
Detecting Regime Transitions of the Nocturnal and Polar Near-Surface
Temperature Inversion

AMANDINE KAISER

Department of Mathematics and Computer Sciences, Freie Universit€at Berlin, Berlin, Germany

DAVIDE FARANDA

LSCE-IPSL, CEA Saclay l’Orme des Merisiers, CNRS UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay,

Gif-sur-Yvette, France, and London Mathematical Laboratory, London, United Kingdom

SEBASTIAN KRUMSCHEID

Department of Mathematics, Rheinisch-Westf€alische Technische Hochschule Aachen, Aachen, Germany

DANIJEL BELU�SIĆ
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ABSTRACT

Many natural systems undergo critical transitions, i.e., sudden shifts from one dynamical regime to another.

In the climate system, the atmospheric boundary layer can experience sudden transitions between fully

turbulent states and quiescent, quasi-laminar states. Such rapid transitions are observed in polar regions or at

night when the atmospheric boundary layer is stably stratified, and they have important consequences in the

strength of mixing with the higher levels of the atmosphere. To analyze the stable boundary layer, many

approaches rely on the identification of regimes that are commonly denoted as weakly and very stable re-

gimes. Detecting transitions between the regimes is crucial for modeling purposes. In this work a combination

ofmethods fromdynamical systems and statistical modeling is applied to study these regime transitions and to

develop an early warning signal that can be applied to nonstationary field data. The presented metric aims to

detect nearing transitions by statistically quantifying the deviation from the dynamics expected when the

system is close to a stable equilibrium. An idealized stochastic model of near-surface inversions is used to

evaluate the potential of the metric as an indicator of regime transitions. In this stochastic system, small-scale

perturbations can be amplified due to the nonlinearity, resulting in transitions between two possible equilibria

of the temperature inversion. The simulations show such noise-induced regime transitions, successfully

identified by the indicator. The indicator is further applied to time series data from nocturnal and polar

meteorological measurements.

1. Introduction

The atmospheric boundary layer (ABL) is the lowest

part of the atmosphere that is directly influenced by

Earth’s surface and across which turbulent exchanges of

momentum, heat and matter between the surface and

the free atmosphere occur. During daytime, surface

warming leads to an unstable or convective boundary

layer. During clear-sky nights, radiative cooling leads
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to a surface that is cooler than the air aloft and the

ABL becomes stably stratified. The stable stratification

can also arise when warm air is advected over a colder

surface, which is a frequent event in polar regions.

Turbulence in the resulting stable boundary layer (SBL)

is subject to buoyant damping and is only maintained

through mechanical production of turbulent kinetic

energy (TKE). Understanding and modeling the SBL

is essential for regional and global atmospheric models,

yet there are many well-documented challenges to

simulate stably stratified atmospheric flows (Sandu et al.

2013; Holtslag et al. 2013; LeMone et al. 2018). One of

the challenges is to develop an accurate understanding

and representation of distinct regimes of the SBL and

transitions between them (Baas et al. 2017).

Numerous observational and modeling studies show

that the SBL can be classified, to a first approximation,

in a weakly stable regime in which turbulence is con-

tinuous, and a very stable regime with patchy and in-

termittent turbulence, requiring a different modeling

approach (Mahrt 2014). The weakly stable regime typ-

ically occurs when cloud cover limits nocturnal radiative

cooling at the land surface, or with strong winds asso-

ciated to wind shear that produces enough TKE to

sustain turbulence. The vertical mixing is therefore

maintained and a well-defined boundary layer usually

exists in which turbulent quantities decrease upward

from the surface layer following the classical model of

Monin–Obukhov similarity theory and related existing

concepts (Mahrt 2014). The associated temperature

stratification, or temperature inversion, is weak. The

strongly stable regime occurs with strong stratification

and weak winds and does not follow the traditional

concept of a boundary layer. Transitions from weakly

stable to strongly stable regimes are caused by a strong

net radiative cooling at the surface that increases the

inversion strength and eventually leads to suppressed

vertical exchanges unless winds are strong enough to

maintain turbulence (van de Wiel et al. 2007). The re-

duced vertical mixing results in a decoupling from

the surface, such that similarity theory breaks down

(Acevedo et al. 2015). Intermittent bursts tend to

be responsible for most of the turbulent transport

(Acevedo et al. 2006; Vercauteren et al. 2016). Such

bursts alter the temperature inversion and can some-

times drive transitions from strongly to weakly stable

boundary layers.

