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Those familiar with human nature and the publication
process acknowledge that biases due to selective reporting
of results are likely widespread in all fields of academic
inquiry that depend on tools of statistical inference (e.g.,
see Begg and Berlin 1988; Iyengar and Greenhouse 1988;
and the extensive discussion following each). However,
although qualitative and quantitative methods exist for
assessing the prevalence of selective reporting, and selective
reporting has been studied in the medical and social sci-
ences (Begg 1994, and references therein), the issue has
received little attention in recent meta-analyses of ecolog-
ical and evolutionary patterns. Clearly, “if publication bias
is present, and if it operates in the same direction for all
studies (as is likely), then [meta-analysis] is likely not only
to produce biased summary estimates but also to produce
estimates which are apparently precise and accurate lead-
ing to conclusions which may not only be wrong but ap-
pear convincing” (Begg and Berlin 1988, p. 437).

To biologists unacquainted with the formal study of
publication patterns, the terms “selective reporting” (sta-
tistical significance of an outcome influences its likelihood
of being reported or published) and “publication bias”
(the inflation of average effect size due to selective re-
porting) may imply a conscious intent to deceive, but this
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is unwarranted. The phenomenon of selective reporting,
and the biases that may ensue, need not be the fault of
individual investigators (Begg and Berlin 1988; Iyengar and
Greenhouse 1988; Begg 1994). Both reviewers and editors
may be hesitant to accept nonsignificant results for pub-
lication, particularly when they are based on small sample
sizes. Also, authors are, understandably, more likely to
submit results based on small sample sizes if they are sig-
nificant statistically than if they are not (the “file drawer”
problem; Rosenthal 1979). Therefore, most investigators
are likely guilty of selective reporting to some extent. The
crucial questions for meta-analysis are: to what extent does
selective reporting bias estimates of average effect size and
artificially inflate estimates of effect size heterogeneity?

Meta-analysis also permits the impact of particular au-
thors on a field in which certain authors have contributed
a high proportion of the results. Here, too, however, cau-
tion must be exercised when interpreting differences: dif-
ferent effect sizes from different authors need not imply
any dubious conduct. Different investigators legitimately
use different methods in different systems, and some may
be better than others at choosing methods or systems of
study that are more likely to yield a strong signal.

Useful as it may be, meta-analysis is not without its
limitations. Strictly speaking, quantitative meta-analytic
estimates of mean effect size by themselves (e.g., “The
average correlation between body size and fitness is 0.44.”)
may not be very meaningful for most questions in ecology
and evolution (Leamy 1997). The statistical models on
which meta-analyses are based assume that a single un-
derlying “true” effect size exists and that estimates of effect
size exhibit “random” variation among studies due to dif-
ferences in rigor of sampling design, data collection, and
analysis, as well as to unavoidable sampling error (Rosen-
thal 1991). Clearly, the true correlation, for example, be-
tween body size and fitness is likely to differ significantly
among taxa and traits. So a single average estimate of a
truly heterogeneous phenomenon, whether statistically sig-
nificant or not, is of little predictive value.

Meta-analytic methods do, however, permit quantitative
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tests of heterogeneity (Rosenthal 1991); for example, “Do
the differences between males and females in the depen-
dence of fitness on body size contribute significantly to
the heterogeneity of effect size?” But here too, heteroge-
neity in effect sizes due to variation among taxa, traits, or
study conditions may obscure differences between the
sexes, so conclusions about the absence of differences may
not be very robust. Nonetheless, meta-analysis offers a
substantial improvement over nonquantitative narrative
summaries of the literature because it obliges authors of
reviews to present results in standardized units and to be
explicit about sources of data, and methods of weighting
and analysis (Cooper and Hedges 1994; Arnqvist and Woo-
ster 1995).

Approaches to the Problem of Selective Reporting

Because estimates of mean effect size and of effect size
heterogeneity may be compromised by biases due to se-
lective reporting, such bias must be ruled out or minimized
before drawing conclusions about effect size variation.
Vevea and Hedges (1995, p. 420) identify three classes of
methods that address the problem: those for detecting se-
lective reporting, those that attempt to eliminate the effect
of selective reporting, and those that compensate for the
impact of selective reporting (i.e., compensate for bias).

Detecting Selective Reporting

Light and Pillemer (1984) introduced a particularly at-
tractive qualitative approach for detecting selective re-
porting: the “funnel graph.” It has become a highly rec-
ommended component of preliminary exploratory
analyses that should precede a formal meta-analysis (Begg
1994).

In the absence of selective reporting, familiar statistical
principles offer three simple and straightforward predic-
tions (see fig. 1A): as sample size decreases, the variation
about the “true” effect size should increase owing to in-
creased sampling error; average effect size should be in-
dependent of sample size; and regardless of sample size,
individual effect sizes should exhibit a normal distribution
about the “true” mean effect size due to random sampling
error. In addition, because results in a meta-analysis are
transformed to a standardized statistic, such as the Pearson
product-moment correlation coefficient (r), tabled critical
values provide a convenient reference point against which
to view effect sizes and assess the extent of selective re-
porting (curved dashed lines, figs. 1–4).

Selective reporting induces two departures from the sta-
tistically unbiased pattern (fig. 1A), depending on the
“true” underlying effect size (Light and Pillemer 1984).
First, if the true effect size is weak (mean ; Arnqvistr ! 0.1

and Wooster 1995), then selective reporting yields fewer
than expected nonsignificant results (those lying inside the
95% significance thresholds; fig. 1B). Underreporting
should be most pronounced at small sample sizes because
authors will have less confidence in a nonsignificant result
at small sample size and be less likely to submit them for
publication, and because reviewers and editors will be less
inclined to accept such weakly supported nonsignificant
results. Therefore, when the “true” effect size is small,
selective reporting yields statistically significant departures
of effect sizes from normality at small sample sizes (fig.
1B).

