriorate classification for protein second-
ary structure classes.

Comparing voxel-based accuracy (Supplementary Table 3) and
Q4, Q4 was higher in all structural classes. Considering that the
residue/nucleotide-based assignments are made by a majority
vote from voxels, it indicates that neighboring voxels tend to have
consistent assignments, which facilitate users to identify protein
and DNA/RNA structures visually in density maps. Also, we
noted that the segment-based accuracy of α helices and β strands
were very high, 0.950 and 0.940 for 6 Å maps, respectively
(Supplementary Table 3). These results strongly indicate that the
structure assignments by Emap2sec+ will be able to help main-
chain tracing and domain structure assignments in cryo-
EM maps.

Results for the 10 Å maps were about 6–13% worse than 6 Å
maps (Fig. 2a). Among the four structural classes, α helices have

the smallest difference, 7.5% in terms of the voxel-based F1 score
and 5.6% for Q4, between 6 Å and 10 Å maps. Despite the drop, it
is remarkable that the overall voxel-based F1 score and Q4 for 10
Å were maintained as high as 0.8. Therefore, we can conclude that
there is rich structural information in even 10 Å simulated maps.
In Fig. 2b, we compared Q4 from the phase 1 network and the
final assignments from the phase 2 network for all 108 maps in
the testing set. As shown, overall Q4 values improved for almost
all the maps (106 maps, 98.1%) for both 6 and 10 Å resolutions
with a margin of 4.6% points and 1.5% points, respectively. There
are two maps, 1CA6 and 5GZB, whose Q4 dropped by the phase
2 network. But the margins of the decrease were small: For 1CA6,
Q4 dropped by 0.0309 and 0.0273 for the 6 Å map and 10 Å map,
respectively. For 5GZB, Q4 decreased by 0.00877 and 0.0247 for
6 Å and 10 Å map, respectively. These drops were caused by
incorrect re-assignment of structure class between coil and α helix
at the end of an α helix. The change made incorrectly by the
phase 2 network for a map was up to two residues.

Among the four structural classes, assignments of other
structures improved for the largest fraction of maps (93.5%) for
6 Å map dataset and α helices for 10 Å maps (85.2%). For DNA/
RNA class, improvement by phase 2 was observed for 77.7% of
maps. As shown in Supplementary Table 3, the phase 2 network
made consistent improvement for all the voxel-, residue/
nucleotide-, and segment-based metrics for all the structural
classes.

In Supplementary Table 3, we also computed the assignment
accuracy of another dataset of maps simulated at a randomly
selected resolution between 6 and 10 Å. The accuracy of this
dataset naturally turned out to be valued between results of 6 Å
maps and 10 Å maps.

Fig. 2 The structure detection performance on the simulated map dataset. The dataset consists of 108 structures computed at two different resolutions,

6 Å and 10 Å. a Voxel-based F1 score and Q4 residue/nucleotide-based accuracy for 6 Å (blue) and 10 Å (orange) maps. b Comparison of Q4 of phase 1

and phase 2 network outputs for each of 108 test simulated maps computed at 6 Å and 10 Å. Green, other structures; yellow triangles, β strands; red

triangles, α helices; cyan, DNA/RNA; magenta, overall Q4.
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Figure 3 shows examples of structure detection by Emap2sec+.
The first three panels show performance on maps simulated at
three different resolutions, 6 Å, 7.56 Å, and 10 Å, respectively.
The first panel, Fig. 3a is a complex of two protein chains of
Aspartyl-tRNA synthase with two tRNAs. All structural classes
are detected with high accuracy for this map with an overall Q4
accuracy of 0.842. α helices, β strands, other structures, and RNA
were identified with Q4 of 0.882, 0.914, 0.695, and 1.00,
respectively. Particularly, as shown in the figure, four α helices

