
Detecting Recurring and Novel Classes in Concept-Drifting Data Streams

Mohammad M. Masud∗, Tahseen M. Al-Khateeb∗, Latifur Khan∗,
Charu Aggarwal†, Jing Gao‡, Jiawei Han‡ and Bhavani Thuraisingham∗

∗Dept. of Comp. Science, Univ. of Texas at Dallas. Email: {mehedy, tahseen, lkhan, bhavani.thuraisingham}@utdallas.edu
†IBM T. J. Watson Research Center, Yorktown Heights, New York. Email: charu@us.ibm.com

‡Department of Computer Science, University of Illinois at Urbana-Champaign. Email: {jinggao3,hanj}@cs.uiuc.edu

Abstract—Concept-evolution is one of the major challenges
in data stream classification, which occurs when a new class
evolves in the stream. This problem remains unaddressed by
most state-of-the-art techniques. A recurring class is a special
case of concept-evolution. This special case takes place when a
class appears in the stream, then disappears for a long time, and
again appears. Existing data stream classification techniques
that address the concept-evolution problem, wrongly detect the
recurring classes as novel class. This creates two main prob-
lems. First, much resource is wasted in detecting a recurring
class as novel class, because novel class detection is much more
computationally- and memory-intensive, as compared to simply
recognizing an existing class. Second, when a novel class is
identified, human experts are involved in collecting and labeling
the instances of that class for future modeling. If a recurrent
class is reported as novel class, it will be only a waste of human
effort to find out whether it is really a novel class. In this paper,
we address the recurring issue, and propose a more realistic
novel class detection technique, which remembers a class and
identifies it as “not novel” when it reappears after a long
disappearance. Our approach has shown significant reduction
in classification error over state-of-the-art stream classification
techniques on several benchmark data streams.

Keywords-stream classification; novel class; recurring class;

I. INTRODUCTION

A major challenge in data stream classification, which
deserves attention, but has long been overlooked, is that
of concept-evolution. Concept-evolution refers to the emer-
gence of a new class. Most existing data stream classifiers
assume that the number of classes are fixed [1]–[5]. How-
ever, in data streams, new classes may often appear. For
example, a new kind of intrusion may appear in network
traffic, or a new category of text may appear in a social
text stream such as Twitter. When a new class emerges,
traditional data stream classifiers misclassify the instances
of the new class as one of the old classes. In other words,
a traditional classifier is bound to misclassify any instance
belonging to a new class, because the classifier has not been
trained with that class. It is important to be able to pro-
actively detect novel classes in data streams. For example,
in an intrusion detection application, it is important to detect
and raise alerts for novel intrusions as early as possible, in
order to allow for early remedial action and minimization of

damage. This problem has been addressed in different ways
in the past [6], [7].

A recurring class is a special and more common case of
concept-evolution in data streams. It occurs when a class
reappears after long disappearance from the stream. Recur-
ring classes, when unaddressed, create several undesirable
effects. First, they increase the false alarm rate because
when they reappear, they may be falsely identified as novel,
whereas such classes may observe normal representative
behavior. Second, they also increase human effort, in cases
where the output of the classification is used by human
analyst. In such cases, the analyst may have to spend
extra effort in analyzing the afore-mentioned false alarms.
Finally, additional computational effort is wasted in running
a “novel class detection” module, which is costlier than
regular “classification” process.

Prior works in novel class detection, such as [6] are not
designed to address the case of recurring classes. In this
approach, a fixed size ensemble is used classify the data
stream and detect novel classes. When a novel class appears
in the stream, it is soon added to the list of classes that the
ensemble represents. However, the ensemble is periodically
refined with new data, and therefore, if some class disappears
for a long time, that class is eventually dropped from the list.
Therefore, when the class reappears, it is again detected as a
novel class, although it should have been possible to use our
prior experience with the class in order to provide a more
accurate result. Another work in novel concept detection
[7] does not distinguish between novel class and recurrence
class, i.e., it considers all classes as novel other than a pre-
specified “normal” class. Therefore, the problem remains,
i.e., once a class has appeared in the stream, how we may
“remember” this class as not novel when it appears again
after a long absence from the stream.