Second, if the true effect size is moderate ( ;r ≥ 0.25
Arnqvist and Wooster 1995), extreme effect size values that
had previously reached statistical significance on either side
of 0 when the “true” effect size was small (fig. 1B) no
longer reach statistical significance on the side of 0 op-
posite the “true” effect size and are thus less likely to be
reported (lower portion of scatter in fig. 1C). In other
words, although the distribution of actual effect sizes re-
mains symmetrical about the “true” mean effect size, this
distribution is now shifted relative to the 95% significance
thresholds that remain symmetrical around 0. So, unlike
the case for a weak “true” effect size (fig. 1B), selective
reporting now yields a statistically significant dependence
of effect size on sample size (fig. 1C).

As should be evident from figure 1B, the absence of a
dependence of effect size on sample size may not mean
selective reporting is absent. Ironically, statistical evidence
of a dependence of effect size on sample size (fig. 1C)
suggests that the “true” effect size is likely modest, though
it is hardly strong support for such a conclusion.

This funnel graph approach of Light and Pillemer (1984)
and its quantitative extensions—tests for departures from
normality as a function of sample size and tests for de-
pendence of mean effect size on sample size (Begg
1994)—should really be used more widely to reduce the
likelihood of being misled by tabulated statistical sum-
maries in meta-analyses of ecological and evolutionary
patterns (e.g., see Arnqvist et al. 1996).

Eliminating or Correcting for Selective Reporting

The effect of selective reporting may potentially be elim-
inated by incorporating as many unpublished results as
possible in a meta-analysis (Begg 1994). This approach is
preferred because it provides the most reliable estimate of
true effect size. It may be particularly valuable in medical
research where registries of funded studies exist (Cooper
and Hedges 1994). However, because many “exploratory”
studies seem likely to be conducted as a routine part of
research in ecology and evolution, an exhaustive search
for unpublished studies would seem impractical.
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Figure 1: Hypothetical funnel graphs (modified from Light and Pillemer 1984): the distribution of effect size (r) as a function of sample size (N)
for three situations. A, “True” effect size weak, selective reporting absent; B, “true” effect size weak, selective reporting present (the classical funnel
pattern); and C, “true” effect size moderate, selective reporting present (one side of funnel missing). Selective reporting refers to a reduced likelihood
of publication if effect size is not significant statistically (open circles). Curves for 95% significance thresholds were constructed from table 25 of
Rohlf and Sokal (1981).
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More elaborate analytic methods that attempt to correct
for the effects of selective reporting before computing
mean effect sizes, and that do not depend on the uncov-
ering of unpublished studies, offer an alternative approach
(e.g., Vevea and Hedges 1995). Most promising among
these is one based on weighted distribution theory (Begg
1994), in which the true distribution of effect sizes is es-
timated by assuming that the likelihood of publication
depends on, for example, the statistical significance of an
outcome: the lower the statistical significance, the lower
the probability of publication. Different weight functions
to describe an author’s desire to publish may be specified,
such as a binary weight for studies above or below some
critical threshold, or a continuously varying weight that
declines linearly or exponentially as a function of the sta-
tistical significance of an outcome. Unfortunately, these
methods are “for the most part ) very new, and their
statistical properties have not been subjected to rigorous
scrutiny” (Begg 1994, p. 405). In addition, their validity
depends critically on an accurate knowledge of the form
of the weighting function. Therefore, quantitative correc-
tions for publication bias should probably be applied with
caution.

Interpreting Results in the Presence of Selective Reporting

The traditional meta-analytic test for a “fail-safe” number
of studies (Cooper 1979; Rosenthal 1991) provides some
help with the interpretation of mean effect size in the
presence of possible bias. This widely used technique (Begg
1994) estimates the number of studies having zero effect
that would have to be published to reduce the overall mean
effect size to nonsignificance. But the fail-safe number,
although potentially reassuring, can be misleading for two
reasons. First, unreported studies are unlikely all to be of
zero effect, so although practical and easy to interpret, the
fail-safe number overestimates the number of unreported
studies needed to have been put in the “file drawer” (Ro-
senthal 1979). It should therefore not be interpreted lit-
erally as the total number of unreported studies required
to eliminate the statistical significance of a mean effect,
since the effect sizes of some unreported studies could be
of opposite sign and greater magnitude (open circles, fig.
1C). Second, selective reporting may cause the shape of
the frequency distribution of effect sizes to change with
sample size (solid circles, fig. 1B, C). Therefore, pooled Z
scores across all studies may not be normally distributed,
which will reduce the confidence in a statistic that assumes
normality.

Although estimates of the fail-safe number of studies
provide at least some peace of mind when interpreting the
magnitude of mean effect sizes, qualitative graphic ap-
proaches seem considerably more informative and con-

vincing (see “Impact on Estimates of Effect Size Hetero-
geneity” in the “Discussion”). A case study will help to
illustrate this point.

A Case Study of Publication Bias

Studies of fluctuating asymmetry (FA)—subtle deviations
from symmetry thought to reflect instability of develop-
ment (Palmer 1996, and references therein)—now exist in
sufficient number that meta-analytic methods can test the
significance of overall “effect” sizes for various phenomena
of interest, including correlations between FA and sexual
selection (Møller and Thornhill 1998), FA and stress or
fitness (Leung and Forbes 1996; Møller 1997), and heri-
tability of developmental stability (Møller and Thornhill
1997). However, the deviations from symmetry that give
rise to FA are so small (often 1% of trait size or less; Palmer
1996) that concerns about the reported magnitude of as-
sociations with FA (Houle 1997) seem legitimate. If many
tests were done for associations with asymmetry, but those
yielding statistical significance ( ) were more likelyP! .05
to be published, how valid are general conclusions about
associations with asymmetry?