locating in front of this complex were accurately and distinctively
detected. The next example, the LSR-DNA complex (Fig. 3b) is
abundant in nucleotides and α helical residues. Besides these two
abundant structural classes that were detected with a high Q4 of
0.976 and 0.890, respectively. The accuracy of β strands was
lower, at Q4 of 0.670, probably mainly because they share only
10.3% of atoms in the complex. In Fig. 3c, a 10 Å map for a
ribosomal protein and RNA complex is shown. The large volume
RNA structures in this map were well identified at Q4 of 0.877
despite the low resolution. Secondary structures of proteins were
detected at a slightly lower residue-based accuracy of 0.703.
Figure 3d illustrates changes of structural assignment made by the
phase 2 network using a 10 Å map as an example. This protein
has a horseshoe fold that has many repeats of α helical structural
motifs and contains only very small number of β-strand residues.
The phase 1 result of the structure detection contains many small
regions with incorrect β-strand detections that are scattered
across the map. It is also observed that structure assignments are
fragmented as shown in the regions indicated by circles. In
contrast, the phase 2 network has smoothened and reduced noise
in the structural assignments by considering assignments in
neighboring voxels. The phase 2 modification improved the
voxel-based F1 score from 0.806 to 0.858 and the Q4 drastically
from 0.793 to 0.941. The last panel, Fig. 3e is an example where
Emap2sec+ did not perform well. This map, simulated at 6 Å
resolution, contains a short RNA of 4 nucleotides. As shown in
the right panel, due to the relatively small volume of RNA region,
about half of the RNA region was mis-detected as the other
structures (green) as indicated by a Q4 of RNA of 0.5, because the
RNA fragment is surrounded by loops. In this case, the phase 2
network made the detection of RNA worse by changing the
correct assignment of RNA to other structures, resulting in the
voxel-based accuracy of nucleic acids reduced from 0.31 to 0.27.

Structure detection on experimental maps. Next, we examined
the performance of Emap2sec+ on 19 non-redundant experi-
mental maps that are determined at a resolution between 5 and 10
Å. The dataset has six maps between 5 and 6 Å, 7 maps between 6
and 7 Å, 1 map between 7 and 8 Å, 3 maps between 8 and 9 Å, 1
map between 9 and 10 Å, and 1 map at 10 Å. The networks were
trained on a dataset of 84 experimental EM maps. The list of EM
maps in the dataset is provided in Supplementary Table 1.

Q4 accuracy of individual maps are shown in Fig. 4a relative to
their map resolution. The overall Q4 (magenta) exhibits a weak
negative correlation to the map resolution. More precisely, when
the map resolution is better than 7 Å, more than half of the maps
showed relatively high Q4 above 0.64 or higher. For the rest of the
maps with a resolution over 7 Å, the average Q4 was 0.464. It is
worthwhile to note that Emap2sec+ could detect structures from
the map at 10.0 Å (EMD-8131) with Q4 of 0.516, i.e., structures of
about half of the residues/nucleotides were correctly identified.
Q4 values of the maps are certainly lower than simulated maps
that showed over a Q4 of 0.8 on average for even 10 Å maps
(Fig. 2), indicating that structure detection is more difficult in
experimental maps.

In Fig. 4a, we also showed Q4 value of DNA/RNA (cyan
circles). For 14 out of 19 maps, nucleic acids were better detected
than the overall average Q4. Interestingly, the detection of nucleic
acids did not deteriorate as the resolution was lowered. A high Q4
for nucleic acids of over 0.8 was observed even for maps of over 8
Å resolution.

Turning our attention now to Fig. 4b, as also observed in
simulated maps, the phase 2 network improved the accuracy over
phase 1 for almost all the maps. Among the four structural
classes, α helices and β strands were improved with the largest

Fig. 3 Example of the structure detection for simulated maps. For each

panel, the macromolecular structure in the simulated EM map is shown on

the left while the structure detection result of the phase 2 network is shown

on the right. Colors of spheres in the structure detection panels indicate

structure types: red α helices; yellow, β strands; green, other structures

(loop); and cyan, RNA/DNA. Detailed evaluation metrics are included in

Supplementary Data 1. a Aspartyl-tRNA synthase complexed with tRNA

(Asp) (PDB ID: 1IL2. Simulated map resolution: 6 Å. The complex contains

1170 amino acids (AA) and 129 nucleotides (nt). Voxel-based F1 score (F1):

0.879; Voxel-based accuracy (Acc): 0.880; Q4: 0.842. b Large serine

recombinase (LSR) – DNA complex (PDB ID: 4KIS. Simulated at 7.56 Å.

1216 AA and 208 nt. F1: 0.864; Acc: 0.863; Q4: 0.867. c Ribosomal protein

L30, L37a, S13 complexed with 3 ribosomal RNAs (PDB ID: 1YSH. Simulated

Resolution: 10 Å. 261 AA and 163 nt. F1: 0.818; Acc: 0.800; Q4: 0.770.

d Pumilio homology domain complexed with RNA (PDB ID: 1M8X.

