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Abstract

Symmetry is ubiquitous in both natural and man-made

environments. It reveals redundancies in the structure of

the world around us and thus can be used in a variety of

visual processing tasks. This paper presents a simple and

robust approach to detecting symmetric objects and extract-

ing their symmetries from three-dimensional data. Given a

3D mesh of an object, a set of candidate symmetries are

proposed first and are then refined, so that they reflect the

complete mesh onto itself. We show how our method can be

used to detect symmetric objects in scenes consisting of syn-

thetic 3D models, as well as 3D scans of real environments.

1. Introduction

Symmetry is a common property shared by the major-

ity of both natural and man-made objects and structures.

Psychological studies suggest that symmetry plays a cru-

cial role in the human visual perception system [13, 4]. In

Computer Vision, symmetry detection was shown to serve

as a useful preprocessing step for a variety of object-centric

tasks such as object recognition [2], retrieval [8], 6DOF

tracking [7], reconstruction [11], as well as robotic appli-

cations such as grasping [9].

Reflectional symmetry detection in 3D data has been

studied extensively in the fields of Computer Vision,

Robotics and Graphics [6]. Most of the proposed methods

rely on the idea of finding symmetric correspondences be-

tween oriented points. Podolak et al. [8] defined the ”Pla-

nar Reflective Symmetry Transform” that captured the de-

gree of symmetry of an object with respect to all possible

planes passing through it. Exact object symmetries were

then detected by extracting the transform maxima. In [5],

Mitra et al. relied on orientable feature matching to de-

tect partial symmetries in complete 3D meshes of single

objects. Symmetry hypotheses were found by matching

uniquely orientable keypoints on the surface of the mesh

and filtering out the dominant ones using mean shift clus-

Figure 1: Output of our approach on a 3D reconstruction of

a real scene.

tering. Thrun and Wegbeit reasoned about occlusions of the

scene to detect symmetries in partial 3D pointclouds [12].

Symmetries were found by searching through the space of

possible transformations and finding the one that minimizes

the number of points that reflect into the unoccluded space

and maximizes the match between the original and the re-

flected clouds.

Unlike the majority of previous methods that use sparse

feature matching, our approach uses dense symmetric cor-

respondences to fit a reflectional symmetry plane to the sur-

face of an object. We use an ICP-like technique that alter-

nates between finding correspondences between symmetric

points and refining the candidate symmetry plane given the

correspondences. To ensure convergence we initialize mul-

tiple candidate symmetries based on the principle axes of

the object. Candidate symmetries that did not converge to

the true symmetries of an object are discarded using a set of

metrics that measure how well a symmetry fits a given ob-

ject. Finally, to find symmetric objects in a scene, we first

segment out indivudial objects and then apply our fitting

approach on each of the segments. Objects are segmented
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Figure 2: Visualization of the reflectional symmetry fitting approach (a) Input object pointcloud and candidate symmetry.

Black curve denotes the observed points of the object. (b) Grey curve denotes the reflected pointcloud and blue lines show

the estimated symmetric correspondences.

by extracting connected components lying above a common

support plane (such as a table). While this object segmen-

tation strategy is adequate for simple scenes where objects

stand apart from each other, it would fail for heavily clut-

tered scenes where multiple objects are in physical contact.

A more sophisticated object segmentation approach is re-

quired to deal with such cases [3].

The rest of the paper is organized as follows: Section 2

explains the process of fitting a symmetry plane to a point-

cloud of an object. Section 3 describes the filtering metrics

used to measure the fitness error between a symmetry plane

and an object. Qualitative evaluation of our approach on

synthetic and real scenes is presented section 4.