The recent extensive meta-analysis of relations between
asymmetry and sexual selection by Møller and Thornhill
(1998) offers an opportunity to apply some simple tests
for selective reporting and, as a consequence, to assess its
extent among studies of the relation between asymmetry
and sexual selection. Although other meta-analyses have
examined patterns of variation in FA (Leung and Forbes
1996; Møller 1997; Møller and Swaddle 1997; Møller and
Thornhill 1997), I restricted my analysis to the most recent
one by Møller and Thornhill (1998). Because many sam-
ples (146 total) were presumably all tabulated using the
same criteria, effect size distributions could be examined
from several perspectives to test for selective reporting
without the potentially confounding effects of different
synthesis protocols in different meta-analyses and different
underlying effect size distributions.

Methods

Data Inclusion and Coding

The effect size (r), sample size (N), and grouping variables
for all 146 samples were entered as in table 1 of Møller
and Thornhill (1998). I did not attempt to verify the con-
version of results in all of the original studies to the effect
sizes tabulated, but I have assumed that Møller and Thorn-
hill did so in an objective and consistent manner and
entered them correctly in the table. To these entries I added
two additional grouping variables: inclusion/publication
status, and author of study.
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To determine inclusion or publication status, samples
were identified as excluded, published, or unpublished.
Møller and Thornhill excluded six samples from their anal-
yses, but the grounds for exclusion did not seem well
founded for four of these (see “Excluded Samples” later).
However, to permit direct comparisons with their results,
I also excluded these six samples from the analyses pre-
sented here. I did not attempt to verify whether samples
listed as unpublished were subsequently published.

The author of study variable was used to assess inves-
tigator effects. Samples were distinguished by author where
more than 10 samples could be attributed to a given au-
thor: Markow as coauthor ( ), Møller as coauthorN 5 15
( ), Thornhill as coauthor ( ). All remainingN 5 24 N 5 25
samples were codes as “other author” ( ).N 5 82

Statistical Analyses

To avoid possible spurious results among multiple post
hoc analyses, I limited my quantitative analyses to three
questions not examined by Møller and Thornhill
(1998). First, does the frequency distribution of effect
size differ from that expected in the absence of selective
reporting? Second, does effect size vary as a function
of sample size (e.g., as in fig. 1C)? Finally, does the
dependence of effect size on sample size differ between
traits where correlations with asymmetry were expected
by the authors to be strong versus traits where such
correlations were expected to be weak or absent?

Observed frequencies of Zr (Fisher’s Z transformation
of effect size correlation, r, which is not normally dis-
tributed if the parametric mean r is not 0; Zar 1984, p.
239) were compared to a normal distribution whose
mean and standard deviation were determined from the
data (intrinsic hypothesis), using the Kolmogorov-
Smirnov test (K-S test; Sokal and Rohlf 1995, p. 712).
Tests against an intrinsic, rather than extrinsic, hy-
pothesis were used so that tests for distribution shape
were not confounded if the true mean or SD varied
with sample size (see fig. 1B, C). To determine whether
departures from normality depended on sample size, all
140 included samples were ranked by sample size from
smallest ( ) to largest ( ). A K-S test wasN 5 7 N 5 500
conducted on overlapping groups of approximately 20
samples taken in order from smallest to largest N in
intervals of 10 (e.g., samples 1–20, 11–30, 21–40, etc.).
The mean N of each group was also computed to allow
results to be displayed graphically. In the event of ties,
adjacent samples were either included in or excluded
from a group so as to keep the group as close to 20
samples as possible. Among the 13 groups (see fig. 2B),
only four deviated from 20 samples by more than one

(three included 18 samples, three included 19 samples,
six included 20 samples, and one included 26 samples).

The dependence of effect size on sample size was
assessed via two nonparametric tests of association rec-
ommended by Begg (1994): Spearman’s rs and Kendall’s
t. A nonparametric test is preferred because as sample
size decreases, the sampling variance increases (see fig.
1A), so the relation between effect size and sample size
cannot legitimately be considered bivariate normal.
These two nonparametric tests differ in the weighting
of pairs of ranks. Spearman’s rs is preferred where the
reliability of closely ranked values is uncertain (Sokal
and Rohlf 1995, p. 600). Results from both tests are
presented to confirm that statistical conclusions did not
depend on the choice of test. Probability values for rs

and t (rbias and tbias in the table later) were two-tailed.
Both were computed using Statview II (version 1.03,
Abacus Concepts).

The correlation between effect size and sample
size—one measure of the magnitude of selective re-
porting—is itself an “effect” (rbias) amenable to standard
meta-analytic methods. To compare the statistical sig-
nificance of differences in rbias between subsets of sam-
ples, I followed the procedure recommended by Rosen-
thal (1991): rbias (based on Spearman’s rs) was converted
to Fisher’s . AlthoughZ 5 0.5 log [(1 1 r )/(1 2 r )]r e bias bias

normally applied to product-moment correlation co-
efficients, Fisher’s Zr may also legitimately be computed
for Spearman’s rs where and (Zar 1984,n ≥ 10 r ≤ 0.9s

p. 320). The significance of the difference between
two estimates of rbias was computed as Z 5 (Z 2diff 1

(Zar [1984, p. 320]ÎZ )/ [1.06/(N 2 3)] 1 [1.06/(N 2 3)]2 1 2

recommends 1.06 rather than 1 when using Zr computed
from rs), which is distributed as ts for ` df (Zar 1984, p.
313). Two-tailed probabilities were computed where no a
priori direction of bias was expected, and one-tailed prob-
abilities were used where specific biases were expected.