Simulated resolution: 10 Å. 682 AA and 15 nt. Phase 1 results: F1: 0.806;

Acc: 0.780; Q4: 0.793. Phase 2 results: F1: 0.858; Acc: 0.861; Q4: 0.941.

e IMP3 RRM12 in complex with RNA (PDB ID: 6GX6. Simulated resolution:

6 Å; 170 AA and 4 nt. F1: 0.712; Acc: 0.715; Q4: 0.753. Accuracies for RNA

were: F1(RNA): 0.416; Acc(RNA): 0.270; Q4(RNA): 0.50.
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average margin of 0.058 and 0.057, respectively. Though the
detection accuracy decreased for other structures for more than
half of the maps, overall Q4 improved for all but four maps with
an average improvement from 0.56 to 0.60. We also examined the
phase 1 accuracy of experimental maps by only using the multi-
class classifier (the multi-class model in Fig. 1b). The results are
shown in Supplementary Data 3. The results are overall worse
than the current combination of the binary and the multi-class
classifiers in all the metrics other than the β-sheet voxel-based,
residue-based, and segment-based accuracy values.

We further tested the performance of binary classification
between the protein class and the DNA/RNA class. The protein
class includes all three protein secondary structure classes. As
shown in Fig. 4c, all the maps had high residue-based accuracy
for the protein class of over 0.8 with an average of 0.946.

We discuss illustrative examples of Emap2sec+’s performance
on experimental maps in Fig. 5. The first example (Fig. 5a) is a
nucleosome where double-stranded DNA wraps around histones
(EMD-3949 PDB ID: 6ESH. The map was determined at 5.1 Å.
As shown in the figure, DNA was very clearly identified with a
high Q4 of 0.945. α helices and other structures, which dominate
histones, were also detected with high accuracy. Q4 of α helices
was 0.756, and 0.962 for other structures. As shown in the figure,
α helices in histones are distinctively identified to the level that
individual helix shapes are visually identified. On the other hand,

β strand residue detection for this map was very low, 0.143. This
occurred because the protein chains in this map only contain 34 β
strand residues in total, which are isolated into two-residue-long
β-strands that do not pair with other β strands to form β sheets.
The second map (Fig. 5b) is an example of an RNA-rich
structure, the translation pre-initiation complex (EMD-4075,
PDB ID: 5LMP. RNA structures are detected with a high Q4 of
0.954. Also, β strands in this map were identified well yielding
0.761 Q4 accuracy. α helices were underpredicted, which resulted
in a relatively low Q4 of 0.478. Among 793 α helical residues, 282
(35.6%) were misclassified as other structures, which is the largest
protein class in this structure. The next map (Fig. 5c) is opposite
to the previous one, whose volume is dominated by proteins with
a DNA double-strand embedded in the middle of the structure. It
is a 6.35 Å map of the dihedral oligomeric complex with four
gyrase A dimers (EMD-9316, PDB ID: 6N1P. The complex holds
a double-stranded DNA in the middle. Secondary structures of
proteins were identified with high accuracy, particularly for α
helices (Q4: 0.843), in this map. Rod shapes of a number of α
helices are precisely identified. DNA structure is also detected
accurately at the middle of the double strands, but the two ends
were mis-recognized as loops and β strands due to lower density
values than the middle part. In the last panel (Fig. 5d), we show
the structure detection for an 8.7 Å map of TFIID-IIA complex
with a promotor DNA. As shown, the DNA is clearly detected,

Fig. 4 Structure class detection on 19 experimental maps. See Supplementary Data 2 for the phase 1 and phase 2 accuracy of individual maps. a Q4

accuracy of experimental maps relative to the map resolution. Overall Q4 is shown in magenta squares and Q4 of DNA/RNA is shown in cyan circles. Lines

connect values of the same map. b The residue-based accuracy comparison between the Phase 1 and Phase 2 networks. c Q2 binary classification accuracy

for distinguishing the protein and DNA/RNA classes in experimental maps. Note that values for DNA/RNA can be different from panel a, which reports the

results of four-class classification. Since the probability of the protein class was computed as the sum of probabilities of three secondary structure classes,

a DNA/RNA assignment in the four-class classification can be changed to protein in the binary classification. Results of individual maps are provided in

Supplementary Data 2.
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which had a Q4 of 0.75 (only the DNA region). The overall Q4
was 0.464, which is about the average for maps with this
resolution. The map did not have structure assignment for the
structural region named lobe B partly due to the map
resolution24. But interestingly, the same group later determined
the structure of lobe B with a higher resolution, at 4.5 Å25, which
is shown in the box in the second row of the panel. Compared
with the newly determined structure, α helices were detected well

with a high Q4 of 0.609 as visualized in the figure. With the 4.5 Å
map, Emap2sec+ detected α helices with a slightly better residue-
based accuracy of 0.614 and with 18% higher Q4 of 0.517 (0.438
with the 8.7 Å map) (Supplementary Fig. 4).