Transitions between the different SBL regimes have

been found by modeling studies to be dynamically un-

predictable. Based on a numerical model representing

the exchanges between the surface and the SBL using a

very simple two-layer scheme, McNider (1995) showed

the existence of bistable equilibria of the system, which

can thus transition between very different states un-

der the influence of random perturbations. Interacting

nonlinear processes that lead to this bistability partly

involve thermal processes at the land surface, as was

highlighted following the hypothesis that continuous

turbulence requires the turbulence heat flux to balance

the surface energy demand resulting from radiative

cooling (van deWiel et al. 2007, 2012b, 2017). According

to this maximum sustainable heat flux hypothesis, a ra-

diative heat loss that is stronger than the maximum

turbulent heat flux that can be supported by the flow

with a given wind profile will lead to the cessation of

turbulence (van de Wiel et al. 2012a) and thus to a re-

gime transition. This concept is used by van Hooijdonk

et al. (2015) to show that the shear over a layer of certain

thickness can predict SBL regimes when sufficient av-

eraging of data is considered. Based on observations,

Sun et al. (2012) identify a height and site-dependent

wind speed threshold that triggers a transition between a

regime in which turbulence increases slowly with in-

creasing wind speed from a regime where turbulence

increases rapidly with the wind speed. The change of the

relationship between the turbulence and the mean wind

speed occurs abruptly at the transition. Sun et al. (2016)

attribute this difference to the turbulent energy parti-

tioning between turbulent kinetic energy and turbulent

potential energy (TPE): in the very stable regime, shear-

induced turbulence will have to enhance the TPE in

order to counter the stable stratification before en-

hancing the TKE.

The combined importance of the wind speed and of

the surface thermal processes has also been evidenced

by numerical studies using idealized single-column

models of the atmosphere. Single-column models with a

first-order turbulence closure scheme (Baas et al. 2017,

2019; Holdsworth andMonahan 2019) or a second-order

closure scheme (Maroneze et al. 2019) are able to rep-

resentatively simulate transitions fromweakly to strongly

stable regimes. Yet, direct numerical simulations show

that transitions from strongly to weakly stable regimes

can occur following a localized, random perturbation

of the flow (Donda et al. 2015). Field studies have

also highlighted examples of transitions induced by

small-scale perturbations of the flow (Sun et al. 2012). In

fact, a statistical classification scheme introduced

by Vercauteren and Klein (2015) shows that the SBL

flow transitions between periods of strong and weak

influence of small-scale, nonturbulent flow motions

on TKE production in the SBL. Such submesoscale

fluctuations of the flow (e.g., induced by various kind

of surface heterogeneity) are typically not repre-

sented in models but are important in strongly stable

regimes (Vercauteren et al. 2019), and may trigger
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regime transitions. Stochastic modeling approaches are

a promising framework to analyze their impact on re-

gime transitions. A related statistical classification of the

Reynolds-averaged boundary layer states introduced by

Monahan et al. (2015) highlighted that regime transi-

tions are a common feature of SBL dynamics around the

globe (Abraham and Monahan 2019). Regime transi-

tions typically take an abrupt character (Baas et al. 2019;

Acevedo et al. 2019). Predicting the transition point

remains a challenge (van Hooijdonk et al. 2016).

Abrupt or critical transitions are ubiquitous in com-

plex natural and social systems. The concept of critical

transition is formally defined in dynamical systems the-

ory and relates to the notion of bifurcation (Kuznetsov

2013). When the dynamics is controlled by a system of

equations depending on an external parameter (often

called forcing), the stability of the equilibrium solutions

can change abruptly and this is also reflected on mac-

roscopic observables of the system. Sometimes, one can

have early warning signals of a transition because the

systems experience some influences of the bifurcated

state before actually reaching it. The motion of a parti-

cle undergoing random fluctuations in an asymmetric

double-well energy potential V is a minimal system to

detect early warnings, in which each well or local mini-

mum of the energy potential corresponds to a stable

equilibrium state of the system. For a small fixed level of

noise, the control parameter is DV, the depth of the well

in which the particle is located, leading to an energy

barrier that the particle has to overcome in order to

transition to the second stable equilibrium. If DV is

large, the distribution of the positions of the particle will

be quasi Gaussian and the autocorrelation function of

the position of the particle will have an exponential

decay. Conversely, if DV is reduced when the particle

approaches the bifurcation point, then the particle

position’s distribution starts to ‘‘feel’’ the effect of the

other state and the distribution will be skewed toward

the new state. Similarly, the excursions from the

equilibrium position will become larger, increasing

the autocorrelation time. Early warning signals can

then, e.g., be defined based on the changes of the

autocorrelation time.