Weighted mean effect sizes at the level of samples
were computed following Rosenthal (1991): Z 5r

, where ( size for(Sw Z )/Sw w 5 N 2 3 N 5 samplej rj j j j j

sample j) and Zrj is Fisher’s Zr transformation of effect size
(r) for sample j. Weighted mean effect sizes at the level of
studies were computed similarly. For each study k, a value
of Zrk was computed in the same way as for all theZr

samples in study k, and an average sample size computed
as ( of separate samples inN 5 (SN )/S S 5 numberk j k k

study k). Across studies, the weighted mean effect was
computed as , where . AllZ 5 (Sw Z )/Sw w 5 N 2 3rk k rk k k k

values of Zr were converted back to r to aid comparison
( ; Rosenthal 1991, p. 71).2Zr 2Zrr 5 [e 2 1]/[e 1 1]



Figure 2: A, Effect size (r) as a function of sample size (N) for all samples included in table 1 of Møller and Thornhill (1998). Solid circles,
unpublished samples; open circles, published samples included in the original analyses; plus signs, published samples excluded by Møller and Thornhill
(1998). The solid horizontal line indicates the weighted mean for included samples ( ). B, Departure from normality (Dmax; Kolmogrov-N 5 140
Smirnov test) as a function of sample size for the data presented in graph A, except for the excluded samples (effect size r was converted to Zr

before testing). The dashed line indicates the critical value ( ) for (table 33 of Rohlf and Sokal 1981). Open circles illustrate thea 5 0.05 N 5 20
value of Dmax when the two samples, for which had to be converted arbitrarily to to compute Zr , were excluded. The asteriskr 5 21.0 r 5 20.99
indicates the one group of 26 as opposed to samples. C, Effect size (r) as a function of sample size (N) for published and unpublished20 5 2
samples where Markow (crosses), Møller (open circles), or Thornhill (solid circles) were coauthors. Solid lines indicate least squares linear regression
fit to the data and are for illustration only (see table 1, rows e–g, for statistics). Double asterisks indicate rbias was significant statistically ( ).P ! .01
Note that the apparent slope for Markow is due entirely to the single observation at and as a consequence does not differ significantly fromN 5 49
0 ( ). Short-dashed lines indicate where more extreme values of the statistics (r or Dmax) become significant statistically ( ), and the long-P 1 .6 P ! .05
dashed lines indicate an effect size of 0.
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Table 1: Correlations between effect size (r) and sample size [log10(N)] for various subsets
of cases from Møller and Thornhill (1998)

Spearman rank
correlationa

Kendall rank
correlationa

Samples included Nsamples rbias Pb tbias Pb

a. All samples 146 .301 !.001*** .217 !.001***

b. All samples (“included” only)c 140 .393 !.001*** .280 !.001***

c. Unpublished samples 26 .663 !.001*** .495 !.001***

d. Published samples (“included” only)c 114 .345 !.001*** .248 !.001***

e. Markow 15 .110 .681 .095 .622
f. Møllerd 24 .540 .010** .412 .005**

g. Thornhilld 25 .650 .002** .451 .002**

h. Møller and Thornhilld 49 .593 !.001*** .412 !.001***

i. Other authorsd (“included” only)c 91 .312 .003** .219 .002**

j. Møller (secondary sexual trait)d 10 .875 .009** .719 .004**

k. Møller (ordinary trait)d 14 .073 .792 .047 .813
l. Thornhill (human face)d 10 .925 .006** .809 .001**

m. Thornhill (human skeleton)d 9 2.020 .962 2.057 .830

Note: All significant results remain significant at after a sequential Bonferroni correction is appliedP ! .05

separately to each column of correlation coefficients.
a Corrected for ties.
b Two-tailed probability.
c Six samples excluded by Møller and Thornhill (1998) not included.
d Published and unpublished.
** .P ! .01
*** .P ≤ .001

Results

Excluded Samples

The studies excluded from the meta-analysis by Møller
and Thornhill (1998) were the six highest positive effects
out of all 146 studies (fig. 2A, plus sign). The likelihood
that, owing to chance alone, the only six studies suffering
from methodological or conceptual problems exhibited a
positive effect (i.e., attractiveness increases with increasing
asymmetry) is (contingency table analysis,P ! .0001

). That they should2x [corrected for continuity] 5 17.06
be the six most extreme positive values would be even less
probable owing to chance.

Four of the excluded samples dealt with human facial
asymmetry, but at least six other samples using artificially
symmetrical human hemifaces were not excluded (Perrett
et al., unpublished study; Mealey et al., unpublished
study). One would have thought it more appropriate to
exclude all 10 samples based on artificially symmetrical
human hemifaces if their validity was in doubt or to ex-
plain more clearly why some hemiface methods are con-
sidered valid and others are not.

Tests for Selective Publication

Frequency Distribution of Effect Sizes. When effect size was
viewed as a function of sample size (fig. 2A), several pat-

terns emerged. First, as expected on purely statistical
grounds, the range of effect sizes increased as sample size
decreased. However, few clearly nonsignificant samples
(those lying between the 95% significance thresholds of
fig. 2A) were reported for sample sizes !20. As a conse-
quence, frequency distributions of effect size at small sam-
ple size differed significantly from a normal distribution
(fig. 2B).

Overall Dependence of Effect Size on Sample Size. When all
146 samples were included, rbias—the correlation between
effect size and sample size—was statistically significant
( ; table 1, row a). In other words, as sample sizeP ! .001
decreased, the “predicted” negative correlation between
asymmetry and attractiveness became more pronounced
(fig. 2A). The rbias was even more pronounced when the
six “excluded” samples were excluded (table 1, row b).

Comparisons of published and unpublished studies,
where possible, are a recommended procedure in meta-
analysis because unpublished studies should yield less bi-
ased estimates of effect size (Begg 1994). However, for the
studies reported by Møller and Thornhill (1998), rbias was
also significant for unpublished samples ( ; tableP ≤ .001
1, row c). A weaker rbias was observed among “included”
published samples (table 1, row d), but rbias was not quite
significantly lower for published samples compared with
unpublished ones ( ; table 2, row a).P 5 .062
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Table 2: Tests for differences in the extent of between subsets of samplesrbias

Correlations compared Rows in table 1 Zdiff P Test type

a. Unpublished vs. publisheda c vs. d 1.868 .062 Two-tailed
b. Møller/Thornhillb vs.

other authorsa,b h vs. i 1.938 .053 Two-tailed
c. Møller only:b sexual trait

vs. ordinary trait j vs. k 2.602 .005** One-tailed
d. Thornhill only:b human

face vs. human skeleton l vs. m 2.912 .002** One-tailed

Note: Both significant results remain significant at after a sequential BonferroniP ! .05

correction.
a Six samples excluded by Møller and Thornhill (1998) not included.
b Published and unpublished.
** .P ! .01

Dependence of Effect Size on Sample Size for Individual
Investigators. Only three investigators contributed enough
samples ( ) to warrant individual tests of rbias: Mar-N 1 10
kow, Møller, and Thornhill. Although the least squares
linear regression slopes were similar for all three (fig. 2C),
the slope for samples from Markow resulted entirely from
a single value and did not even approach statistical sig-
nificance ( ; table 1, row e). In addition, only threeP 1 .6
of the 15 samples from studies by Markow were significant
by themselves, so the results from Markow’s studies (all
on Drosophila) imply no overall significant association be-
tween asymmetry and attractiveness.