2. Symmetry fitting

In order to detect scene symmetries, we employ a geo-

metric fitting approach. Consider a pointcloud of an object

consisting of oriented points Pi = {pi, ni}, where pi is the

the position of a point and ni is its normal. A reflectional

symmetry S imposes a constraint on the position and ori-

entation of pairs of “symmetric points”. We say that two

points Pi and Pj form a symmetric correspondence under

the reflectional symmetry S if the two points reflect onto

each other i.e. Pj is close to S(Pi) - the reflection of Pi

by S. This motivates our fitting approach that alternates be-

tween symmetric correspondence estimation and symmetry

plane refinement.

We represent a symmetry plane S = {pS , nS} by a point

lying in the plane pS and the plane’s normal nS . For each

point Pi of an object pointcloud we compute its reflection

S(Pi) and search for its nearest neighbor Pj . Since the ob-

ject pointcloud may not be perfectly symmetric, and our

initial symmetry plane may not be correct, we do not ex-

pect every point to have a valid symmetric match. Thus

we only establish a correspondence if the distance between

the reflected point and its nearest neighbor is less than a

given distance threshold. In our experiments we calculate

this threshold as twice the estimated spatial resolution of the

pointcloud. Additionally, we reject all correspondences for

which the angle between the reflected source normal S(ni)
and the corresponding normal nj is greater than a threshold

(we used 45◦ in our experiments). After establishing the

correspondences, we minimize the following function for

the parameters of the symmetry plane:
∑

{i,j}

dp,pl(S(Pi), Pj) (1)

where dp,pl stands for point to plane distance and {i, j}
is the set of point correspondences. Levenberg-Marquardt

non-linear solver is used to perform the optimization. This

process is repeated until convergence or until a maximum

number of 20 iterations is reached. This procedure results

in a very accurate alignment between a symmetry and a

pointcloud. However, similar to ICP, it only converges to

a valid symmetry if the initial symmetry plane estimate is

sufficiently close to the correct solution [10].

One of the ways to generate initial symmetry candi-

dates is by jointly sampling plane positions and orienta-

tions. This is computationally prohibitive, since sampling

from an n×n×n grid is O(n3) and densely sampling from

a unit sphere incurs a large constant factor [8]. We avoid

the costly position sampling by only sampling orientations

and then refining plane positions along their normals based

on the pointcloud structure. We start by sampling points

from the surface of a unit sphere aligned to the principal

axes of the object pointcloud. Specifically, we uniformly

sample symmetry plane orientations in azimuth and eleva-

tion angles using a step size of of 45◦. For each orientation,

we construct a symmetry plane that passes through the seg-

ment’s center of mass. To refine the position of a plane, we

first find all points that could potentially form symmetric

correspondences if the symmetry plane was shifted appro-

priately. Given a point Pi, its potential symmetric neighbors
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Figure 3: Symmetry detection pipeline. Note that although several potential object segments were extracted, our approach

returns the symmetry only for the symmetric object(s). (a) Input mesh. (b) Extracted object segments. (c) Detected symme-

tries.

Pj are enclosed in a cylinder centered at Pi with an axis par-

allel to the plane normal nS . These “cylindrical” neighbors

can be found efficiently by projecting the pointcloud onto

the symmetry plane and performing a radius search. We

filter out correspondences for which the angle between the

reflected source normal S(ni) and the neighbor normal nj

is greater than 10◦. For each of the remaining correspon-

dences, we calculate the shift distance di,j as the distance

between the symmetry plane and the midpoint between Pi

and Pj . We compute the median shift dmedian from all cor-

respondences and use it to shift the symmetry candidate’s

point along its normal:

S = {pS + dmedian ∗ nS , nS} (2)

After generating the initial symmetries, we apply the global

iterative refinement described above to fit the candidate

symmetries to the pointcloud. Since some of the candidates

are expected to converge to the same symmetry, we merge

similar refined symmetry candidates. Note that this ap-

proach allows extracting multiple symmetries for the same

object, since different initial symmetries may converge to

different true symmetries of the object.

3. Symmetry filtering

The output of the fitting process described above is a set

of candidate symmetries aligned to the object pointcloud.