Comparison with related works. Prior to our work, there are
very limited methods developed for detecting structures of both
DNA/RNA and protein structures. Popular structure modeling
tools originally developed for X-ray crystallography, ARP/wARP
(v8.0)8, Phenix7, and Brickworx26, only work for maps that
include solely proteins or DNA/RNA. The predecessor of this
work, Emap2sec, is designed only for protein secondary structure
detection. And as mentioned above, Emap2sec+’s performance
on protein structure assignments is better than Emap2sec.

A recent work, Haruspex19, would be closest to Emap2sec+, as
it uses a deep neural network to detect both DNA/RNA and
protein structures. However, the purpose of their tool and
targeted application is quite different; Haruspex is designed to
detect structures in higher resolution maps at 4 Å or better to
detect potential errors in structure models built from a cryo-EM
or to assist modeling process while Emap2sec+ is to provide
structural clue for maps at 6–10 Å where structure information is
otherwise not easily detectable. In Supplementary Fig. 5 we
compared the voxel-based F1 scores of Haruspex and Emap2sec+
on the experimental map dataset. As these two methods have
different designs and purposes this comparison is only to
illustrate how they differ in nature and to understand the
performance of Emap2sec+.

When the average overall F1 score of all the 19 maps was
considered, Emap2sec+ had a higher value of 0.620 than
Haruspex, which had 0.488. There was one map where Haruspex
had a higher overall F1 score. At the individual structure class
level, Emap2sec+ had a higher average F1 score by 0.105, 0.066,
0.197, and 0.043 than Haruspex for α helices, β strands, other
structures, and DNA/RNA, respectively. The performance of the
two methods were closest in the DNA/RNA class, where
Haruspex showed a higher F1 score for 8 out of the 19 maps.
Emap2sec+ showed a higher F1 score in 13, 14, 17, 11 maps in
terms of α helices, β strands, other structures, and DNA/RNA,
respectively.

Discussion
We reported Emap2sec+, a deep learning-based method that can
detect structures in EM maps at intermediate resolution (5–10 Å),
which substantially upgraded the previous Emap2sec by enabling
detection of nucleic acids and improving protein secondary
structure detection accuracy. Nucleotides were particularly well
detected and the accuracy did not drop much even for maps with
lower resolution. This work is the first to explore the structure
information for protein-nucleic acid complexes at this difficult
resolution range. The same deep learning strategy will be adopted
for detecting other molecules or structures, such as amino acid
types, in EM maps. Emap2sec+ will aid structural assignments
and modeling with fast and accurate predictions and will be a
useful and powerful tool in the era of cryo-EM structural biology.

Methods
Dataset of simulated and experimental EM maps. We prepared two types of
datasets, simulated and experimental cryo-EM maps. The simulated EM map
dataset was computed from 1052 different PDB entries which contain protein and
DNA or RNA structures. This dataset is non-redundant in that any protein pairs
from two PDB entries have <25% sequence identity between each other. For each
PDB entry, we simulated two EM maps at 6 Å and at 10 Å using the pdb2vol
program of the SITUS package27. The grid size of the computed density maps was
set to 1.0 Å.

We collected experimental maps containing protein and DNA/RNA structures
from EMDB3. We first chose all cryo-EM maps that are determined at a resolution

Fig. 5 Examples of structure detection of experimental maps. The density

maps and associated structures are shown on the left and the detection

results of Emap2sec+ are shown on the right. Spheres in red represent

detected α helices; yellow, β strands; green, other structures; and cyan,

RNA/DNA. Detailed evaluation metrics are shown in Supplementary

Data 2. a nucleosome breathing Class 3. EMD-3949; 6ESH 10.2210/

pdb6ESH/pdb. Resolution: 5.10 Å. 738 amino acids (aa) and 274

nucleotides (nt). Voxel-based F1 score: 0.887; Voxel-based accuracy (Acc):