The rbias was, however, highly significant for samples
from Møller ( ; table 1, row f) and from ThornhillP ≤ .01
( ; table 1, row g), as well as for both combinedP ! .002
( ; table 1, row h). The rbias was also significant forP ! .001
samples from authors other than Møller and Thornhill
( ; table 1, row i), though it became marginallyP 5 .003
nonsignificant if the six excluded samples were included
( , , ). Compared with samplesr 5 0.195 P 5 .056 N 5 97s

from all other authors, the samples from both coauthors
of the original meta-analysis exhibited a higher rbias, though
this difference was not quite significant statistically (P 5

; table 2, row b). However, if the six excluded samples.053
were included, rbias became significantly greater among
samples from Møller and Thornhill than from all other
authors ( ).P 5 .004

To put values of rbias into perspective, approximately
35% ( ) of the variation in effect size among2 2r 5 0.59bias

samples from Møller and Thornhill was due to sample
size, whereas !10% ( ) was due to sample size2 2r 5 0.31bias

among samples contributed by all other authors.

Dependence of Effect Size on Sample Size for Particular Con-
trasts. Where sample sizes permit, tests for rbias may also
be conducted for particular contrasts within the studies
of individual investigators. These may provide insights into
how overall patterns of rbias may have arisen. For example,

among studies by Møller (fig. 3A), rbias was significant for
secondary sexual traits ( ; table 1, row j) but notP 5 .009
for ordinary traits ( ; table 1, row k). Similarly, forP 5 .8
studies on humans by Thornhill (fig. 3B), rbias was signif-
icant for faces ( ; table 1, row l) but not for skeletalP 5 .006
traits ( ; table 1, row m). In both cases, rbias wasP 1 .95
significantly higher for the trait predicted by the authors
to show an effect of asymmetry on attractiveness (P ≤

; table 2, rows c, d)..005

Correction for Multiple Tests. Note that all of the statistically
significant correlations in table 1 remain significant after
a sequential Bonferroni correction for multiple tests (Rice
1989) is applied separately to each column of correlation
coefficients. Because the two correlation coefficients (rbias

and tbias) yield virtually identical results, and the results
for both were included only to illustrate this point, the
Bonferroni correction is most appropriately applied to the
results for each coefficient separately (i.e., correct for 13
tests) as opposed to all combined (26 tests). In addition,
both of the statistically significant correlations in table 2
remain significant after a sequential Bonferroni correction.

Impact of Selective Publication on Estimates of Effect Size
and Effect Size Heterogeneity

Overall Effect Size. I was unable to reproduce some of
the statistical descriptors reported by Møller and
Thornhill (1998). For example, I could not reproduce
the weighted mean effect size for included samples
( ; row 2 in their table 2), even though I didr 5 20.42
reproduce the weighted mean effect size for the six ex-
cluded samples ( ; row 1 in their table 2). Forr 5 0.65
the included samples, I obtained a weighted mean effect
size of ( ; and for all 146 samplesr 5 20.229 N 5 140

). To compute this value for all 140 samples,r 5 20.215
however, two effect sizes of had to be adjustedr 5 21.0
(I arbitrarily chose ), since as ,r 5 20.99 r r 51.0 Z rr
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Figure 3: Effect size (r) as a function of sample size (N) for published and unpublished samples for individual investigators. Solid lines indicate
least squares linear regression fit to the data (for both figures, the line with the lower slope applies to the open circles). See figure 2 legend for an
explanation of the dashed lines. A, Samples in which Møller was a coauthor (see table 1, rows j, k, for statistics); B, samples in which Thornhill
was a coauthor (see table 1, rows l, m, for statistics).

(Zar 1984, p. 310). If Møller and Thornhill substituted5`
a more extreme value (e.g., 20.99999), their estimate of
weighted mean effect size would have been inflated. Fur-
thermore, for these data, the weighted mean must be less
extreme (less negative) than the unweighted mean (r 5

, ) because the more extreme r values at20.299 N 5 140
small sample sizes would have contributed less. Finally,
the distribution of effect sizes in figure 2A is not visibly
consistent with a weighted mean of .r 5 20.42

In addition, I was also unable to reproduce some
weighted means reported by Møller and Thornhill (1998)
for the study level of analysis. I obtained a weighted mean
effect of (all 64 unique studies listed in theirr 5 20.223
table 1), or (for the 61 studies remaining afterr 5 20.239
the six excluded samples were removed). These weighted
mean effect sizes are considerably lower than those re-
ported in their table 2 (20.36 and 20.42 in rows 4 and
3, respectively).

Møller and Thornhill appear to have overestimated the

overall mean effect size at the level of both samples and
studies by nearly twofold.