In this paper, we propose a solution to the recurring
class problem in the presence of concept-drift. Our proposed
approach is designed to function as a multi-class classifier
for concept-drifting data streams, detect novel classes, and
distinguish recurring classes from novel classes. We keep
an ensemble of size L, and also keep an auxiliary ensemble
where at most LA models per class are stored. This auxiliary

2011 11th IEEE International Conference on Data Mining

1550-4786/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDM.2011.49

1176

ensemble stores the classes in the form of classification
models even after they disappear from the stream. Therefore,
when a recurring class appears, it is detected by the auxiliary
ensemble as recurrent. This approach greatly reduces false
alarm rate as well as the overall error. If, however, a
completely new class appears in the stream, it is detected
as novel by the auxiliary ensemble as well.

The contributions of this work are as follows. First,
to the best of our knowledge, this is the first work that
addresses the recurring class issue and concept-evolution in
data streams. Our proposed solution, which uses an auxiliary
ensemble for recurring class detection, reduces false alarm
rates and overall classification error. Second, this technique
can be applied to detect periodic classes, such as classes that
appear weekly, monthly, or yearly. This will be useful for
better predicting and profiling the characteristics of a data
stream. Finally, we apply our technique on a number of real
and synthetic datasets, and obtain superior performance over
state-of-the-art techniques.

The remainder of this paper is organized as follows.
Section II discusses the related works in data stream clas-
sification and novel class detection. Section III briefly dis-
cusses the proposed approach, and Section IV describes the
proposed technique in details. Section V then reports the
datasets and experimental results, and Section VI concludes
with directions to future works.

II. RELATED WORK

Almost all existing classification techniques [1]–[4], [8]–
[11] are designed to handle the large volume of stream
and concept-drift aspects of the classification process. These
methods use an incremental learning approach for addressing
the issues of stream volume and concept drift. There are
two typical variations of this incremental approach. The first
approach is a single-model incremental approach, where a
single model is dynamically maintained with the new data
[1], [4]. The other approach is a hybrid batch-incremental
approach, in which each model is built using a batch
learning technique. However, older models are replaced by
newer models when the older models become obsolete (
[2], [3], [5], [8]). Some of these hybrid approaches use
a single model to classify the unlabeled data (e.g. [8]),
whereas others use an ensemble of models (e.g. [2], [3]).
The advantage of the hybrid approaches over the single
model incremental approach is that the hybrid approaches
require much simpler operations to update a model (such as
removing a model from the ensemble).

The other category of data stream classification tech-
nique deals with concept-evolution, in addition to addressing
infinite-length and concept-drift. Spinosa et al. [7] apply
a cluster-based technique to detect novel classes in data
streams. However, this approach assumes only one “nor-
mal” class, and considers all other classes as “novel”.
Therefore, it is not directly applicable to multi-class data

stream classification, since it corresponds to a “one-class”
classifier. Masud et al. [6] propose a classification and novel
class detection technique called ECSMiner that is a multi-
class classifier and also a novel class detector. It uses an
ensemble of models to classify the unlabeled data and detect
novel classes. However, this approach does not consider
the issue of recurring class. ECSMiner identifies recurring
classes as novel class. In this paper, we present a more
realistic and accurate data stream classification approach
by distinguishing recurring classes from novel classes and
efficiently detecting novel classes.

III. OVERVIEW OF THE APPROACH

Our proposed ensemble model consists of two ensembles,
a primary ensemble M , and an auxiliary ensemble MA.
The ensemble construction and maintenance technique is
explained in details in Section IV-A. In short, M is an en-
semble of L classification models, {M1, ...,ML}, and MA

is an ensemble of LAC auxiliary models {MA
1 , ...,MA

LAC}
where C is the number of classes seen in the stream so
far, and LA is the number of auxiliary models per class.
The data stream is divided into equal sized chunks, and the
data points in the most recent data chunk are first classified
using the ensemble. When the data points in a chunk become
labeled (by human experts), that chunk is used for training
a classification model. Since the number of models in each
ensemble is fixed, the newly trained model replaces the
existing model(s) in each ensemble.