0.870; Q4: 0.846. b bacterial 30S-IF1-IF3-mRNA translation pre-initiation

complex. EMD-4075; 5LMP 10.2210/pdb5LMP/pdb. Res.: 5.35 Å. 2622 aa

and 1534 nt. F1: 0.855; Acc: 0.846; Q4: 0.784. c dihedral oligomeric

complex gyrA. EMD-9316; 6N1P 10.2210/pdb6N1P/pdb. Res.: 6.35 Å. 3828

aa and 88 nt. F1: 0.760; Acc: 0.749; Q4: 0.767. In the middle panel, only the

DNA is shown with voxels as DNA. d. human TFIID-IIA bound to core

promoter DNA. EMD-3305; 5FUR 10.2210/pdb5FUR/pdb. Resolution:

8.7 Å; 1857 aa and 39 nt. In a box, another PDB entry, 6MZC 10.2210/

pdb6MZC/pdb, is shown, which is for the TFIID BC core and fills the

missing structure in lobe B. 6MZC 10.2210/pdb6MZC/pdb was associated

with another newer EM map, EMD-9298, determined at a 4.5 Å resolution.

F1: 0.487 (0.371); Acc: 0.493 (0.402); Q4: 0.516 (0.438). In the

parentheses, values were shown that were computed only for the part of

the structure in 6MZC 10.2210/pdb6MZC/pdb that fill the density (953

aa). The structure of lob B and Emap2sec+’s detection is shown from two

opposite angles. The detection results using the newer map, EMD-9298, is

provided as Supplementary Fig. 4.
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between 5 and 10 Å and have corresponding PDB entries. Maps were deleted if
corresponding PDB entries have an unknown protein sequence with no amino acid
type assignment. To ensure that EM maps and associated PDB structures have
sufficient overlap and align properly with each other, we examined the cross-
correlation of densities between the map and a simulated map from the PDB entry
at the map’s resolution. Maps were removed if the cross-correlation was <0.65. The
alignment between the map and the associated PDB entry was also manually
checked. Applying all these steps resulted in a dataset of 84 EM maps.

To handle the redundancy of the maps, maps that have at least one protein
sequence pairs with 35% global sequence identity28 were clustered together using
complete-linkage. This clustering resulted in 19 clusters of EM maps. We split these
19 maps into fourfolds as shown in Supplementary Table 1. For training and testing
Emap2sec+, we adopted a cross-testing as follows: When each subset was used as the
test set, the rest of the three subsets that were used for training were supplemented
with cluster members from the 84 EM maps. This operation guarantees that there is
no redundancy between the testing and the training sets; and at the same time, the
number of training data was enriched with the cluster members.

The grid size of the maps was unified to 1.0 Å by applying trilinear interpolation
of the electron density in the maps. Density values of each map were normalized to
[0.0, 1.0] with min-max normalization. For experimental maps, negative density
values were set to zero before normalization and the density value of the author-
recommended contour level was used as the minimum value. For comparison, we
also normalized density values of a map using the minimum density value in the
entire map and trained the deep neural network and tested. The results were worse
on average than the cases where the author-recommended contour level was used
for density normalization (Supplementary Data 2 in pages noted as
phaseX_nocontour).

The input density data for Emap2sec+ were voxels of a size of 113 Å3 collected
from the simulated and experimental EM map dataset by traversing each map
along the three axes with a stride of 2 Å. For each voxel, the correct structure(s) was
assigned by considering the structures of heavy atoms that were within 3 Å to the
center of the voxel. A voxel was considered as outside of the contour and was not
taken for input if the voxel center did not have a heavy atom within this range.

For protein heavy atoms, the secondary structure was assigned according to
STRIDE29. Residues with a label of H, G, or I by STRIDE were labeled as α helix,
while β strand was assigned for the labels of B/b or E. Residues with all the other
labels were considered as other structures. If a heavy atom belonged to DNA or
RNA, the voxel was labeled as DNA/RNA.