Effect Size Differences for Particular Contrasts. Significantly,
if the weighted mean effect size for all included studies is

( ), then the weighted mean effect sizesr 5 20.239 N 5 61
tabulated for various contrasts of interest (rows 3–12 in
table 2 of Møller and Thornhill 1998) must also be too
high. For example, if one weighted mean from a pair of
effects in a contrast is above the grand mean, the other
must be below it, yet nearly all the values tabled in rows
3–12 of their table 2 are more extreme than the weighted
mean I computed of .r 5 20.239

Computational discrepancies aside, a graphical ap-
proach suggests that quantitative contrasts of effect size
statistics may be potentially misleading where selective re-
porting appears widespread (fig. 4). For three contrasts,
cases of small sample size ( ) and large effect sizeN ≤ 30
were more numerous where correlations between FA and
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Figure 4: Effect size (r) as a function of sample size (N) for three contrasts of the effect of asymmetry on sexual selection. All effect sizes are from
table 1 of Møller and Thornhill (1998). Asterisks indicate samples excluded from the analyses by Møller and Thornhill; the dagger indicates the
weighted mean effect size for the 140 included samples. A, Effect of asymmetry on the mating success of males compared with females; B, effect
of asymmetry on mating success for three types of traits; C, effect of asymmetry on mating success as determined by experimental or observational
studies.
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attractiveness were expected to be more pronounced. Re-
ports of male success were proportionally more common
than those of female success among cases based on small
(83%) versus large (76%) sample size (fig. 4A), reports of
sex traits (including human face) were proportionally
more common than those of ordinary traits among cases
of small (80%) versus large (35%) sample size (fig. 4B),
and reports from experimental studies were proportionally
more common than those from observational studies
among cases of small (55%) versus large (13%) sample
size (fig. 4C). These proportions did not differ significantly
for studies of male compared to female success ( 2x 5

, ; x2 test with correction for continuity). They0.45 P 5 .50
were, however, highly significantly different for sex versus
ordinary traits and experimental versus observational re-
sults ( ). As a consequence, the effects of selectiveP ! .001
reporting seriously confound the computations of mean
effect size for these latter two contrasts.

Impact of Particular Investigators on Estimates of Mean Ef-
fect Size. In view of the significant rbias among samples
contributed by Møller and Thornhill (figs. 2C, 3A, B;
table 1, row h; table 2, row b), one might wonder to
what extent their own contributions influenced the es-
timate of overall effect size. For all included samples
(published and unpublished), the weighted mean effect
at the level of studies by authors other than Møller and
Thornhill was ( ). Therefore, althoughr 5 20.217 N 5 44
the contributions by Møller and Thornhill amplify the
mean effect size at the level of studies by about 10%
(20.239 vs. 20.217), the overall effect did not depend on
their contributions.

Discussion

Meta-analysis offers several advantages over narrative
summaries of the literature (Arnqvist and Wooster 1995).
In particular, it requires that results be presented as a
standardized statistic—effect size—so they are more read-
ily comparable. In the present study, “effect size” refers
simply to the strength of the correlation (r) between asym-
metry and attractiveness: a negative effect size means that
attractiveness decreases as asymmetry increases. Numerical
values for effect size may be computed from a variety of
statistics reported in the original studies using standard
meta-analytic procedures (Rosenthal 1991).

In addition to standardizing results, meta-analysis pro-
vides tools for computing an average effect size across
multiple studies as well as formal statistical methods for
detecting heterogeneity among effect sizes and asking
whether particular contrasts between effects of interest
may contribute to that heterogeneity. These are valuable
applications. However, because selective reporting may in-

troduce unwanted biases, exploratory analyses of reporting
patterns, particularly as they relate to sample size, should
be conducted routinely before computing quantitative es-
timates of effect size and effect size heterogeneity (Begg
1994).

The funnel graph approach of Light and Pillemer
(1984), and its quantitative extensions, offer powerful tools
for detecting selective reporting and therefore help to en-
courage caution when computing average effect sizes or
interpreting patterns of effect size variation. When applied
to the extensive collection of studies of FA and sexual
selection (Møller and Thornhill 1998), the funnel graph
approach offers some sobering revelations. First, selective
reporting appears to be widespread and to have inflated
estimates of overall effect size. Second, selective reporting
may have confounded tests of effect size differences for
contrasts of both biological and methodological interest.

Evidence of Selective Reporting

As noted earlier, selective reporting in meta-analyses may
be signaled in two ways (Light and Pillemer 1984), and
both signals (fig. 1B, C) were apparent among the studies
of FA and sexual selection (Møller and Thornhill 1998).
First, figure 2A resembles the funnel-shaped pattern ex-
pected owing to selective reporting (fig. 1B), and the sig-
nificant departure from normality of effect sizes for sample
sizes ≤20 (fig. 2B) supports such a conclusion. In addition,
the closeness with which the lower 95% significance
threshold delimits the upper edge of the cluster of negative
effects at small sample size ( , lower left portion ofN ≤ 20
fig. 2A) suggests that statistical significance had a strong
impact on likelihood of publication. Second, when all ef-
fect sizes were examined together, whether published or
unpublished, the dependence of effect size on sample size
(rbias) was significant statistically (table 1, rows a, b).

A significant rbias among unpublished cases (fig. 2A; table
1, row c) was particularly surprising. In general, because
unpublished studies should be more representative of all
studies conducted (Light and Pillemer 1984; Begg and Ber-
lin 1988), rbias should be less pronounced. However, since
these unpublished results may have been from manuscripts
volunteered by other authors who had prepared them for
publication, they may not have been a representative sam-
ple of unpublished studies. Nonetheless, the significant rbias

suggests that authors were more likely to provide Møller
and Thornhill with results that were consistent with ex-
pectations (i.e., a statistically significant negative correla-
tion between asymmetry and attractiveness).

Finally, rbias also varied in a surprising way in relation
to a priori expectations of association between asymmetry
and attractiveness among studies by individual authors.
Such analyses are informative because they are not con-
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founded by among-author variation. Unfortunately, this
could only be examined rigorously for reports from Møller
and Thornhill themselves, where a sufficiently large and
roughly equivalent number of samples permitted a more
detailed analysis.