Figure 1. Architecture of the proposed approach

.
Each incoming instance in the data stream is first exam-

ined by the outlier detection module of the primary ensemble
in order to check whether it is an outlier. If it is not an outlier,
then it is classified as an existing class using majority voting
among the classifiers in the primary ensemble. If it is an
outlier, we call it a primary outlier, and it is again examined

1177

by the outlier detection module of the auxiliary ensemble.
If it is determined as not outlier by the auxiliary ensemble,
it is considered as recurring class instance and classified
by the auxiliary ensemble. Otherwise, if it is an outlier
by the auxiliary ensemble, it is called secondary outlier,
and it is temporarily stored in a buffer for further analysis.
When there are enough instances in the buffer, the novel
class detection module is invoked. If a novel class is found,
the instances of the novel class are tagged accordingly.
The classification and novel class detection technique is
explained in details in Section IV-B.

Now we define some of the terms that we use throughout
the rest of the paper.

Definition 1 (Current existing class): Let M be the cur-
rent primary ensemble. A class c is a current existing class
if any model Mi ∈M has been trained with class c.

Definition 2 (Universal existing class): Let MG=
{M1, ...,Mi, ...} be the set of all models trained in the
entire stream history starting from the 1st chunk, where
Mi is a model trained from the i-th data chunk. A class
c is a universal existing class if at least one of the models
Mi ∈MG has been trained with class c.

Let CC be the set of current existing classes and CU be the
set of universal existing classes. It is easy to show that the
relationship between CC and CU is as follows: CC ⊆ CU .

Now we define novel and recurring classes.
Definition 3 (Novel class): A class c is a novel class if it

is not a universal existing class, i.e., c /∈ CU .
In other words, a class c is novel if it never appeared

before in the stream.
Definition 4 (Recurring class): A class c is a recurring

class if it is not a current existing class, but it is a universal
existing class, i.e., c /∈ CC ∧ c ∈ CU .

In other words, c is a recurring class if c appeared
sometime in the past, but now it has disappeared (i.e., it
does not belong to any model in the current ensemble).

IV. IMPLEMENTATION DETAILS

A. Training and ensemble construction

A decision boundary is built during training, which de-
cides whether an instance is outlier. Details of training and
building decision boundary is explained in [6]. In short,
we cluster the training data using K-means clustering, and
the summary of each cluster (centroid, radius etc.) is saved
as a pseudopoint. A pseudopoint covers a region of the
feature space defined by the hypersphere corresponding to
the centroid and radius of the pseudopoint. Union of all the
hyperspheres constitute the decision boundary.

Each ensemble (primary and auxiliary) undergoes modi-
fication when a new model is trained from the training data.
Once a new primary model is trained, it replaces one of
the existing models in the primary ensemble. The candidate
for replacement is chosen by evaluating each model on
the latest training data, and selecting the model with the

worst prediction error. This ensures that we have exactly
L models in the ensemble at any given point of time.
Therefore, only a constant amount of memory is required to
store the ensemble. Concept-drift is addressed by keeping
the ensemble up-to-date with the most recent concept.

The auxiliary ensemble consists of at most LA models
(called auxiliary model) per class for each class c ∈ CU .
That is, MA contains at least one and at most LA models
for each class seen since the beginning of the stream.

When a new model is Mn trained using a data chunk, we
first enumerate all the classes in the model, and for each
class c, we create an auxiliary model Mn.c that contains
only class c-pseudopoints from Mn. Now in the auxiliary
ensemble, we check how many class c-auxiliary models are
present. If the number is less than LA, we add Mn.c to
MA. Otherwise, we choose one of the existing class c-
auxiliary models for replacement and replace with Mn.c.
We experimented different replacement strategies, such as,
least recent, most recent, random, or error based, among
which error based gives the best result.

B. Classification with novel and recurring class detection

There are two main stages in the classification process,
namely, outlier detection, and novel class detection.