While some of the candidates will converge to the true sym-

metries of the object, some will converge to local minima

that do not correspond to the global object symmetries. To

filter out these incorrect detections we define two measures

of fitness of a reflectional symmetry plane to a pointcloud.

Inlier score. Inlier score Inlier(S) measures the propor-

tion of the points in the pointcloud that have symmetric cor-

respondences. It is calculated as the number of points with

symmetric correspondences divided by the total number of

points in the pointcloud.

Fitness score. Symmetry score Fit(S) measures the av-

erage quality of the symmetric correspondences of a point-

cloud. The quality of the symmetric correspondence is de-

fined as the angle between the reflected source normal and

the corresponding normal ∠(S(ni), nj). Fitness score is

calculated as:

Fit(S) =
1

|CrspS |

∑

{Pi,Pj}∈CrspS

1−
∠(S(ni), nj)

π
(3)

where |CrspS | is the set of symmetric correspondences un-

der symmetry S.

Both scores are defined in the [0, 1] range, with higher

values indicating a better fit to the pointcloud. A symmetry

hypothesis S is considered valid if it satisfies both measures

i.e. Inlier(S) > τinlier and Fit(S) > τfit. Varying the

filtering thresholds allows us to control the tolerance of im-

perfect symmetries, as well as sensitivity to noise.

4. Evaluation

We evaluate our method on the 3D datasets released for

the ICCV 2017 Symmetry Workshop Challenge [1]. Here

we show results for local symmetry detection on synthetic

and real scenes. Synthetic scenes are constructed by plac-

ing multiple 3D object models on a table, while real scenes

are 3D room reconstructions. In both cases the first process-

ing step is to detect the dominant plane in the scene (table

plane for synthetic scenes and floor plane for real scenes).

Individual object pointclouds are then obtained by extract-

ing the connected components of the mesh lying above the

support plane. Finally symmetries are fitted to the extracted

object segments. The steps of the pipeline are shown in Fig-

ure 3.

For synthetic scenes we use agressive filtering thresholds

of τinlier = 0.99 and τfit = 0.95. These are motivated by

the fact that 3D models are noise-free, hence all of points in
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Figure 4: Symmetry detection results on the synthetic dataset.

(a) (b) (c)

Figure 5: Symmetry detection results on the real dataset.

the model should have a symmetric correspondence (except

for a few points in objects that are not perfectly symmet-

ric). For the real scenes we use a looser filtering criteria of

τinlier = 0.90 and τfit = 0.90. This is motivated by the

fact that real data is noisy and may not capture the complete

object’s shape.

Figures 4 and 5 show detection results for sample scenes

in synthetic and real datasets. Our method correctly predicts

the symmetries for most of the objects. Note that it returns

very few false positives. This demonstrates that our filtering

stage is very efficient at estimating the consistency of a sym-

metry with a given object. For objects containing multiple

symmetries, our method may detect some but not all of the

symmetries. For example in Figure 4c, the fan has 5 cor-

rect symmetries (each passing through one of the blades),

while our method only returns a single one. This is due to

the fact that our initialization procedure produced only one

symmetry that was close enough to the true symmetry. This

problem can be alleviated by sampling the direction sphere

more densely during the initialization stage. However, this

comes at the cost of increased runtime. Another case of fail-

ure occurs when the distribution of points in the object is not

symmetric. This happens for objects that are not perfectly

symmetric, or have an additional ”internal” structure that

does not have the same symmetries as the external shape of

the object e.g. a cupboard with compartments inside. While

our approach can tolerate small deviations, larger ones tend

to drive the alignment process away from the true symme-

tries of the object.

5. Conclusions

In this paper we presented a novel method for detect-

ing reflectional symmetries in 3D data. The combination

of a robust symmetry fitting approach with a precise filter-

ing stage allows our method to return accurate symmetries

for objects in both synthetic and real scenes. A promis-

ing direction of future research is to apply our approach

on more cluttered scenes, where objects are piled on top

of each other and are not fully visible.
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