The most forceful prediction of several advanced by
Møller and Thornhill (1998 and references therein) is that
asymmetry of secondary sexual traits should have a greater
negative effect on attractiveness than asymmetry in or-
dinary traits. For this test, they found strong statistical
support, particularly when the results for human faces
were included (rows 7, 8 in their table 2). However, when
their own studies were examined in more detail (fig. 3A,
B), rbias was highly significant for secondary sexual traits
( ; table 1, rows j, l) but not ordinary traits (P ! .001 P 1

; table 1, rows k, m). This same pattern was also evident.7
among all samples (fig. 4B).

Because investigator effects are inevitable, they need not
imply differences in the quality or validity of studies from
different labs: different investigators legitimately use dif-
ferent methods in different systems. Therefore, for ex-
ample, the greater effect sizes reported in studies by Møller
and Thornhill (fig. 2C) may simply reveal that they are
better than others at choosing systems or methods of study
that reveal the “true” effects of asymmetry on attractive-
ness. The differences in rbias between signaling and non-
signaling traits among their own studies (fig. 3A, B), how-
ever, remain puzzling.

Impact on Estimates of Overall Effect Size

Evidence of selective reporting is neither surprising nor
original (Cooper and Hedges 1994), and I do not intend
to imply that it is somehow more prevalent among studies
of FA and sexual selection than elsewhere. As noted earlier,
selective reporting, and the bias it introduces, seems an
unavoidable consequence of the research enterprise (Begg
and Berlin 1988; Begg 1994). The question is, Does selec-
tive reporting invalidate or weaken conclusions about ei-
ther statistical or biological significance?

The fail-safe criterion (Rosenthal 1979) provides a
rough idea of how great concerns should be about the
statistical impact of selective publication. The revised over-
all effect size computed from Møller and Thornhill (1998)
for included studies ( , ) is unlikely tor 5 20.239 N 5 61
be due solely to selective publication (the file drawer prob-
lem; Rosenthal 1979): 8,000 or more studies of zero effect
(the fail-safe number of studies; Cooper 1979) would have
to be published to eliminate the statistical significance of
this result. For the 41 studies based on larger sample sizes
( ), the fail-safe number is smaller (3,742), thoughN 1 30
still sizable; and for the 44 studies contributed by authors
other than Møller and Thornhill, it was also comparable

(3,383). Therefore, in spite of direct evidence for selective
reporting (figs. 2, 3), roughly 75–100 unpublished studies
of zero effect would have to exist per published study to
reduce the overall effect to nonsignificance. However, as
noted above (“Interpreting Results in the Presence of Se-
lective Reporting”), if effects of opposite (positive, in this
case) sign were common, far fewer would be needed to
reduce the average effect size to nonsignificance.

The biological significance of the overall association be-
tween FA and attractiveness, however, seems less clear. The
revised estimates of overall effect size reported here, both
at the level of samples ( , )r 5 20.229 N 5 140
and the level of studies ( , ), are sub-r 5 20.239 N 5 61
stantially lower than those originally reported by Møller
and Thornhill (1998). Both revised estimates are much
closer to the effect size of computed indepen-r 5 20.26
dently by Leung and Forbes (1996) for the relation be-
tween FA and measures of fitness. Regardless of the sta-
tistical significance of these estimates, if they are
approximately correct, they imply that across all studies
conducted to date, !6% of the variation in rank scores of
attractiveness ( ) can be attributed to varia-2 2r 5 20.239
tion in FA. Furthermore, because of the publication biases
noted earlier, this is surely an overestimate.

Contrary to the conclusions of Møller and Thornhill
(1998), and statistical significance notwithstanding, if we
accept these revised estimates of average effect size at face
value, FA appears to account for surprisingly little (!6%)
of the variation in attractiveness. The biological signifi-
cance and generality of this association therefore seem to
have been greatly overstated.

Impact on Estimates of Effect Size Heterogeneity

Whether selective reporting affects conclusions about dif-
ferences in effect size among groups depends on whether
it varies in any systematic way for contrasts of biological
or methodological interest. For example, if effects for one
subgroup (e.g., males) are often based on smaller sample
sizes than a comparison subgroup (e.g., females), then the
biases due to selective publication artificially inflate the
effect size difference between these subgroups.

Inspection of funnel graphs suggests that conclusions
drawn from two contrasts examined by Møller and Thorn-
hill (1998) may have been overstated. First, effect sizes for
secondary sexual traits (including the human face) formed
a majority of cases based on sample sizes of 30 or fewer
(32 of 40), whereas effect sizes for ordinary traits formed
a majority of cases based on sample sizes greater than 30
(65 of 100; fig. 4B). Furthermore, for cases based on sam-
ple sizes greater than 40, figure 4B reveals no apparent
difference in effect size for secondary sexual traits com-
pared with ordinary ones. Therefore, the conclusion that
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the effect of asymmetry on attractiveness is more pro-
nounced for secondary sexual traits than ordinary ones
depends heavily on results based on small sample sizes,
and it does not appear supported by studies based on larger
sample sizes (fig. 4B).

Second, effect sizes from experimental studies formed
a majority of cases based on sample sizes of ≤30 (22 of
40), whereas those for observational studies formed a ma-
jority of cases based on sample sizes 130 (87 of 100; fig.
4C). Although the statistical consequences of this pattern
are the same as noted earlier for secondary sexual versus
ordinary traits, the interpretation is less clear. Controlled
experimental studies may not require as large a sample
size as observational studies to detect significant differ-
ences. Investigators may intentionally plan experimental
studies with smaller sample sizes than observational ones
for just this reason, so the dependence of effect size on
data type may represent rational planning more than se-
lective publication. However, the closeness with which the
95% significance threshold defines the upper limit to the
cluster of samples in the lower-left corner of figure 4C
suggest that, even among experimental studies, statistical
significance of an outcome had a strong effect on likeli-
hood of publication. Therefore, the conclusion that ex-
perimental studies yield greater effect sizes than obser-
vational ones (Møller and Thornhill 1998) may also have
been overstated.