Outlier Detection: Each instance in the most recent unla-
beled chunk is first examined in two stages by the ensembles
to see if it is an outlier for the ensembles. A test instance is
an outlier for the primary ensemble M (i.e., primary outlier
or P-outlier, in short) if it is outside the decision boundary
of each model Mi ∈ M . A test instance is outside the
decision boundary of Mi if for each pseudopoint h ∈ Mi,
the test instance is outside the hypershere defined by h, i.e.,
the distance from the test instance to the centroid of h is
greater than the radius of h. Each primary outlier is again
examined by the auxiliary ensemble MA. A primary outlier
x is considered a outlier for MA (i.e., secondary outlier or
S-outlier, in short) if x is outside the decision boundary of
|MA|−2 or more models in MA, where |MA| is the number
of models in MA. If x is found to be an S-outlier, it is saved
in a buffer for further analysis. This buffer is periodically
checked to see if the outliers there can constitute a novel
class. The main reason for the proposed order of outlier
detection (first with M , then MA) is efficiency. Since most
of the instances in the stream is expected to be in the current
existing class, they will be filtered out by M , and no testing
shall be necessary by MA. This saves time because MA is
usually larger than M , requiring more testing time.

Novel and recurring class detection: The main assumption
behind novel class detection is that any class of the data has
the property that a data point should be closer to the data
points of its own class (cohesion) and farther apart from the
data points of other classes (separation). The S-outliers are
potential novel class instances, because they are far from the
existing class instances (have separation). We need to find

1178

whether the S-outliers are sufficiently close to each other
(have cohesion) to form a novel class. We compute a unified
measure of cohesion and separation for an S-outlier x, called
q-NSC (neighborhood silhouette coefficient), as follows (See
[6] for details): q-NSC(x) =

D̄cmin,q(x)−D̄cout,q(x)

max(D̄cmin,q(x),D̄cout,q(x))

q-NSC is a combined measure of cohesion and separation,
whose value lies within the range [-1,+1]. It is positive when
x is closer to the S-outliers instances (more cohesion) and
farther away from existing class instances (more separation),
and vice versa. The q-NSC(x) value of an S-outliers x is
computed separately for each classifier Mi ∈ M . A novel
class is declared if there are at least q′ (> q) S-outliers
having positive q-NSC for all classifiers Mi ∈ M . Note
that if there is any recurring class instance, they should be
P-outliers but not S-outliers because the primary ensemble
does not contain that class, but secondary ensembles shall
contain that class. In this case, those instances are classified
by the auxiliary ensembles that identified them as not
outliers. Algorithm 1 summarizes the proposed classification
with novel and recurring class detection technique. We call
it SCANR, which stands for Stream Classifier And Novel
and Recurring class detector.

Algorithm 1 SCANR
Input: xn: the latest test instance

M : Current ensemble of L classifiers (primary ensemble)
MA: Auxiliary ensemble of at most LA|CU | classifiers
(CU=set of universal existing classes)
buf : Buffer (FIFO queue) to keep potential novel class in-
stances

Output: Class label of xn

1: if isOutlier(M ,xn) = true then
2: if isOutlier(MA,xn) = true then
3: buf ⇐ xn //enqueue into buffer
4: else
5: MA′ ← Models in MA that identified xn as not outlier
6: ĉ ← Classify(MA′

,xn)
7: end if
8: else
9: ĉ ← Classify(M ,xn)

10: end if
/*Periodic check of buf for novel class*/

11: if buf .size > q and Time-since-last-check > q then
12: isNovel ← Check-for-novel-class(M ,buf)
13: if isNovel = true then
14: identify and tag novel class instances
15: end if
16: end if

Each incoming test instance xn is first checked with the
primary ensemble M (line 1) to see if it is an outlier for
M (i.e., P-outlier). P-outliers are passed onto the auxiliary
ensemble MA for further check (line 2). If xn is not a P-
outlier, it is normally classified by M using ensemble voting
(line 9). A P-outlier xn is considered an outlier for MA (S-
outlier) if xn is outside the decision boundary of |MA|−2 or
more models in MA, where |MA| is the number of models
in MA. If xn is found to be an S-outlier, it is saved in a

buffer for further analysis (line 3). Otherwise, xn is classified
using the models MA

j ∈MA that identified xn as not outlier
(line 5-6). Finally, buf is periodically checked for novel
classes. Novel class check is done sparingly (once in every
q time) in order to reduce cost and avoid redundancy.