Training the deep neural network of Emap2sec+. Emap2sec+ was trained
separately for the set of simulated maps at 6 Å, the set at 10 Å, and the experi-
mental maps. The networks for simulated and experimental maps were trained
with different training sets because the two types of maps have different nature
(Supplementary Fig. 3). In our previous work of Emap2sec16, we tested a network
trained on a combined training set with simulated and experimental maps, which
did not perform well. For simulated maps, the dataset of 6 Å or 10 Å with
1052 simulated maps was separated into three sets, 844 maps for training and
validation for the phase 1 networks, 100 maps for the phase 2 network, and the rest
of 108 maps for testing. For the phase 1 networks, 844 maps were split to 80% (675
maps) and 20% (169 maps) for training and validation. The same split of 80 and
20% were applied to the 100 maps for the phase 2 network. The phase 1 networks
consist of four binary classification models and a four-class classification model
(Fig. 1b). For the binary models, 128 positive and negative voxels each were
sampled for a batch (thus the batch size is 256) from the 675 maps, which totals
over ten million voxels in an epoch in training. Positive/negative voxels are those
which have/do not have the particular structure of the binary classification. For the
multi-class model, 64 voxels for each structural class were sampled for a batch (i.e.,
the batch size is 256= 64 × 4) from the same 675 maps, which totals over 8.5
million voxels used in an epoch for training. For training the phase 2 network, we
used the 100 maps, which do not have overlap with the maps used for phase 1
training and validation. After the phase 1 networks were fully trained, we input the
100 maps and obtained structure assignments to each voxels of the maps. Then, 80
maps (i.e., 80%) were used for training and 20% were used for validation. The
number of training voxels for phase 2 was around 1 million. We ran training for 30
epochs.

For training the phase 1 and 2 networks, we tested learning rates of [0.00002,
0.0002, 0.002, 0.02, 0.2] using the Adam optimizer30 with L2 regularization with
values of [1e−6, 1e−5, 1e−4, 0.001, 0.01, 0.1]. Among the combinations tested, the
learning rate of 0.002 with L2 regularization parameter of 1e−5 showed the largest
voxel-based accuracy on the validation set, although the differences among the
combinations were small.

For training the networks for experimental maps, we used the same hyper-
parameters as determined for the simulated map datasets. For evaluation 4-fold
cross-validation was performed. Similar to the procedure applied for the networks
for simulated maps, 80% of the maps in the training set were used for training and
validating the phase 1 networks and the remaining 20% of the maps were used for
training and validating the phase 2 network. The training for experimental maps
took about three days for the phase 1 network using around 3 million voxel input
data and about one day for the phase 2 network using about 0.7 million voxel data.
We used NVIDIA GTX 2080 GPU for training.

Evaluation metrics. We evaluated the performance of Emap2sec+ at three levels:
the voxel, the amino acid residue/nucleotide, and the protein secondary structure
segment levels. The voxel-level considers if the assigned structure by Emap2sec+
agrees with the structure(s) within a 3 Å radius to the voxel center. We also
evaluated with multiple structure labels for a voxel if the structures were observed
within the radius. For the voxel-level evaluation, we used the F1-score, which is
computed from the precision and the recall of the assignments given to the entire
map or to each secondary structure class:

F1� score ¼ 2*
precision ´ recall
precisionþ recall

; ð1Þ

where precision is the fraction of voxels with correctly assigned structure among all
the voxels that were structure-assigned by Emap2sec+ and recall is the fraction of
the voxels with correctly assigned structure among all the voxels that belong to the
structure class. The overall accuracy (recall) and F1-score of maps were computed
as the weighted average of different classes. For the residue-level evaluation, we
defined Q4 accuracy. Q4 is the average of the fractions of residues or nucleotides in
each structure class whose class label is correctly assigned by Emap2sec+.

For each residue or nucleotide, labels were assigned to voxels within 3.0 Å to
any heavy atoms of the residue/nucleotide were considered and the assignment was
considered as correct if the majority vote from the voxels agreed with the correct
class of the residue/nucleotide. For the protein secondary structures, we further
reported the segment-level accuracy. A segment was defined as consecutive amino
acids with the same secondary structure type with the minimum length of 6 amino
acids for α helix and 3 residues for a β strand. If at least 50% of the residues in a
segment were assigned with the correct label, the assignment to the segment was
considered correct.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data of the structure models built by our method are provided in Supplementary
Information, Supp. Table 1 and Data 1. The simulated EM maps can be downloaded
from https://doi.org/10.5281/zenodo.4602627. The experimental EM maps can be
downloaded from EMDB (https://www.emdataresource.org/). More data that support the
findings of this study are available from the corresponding author upon request.

Code availability
The Emap2sec+ program is freely available for academic use through http://kiharalab.
org/emsuites/emap2secplus.php and https://github.com/kiharalab/Emap2secPlus31.
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