Conclusions

Although some may question the validity of meta-analyses
conducted on studies from a highly heterogeneous set of
taxa and traits, meta-analysis nonetheless offers numerous
advantages over narrative summaries of the literature, in-
cluding the ability to evaluate the impact of selective re-
porting. Because they are informative and easy to conduct,
both graphical and nonparametric tests for selective re-
porting would seem profitable to incorporate as routine
components of meta-analyses. As Light and Pillemer
(1984) note so pointedly: “Taking an average across a series
of outcomes is rarely a difficult conceptual issue. The dif-
ficult question is how to treat differences among the find-
ings that invariably turn up—the variability of different
outcomes about the average. Anyone summarizing 15, or
50, or 100 results with one statistic must face a fact: the
cost of using a simple summary index is a loss of infor-
mation. How one views that fact has important conse-
quences” (p. 51).

In contrast to statistical summaries, graphical methods
(e.g., fig. 4) provide far more useful insights into patterns
of publication and their possible impact on conclusions
about average effect sizes and about effect size hetero-
geneity.

An application of these graphical techniques revealed
that selective reporting (as rbias) appears to be widespread
in studies of FA and sexual selection. It was noticeable
among both published and unpublished studies. It was
more pronounced among studies conducted by the au-
thors of the original meta-analysis (Møller and Thornhill)
than among other authors, and among studies by these
two authors, it was more pronounced where correlations
with asymmetry were predicted by them to be stronger,
such as for secondary sexual traits compared to ordinary
traits. Finally, among all studies, the prevalence of large
effects among studies of small sample size for secondary
sexual traits suggests that conclusions about differences in
the correlation between asymmetry and attractiveness for
secondary sexual traits compared with ordinary traits are
likely overstated.

For phenomena such as fluctuating asymmetry, where
the acknowledged biological signal is so exceedingly small,
we must guard against being deceived by statistical over-
simplification. Studies based on sample sizes of !20 or 30
seem the most prone to bias, so perhaps reviewers and
editors should ask for significance levels of .01 or .001 for
studies based on small sample sizes to reduce the impact
of selective reporting.

Acknowledgments

I thank D. Arsenault, L. Hammond, J. Kingsolver, C.
Klingenberg, D. Repasky, and C. Strobeck for their helpful
comments on the manuscript and L. Rimmer of the Bam-
field Marine Station Library for help obtaining locally un-
available references. I am particularly grateful to three
anonymous reviewers more familiar with meta-analysis
than I for their detailed and constructive suggestions re-
garding organization, terminology, and emphasis and for
direction to more recent references on publication bias.
This research was supported by Natural Sciences and En-
gineering Research Council of Canada operating grant
A7245.

Literature Cited

Arnqvist, G., and D. Wooster. 1995. Meta-analysis: syn-
thesizing research findings in ecology and evolution.
Trends in Ecology & Evolution 10:236–240.

Arnqvist, G., L. Rowe, J. J. Krupa, and A. Sih. 1996. As-
sortative mating by size: a meta-analysis of mating pat-
terns in water striders. Evolutionary Ecology 10:
265–284.

Begg, C. B. 1994. Publication bias. Pages 399–409 in H.
Cooper and L. V. Hedges, eds. The handbook of research
synthesis. Russel Sage Foundation, New York.

Begg, C. B., and J. A. Berlin. 1988. Publication bias: a



Notes and Comments 233

problem in interpreting medical data. Journal of the
Royal Statistical Society A151:419–463.

Cooper, H. 1979. Statistically combining independent
studies: a meta-analysis of sex differences in conformity
research. Journal of Personality and Social Psychology
37:131–146.

Cooper, H., and L. V. Hedges, eds. 1994. The handbook
of research synthesis. Russel Sage Foundation, New
York.

Houle, D. 1997. Comment on “A meta-analysis of the
heritability of developmental stability” by Møller and
Thornhill. Journal of Evolutionary Biology 10:17–20.

Iyengar, S., and J. B. Greenhouse. 1988. Selection models
and the file drawer problem. Statistical Science 3:
109–135.

Leamy, L. 1997. Is developmental stability heritable? Jour-
nal of Evolutionary Biology 10:21–29.

Leung, B., and M. R. Forbes. 1996. Fluctuating asymmetry
in relation to stress and fitness: effects of trait type as
revealed by meta-analysis. Ecoscience 3:400–413.

Light, R. J., and D. B. Pillemer. 1984. Summing up: the
science of reviewing research. Harvard University Press,
Cambridge, Mass.

Møller, A. P. 1997. Developmental stability and fitness: a
review. American Naturalist 149:916–932.

Møller, A. P., and J. P. Swaddle. 1997. Developmental sta-
bility and evolution. Oxford University Press, Oxford.

Møller, A. P., and R. Thornhill. 1997. A meta-analysis of
the heritability of developmental stability. Journal of
Evolutionary Biology 10:1–16.

———. 1998. Bilateral symmetry and sexual selection: a
meta-analysis. American Naturalist 151:174–192.

Palmer, A. R. 1996. Waltzing with asymmetry. BioScience
46:518–532.

Rice, W. R. 1989. Analyzing tables of statistical tests. Ev-
olution 43:223–225.

Rohlf, F. J., and R. R. Sokal. 1981. Statistical tables. W. H.
Freeman, San Francisco.

Rosenthal, R. 1979. The “file drawer problem” and tol-
erance for null results. Psychological Bulletin 86:
638–641.

———. 1991. Meta-analytic procedures for social re-
search. Sage, Beverly Hills, Calif.

Sokal, R. R., and F. J. Rohlf. 1995. Biometry. 3d ed. W. H.
Freeman, New York.

Vevea, J. L., and L. V. Hedges. 1995. A general linear model
for estimating effect size in the presence of publication
bias. Psychometrika 60:419–435.

Zar, J. H. 1984. Biostatistical analysis. 2d ed. Prentice Hall,
Upper Saddle River, N.J.

Associate Editor: Joel G. Kingsolver