Time and space compexity: Classification time of
SCANR is O(Tc+ P0L

ACU), where P0 is the probability
of being a P-outlier and O(Tc) is the classification time of
ECSMiner. Therefore, SCANR needs only a constant addi-
tional time compared to ECSMiner (Since LA is constant
and CU usually grows very slowly). The training times of
ECSMiner and SCANR are also of the same order. The space
complexity of SCANR is O(L + LACU).

V. EXPERIMENTS
A. Data sets

Synthetic data with concept-drift and concept-
evolution: Generated using the same technique as in [6].
We generate three categories of synthetic datasets with 10,
20, and 40 classes respectively. For each category (e.g. 10
classes), we generate different datasets having different num-
ber of recurring classes, ranging from 10 to 160 recurring
classes per dataset. Each dataset has 40 real valued attributes,
and 1 million data points. We will denote a synthetic data
having X (e.g. 10) classes as SynCX (e.g. SynC10).

Real data: We have used the Forest cover type (Forest)
from UCI repository and KDD cup 1999 (KDD) intrusion
detection dataset (10 percent version). We randomly generate
10 different sequences of each dataset, and report the average
results. Both these datasets are arranged to have novel and
recurring classes.

B. Competitors
SCANR (SC): This is our proposed approach. We will use
the notation SC-X (e.g. SC-5) to represent SCANR having
X (e.g. 5) auxiliary models per class (LA=5).
ECSMiner (EM): This is the existing approach [6].
OLINDDA-WCE (OW): This is the same bseline used in
[6], which a combination of two baselines: OLINDDA
[7], and Weighted Classifier Ensemble (WCE) [2].

C. Parameter settings

EM and SC: i) K (# of pseudopoints / classifier) = 50, ii)
q (minimum # of instances reqd. to declare novel class) =
50, iii) L (ensemble size) = 3, iv) S (chunk size) = 1,000.
OLINDDA: Same settings used in [6]. We use the same
chunk size, ensemble size, and also the same base learner
for all competing approaches.
D. Evaluation

Evaluation approach: We use the following performance
metrics for evaluation: Mnew = % of novel class instances
misclassified as existing class, Fnew = % of existing class
instances misclassified as novel class, OTH = % of existing
class instances misclassified as another existing class, ERR
= Average misclassification error (%)(i.e., avg of OTH,
Mnew and Fnew).

1179

We build the initial models in each method with the first
init(=3) chunks. From the init +1st chunk onward, we first
evaluate the performances of each method on that chunk,
then use that chunk to update the existing models. The
performance metrics for each chunk for each method are
saved and averaged for producing the summary result.

Figures 2(a)-(d) show the ERR rates for synthetic and
real data. The X axes in these graphs correspond to the
stream in thousand data points and the Y axes represent
aggregate error rates. For example, in figure 2(b), the Y
values at X=800 represent the ERR of each method from the
beginning of the stream upto the current point, (i.e., 800K
instances) on the synthetic data SynC40. At this point, the
ERR of OW,EM,SC-5,SC-15, and SC-25 are 9.1%, 3.2%,
0.8%, 0.4%, and 0.37%, respectively. Figure 2(a) similarly
plots ERR rates for SynC20 data for all methods. Figures
2(c) and 2(d) show the ERR rates for Forest, and KDD data
respectively. These curves are computed by averaging ten
runs of each method on ten different randomly generated
sequences of each of these data sets. In all these curves, SC
has the lowest ERR rates.

Table I summarizes the results on different datasets on
all methods. Here the result for each dataset (e.g. KDD) for
a particular method (e.g. EM) is obtained by running the
method (EM) on all versions (10 versions for KDD) of the
dataset, and averaging the result. The ERR, Mnew and Fnew

rates reported in the table are the error rates obtained over
the entire streams. We see that OW has the highest ERR in
all datasets, followed by EM. The main source of error for
OW is Mnew, since it fails to detect most of the novel class
instances. Therefore, the Fnew rates of OW are also low. The
main source of higher error for EM compared to SC can be
contributed to the higher Fnew rates of EM, which occurs
because EM misclassifies all recurring class instances as
novel (“false novel” error). Since SC can correctly identify
most of the recurring class instances, the Fnew rates are low.

Figure 3(a) show the effect of number of recurring classes
on error rates. This study is done on the synthetic data and
have similar effects on the real datasets. Figure 3(a) shows
the ERR on synthetic data, where the number of recurring
classes ranges from 10 to 150. Here we observe that the ERR
rate of EM increase with increasing number of recurring
classes. This is because EM identifies the recurring classes
as novel. Therefore, more recurring class increases its Fnew

rate, and in turn increases ERR rate. Figure 3(b) shows
how the ERR rate of SC reduces with increasing auxiliary
ensemble size LA. If we increase LA, Fnew rate drops, and
as a consequence, ERR rates drop. This is because larger
number of auxiliary models contribute to a more complete
decision boundary for any existing class, leading to more
precise outlier detection. We also notice that error is higher
for datasets having higher number of recurring classes. For
example, the curve r=31 shows the ERR rates for a dataset
having 31 recurring classes, and so on. The reason is also

Table I
SUMMARY RESULT

Dataset Competitor Fnew Mnew ERR

SynC20

OW 4.0 4.9 4.2
EM 12.4 0.0 4.3
SC-5 2.4 0.0 1.0
SC-15 0.8 0.0 0.5
SC-25 0.6 0.0 0.3

SynC40

OW 1.3 24.0 11.0
EM 10.1 0.0 3.5
SC-5 1.9 0.0 0.9
SC-15 0.7 0.0 0.5
SC-25 0.5 0.0 0.4

KDD

OW 0.0 90.7 30.7
EM 5.1 33.1 13.0
SC-5 2.8 28.7 10.9
SC-15 2.6 28.7 10.8
SC-25 2.4 28.7 10.7

Forest

OW 0.0 100.0 37.6
EM 16.4 63.0 28.0
SC-5 5.1 64.1 25.9
SC-15 3.7 64.4 25.9
SC-25 3.3 64.4 26.0

obvious, i.e., as the number of recurring classes increase,
more instances are misclassified as novel.

To analyze the effect of concept-drift on error rates,
we generate SynC10 dataset with different magnitudes of
drift (t=0 to 1). Figure 3(c) shows the effect on the three
approaches. For SC, the Fnew rate increases when drift
increases, resulting in increased ERR rate. The Fnew rate
(and ERR) of EM is almost independent of drift, i.e.,
whether drift occurs or not, it misclassifies all the recurrent
class instances. However, the Fnew rate of SC is always
less than that of EM. Fnew rate increases in OW because
the drift causes the internal novelty detection mechanism to
misclassify shifted existing class instances as novel. Figure
3(d) shows how error rates change with the chunk size,
with default values for other parameters. For SC-25, the
ERR rate decreases with increasing chunk size upto certain
point. This is because larger training data naturally increases
the quality of the learned model. However, for EM, we
see that ERR increases with increasing chunk size. The
reason is that Fnew increases with increasing chunk size.
This happens because when chunk size is increased, the
time delay between ensemble update also increases (e.g. 500
vs 1000). Therefore, if a recurrent class appears, it will be
misclassified as novel class for a longer period of time (i.e.,
more instances will be misclassified), which increases the
Fnew rate. For OW, on the contrary, the main contributor to
ERR is the Mnew rate. It also increases with the chunk size
because of a similar reason, i.e., increased delay between
ensemble update. We also varied other parameters such as
L (from 3 to 8) and K (from 25 to 200) but our approach
was insensitive to these parameters within these ranges.

VI. CONCLUSION

We have proposed a solution to the recurring class
problem, which has been ignored by the existing novel

1180

OW EM SC-5 SC-15 SC-25

 0

 2

 4

 6

 8

 10

 200 400 600 800 1000

E
R

R

Stream (in thousand data points)

(a)

 0

 2

 4

 6

 8

 10

 200 400 600 800 1000
E

R
R

Stream (in thousand data points)

(b)

 0

 10

 20

 30

 40

 50

 100 200 300 400 500

E
R

R

Stream (in thousand data points)

(c)

 0

 10

 20

 30

 40

 50

 100 200 300 400

E
R

R

Stream (in thousand data points)

(d)

Figure 2. Error rates on (a) SynC20 (b) SynC40, (c) Forest and (d) KDD

 0

 5

 10

 15

 20

 25

 25 50 75 100 125

E
R

R

Number of recurring classes

EM
SC-5
SC-15
SC-25

(a)

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25

E
R

R

LA

r=31
r=56

r=130

(b)

 0

 3

 6

 9

 12

 15

 0.2 0.4 0.6 0.8 1
E

R
R

Drift

SC-25
EM
OW

(c)

 0

 2

 4

 6

 8

 10

 500 1000 2000 3000

E
R

R

Chunk size

SC-25
EM
OW

(d)

Figure 3. (a) # of recurring class vs ERR; (b) LA vs ERR; (c) Drift vs ERR; (d) chunk size vs ERR

class detection techniques. This solution utilizes an auxiliary
ensemble for keeping track of the classes that appeared in
the stream so far. This reduces false alarm rate, as well as
overall error rates, which has been demonstrated empirically
on synthetic and benchmark data streams. Furthermore, this
solution would greatly reduce the human effort that would
otherwise be required to identify the recurring classes in data
streams. An important application of this technique would be
detecting periodic classes, for example, classes that appear
every weekend or every winter. This would be useful for
better predicting and profiling data streams.

In the future we would explore the possibility of optimiz-
ing the classification and outlier detection by the auxiliary
ensemble to reduce extra running time. Also, we would like
to apply our technique on other real world data streams such
as Twitter text streams.

ACKNOWLEDGMENT

This material is based on work supported by the AFOSR
under awards FA9450-08-1-0260 and FA9950-10-1-0088
and by NASA under award 2008-00867-01.

REFERENCES

[1] G. Hulten, L. Spencer, and P. Domingos, “Mining time-
changing data streams,” in Proc. KDD, 2001, pp. 97–106.

[2] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in Proc.
KDD ’03, 2003, pp. 226–235.

[3] J. Kolter and M. Maloof., “Using additive expert ensembles to
cope with concept drift.” in Proc. ICML, 2005, pp. 449–456.

[4] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for on-demand classification of evolving data streams,” IEEE
TKDE, vol. 18, no. 5, pp. 577–589, 2006.

[5] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavald,
“New ensemble methods for evolving data streams,” in Proc.
ACM SIGKDD ’09, 2009, pp. 139–148.

[6] M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thurais-
ingham, “Classification and novel class detection in concept-
drifting data streams under time constraints,” IEEE TKDE,
vol. 23, no. 1, pp. 859–874, 2011.

[7] E. J. Spinosa, A. P. de Leon F. de Carvalho, and J. Gama,
“Cluster-based novel concept detection in data streams ap-
plied to intrusion detection in computer networks,” in Proc.
ACM SAC, 2008, pp. 976–980.

[8] Y. Yang, X. Wu, and X. Zhu, “Combining proactive and
reactive predictions for data streams,” in Proc. SIGKDD,
2005, pp. 710–715.

[9] S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari,
“Adapted one-versus-all decision trees for data stream classi-
fication,” IEEE TKDE, vol. 21, no. 5, pp. 624–637, 2009.

[10] P. Zhang, X. Zhu, and L. Guo, “Mining data streams with
labeled and unlabeled training examples,” in Proc. ICDM ’09.,
2009, pp. 627–636.

[11] G. Widmer and M. Kubat, “Learning in the presence of con-
cept drift and hidden contexts,” Machine Learning, vol. 23,
no. 1, pp. 69–101, April 1996.

1181