These first early warning signs have been successfully

applied to several systems with excellent results (Scheffer

et al. 2009, 2012), including the present context of SBL

regime transitions (van Hooijdonk et al. 2016). However,

sometimes, transitions can happen without detectable

early warnings (Hastings and Wysham 2010). The main

limitation of early warning signals based on the increase

of autocorrelation is that their activation does not al-

ways correspond to a bifurcation. Indeed, if a single

well potential widens, as it can occur in nonstationary

systems, the distribution of a particle’s position experi-

ences the same increase in skewness and autocorrelation

function without the need of approaching a bifurcation

(Lenton et al. 2012; Faranda et al. 2014). In our context

of SBL flows, nonstationarity of the energy potential

governing the dynamics can be due to changes in the

mean wind speed or cloud cover, for example. For these

reasons, (Faranda et al. 2014) have introduced a new

class of early warning indicators based on defining a

distance from the dynamics expected from a particle

evolving in a single-well potential. The suggested indi-

cator statistically quantifies the dynamical stability of

the observables and was already used by Nevo et al.

(2017) to show that strongly stable flow regimes are

dynamically unstable and may require high-order tur-

bulence closure schemes to represent the dynamics.

Alternative new early warnings are based on the com-

bination of statistical properties of observables when

approaching the bifurcation (Chen et al. 2012).

In the present analysis, we investigate if the early

warning indicator introduced by Faranda et al. (2014)

can be used to detect nearing transitions between SBL

flow regimes, based on both simulated data and field

measurements. We show that the conceptual model that

was recently suggested by van de Wiel et al. (2017) to

understand SBL regime transitions in terms of thermal

coupling of the land surface is equivalent to a dynamical

system representing the evolution of the temperature

inversion evolving in a double-well energy potential.We

extend this conceptual model to a stochastic model

where added noise represents the effect of natural fluc-

tuations of the temperature inversion’s rate of change.

The resilience of equilibria of the nonrandom model to

perturbations as well as the bifurcation points are known

analytically (as was discussed in van deWiel et al. 2017),

and we thus use the simulated data to test our indicator.

Additionally, the indicator relies on calculating statisti-

cal properties of the data with a moving window ap-

proach and is sensitive to the choice of the window

length. We suggest two complementary, data-driven but

physically justified approaches to define an appropriate

window length for which results can be trusted. Finally,

the indicator is applied to nocturnal temperature in-

version data from a site in Dumosa, Australia, as well

as from temperature inversion data from Dome C,

Antarctica.

2. Analyzing the dynamical stability of stable

boundary layer regimes

The goal of our study is to investigate if a statistical

early warning indicator of regime transitions can be

successfully used to detect nearing regime transitions in
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the SBL. In section 2a, the conceptual model introduced

by van de Wiel et al. (2017) to study regime transitions

will be introduced, along with its dynamical stability

properties. In section 2b, the model is extended to a

stochastic model in which noise represents fluctuations

in the dynamics of the near-surface temperature inver-

sion. In section 2c, we present a statistical indicator that

was introduced in Faranda et al. (2014) and applied to

SBL turbulence data in Nevo et al. (2017) to estimate

the dynamical equilibrium properties of time series,

based on a combination of dynamical systems concepts

and stochastic processes tools. The conceptual model

describes the evolution of the near-surface temperature

inversion and is used to produce time series of controlled

data for which the theoretical equilibrium properties

are known.

a. Model description and linear stability analysis

A conceptual model was introduced by van de Wiel

et al. (2017) to study regime transitions of near-surface

temperature inversions in the nocturnal and polar at-

mospheric boundary layer. The authors were able to

determine a connection between the dynamical stabil-

ity of the temperature inversion and the ambient wind

speed U through their model and measurements.

Mathematically speaking, the model is a dynamical

system represented by a first-order ordinary differential

equation (ODE), which describes the time evolution of

the difference between the temperature at a reference

height Tr and the surface temperature Ts. Although the

equilibrium properties of the system and the dynamical

stability properties (i.e., the resilience to perturbations)

of all equilibria states were thoroughly discussed in van

de Wiel et al. (2017), for the sake of completeness we

briefly introduce the model and summarize the linear

stability analysis of equilibrium points of the resulting

ODE for different values of a bifurcation parameter.

The bifurcation parameter is related to the ambient

wind speed.

Assuming that the wind speed and temperature are

constant at a given height zr, the following equation

describes the evolution of the near-surface inversion

strength, based on a simple energy balance at the ground

surface:

c
y

dDT

dt
5Q

n
2G2H . (1)

In this energy balance model, cy is the heat capacity

of the soil, DT 5 Tr 2 Ts is the inversion strength

between the temperature at height zr and at the sur-

face zs, Qn is the net long wave radiative flux (an

energy loss at the surface that will be set as a con-

stant), G is the soil heat flux (an energy storage term

that will be parameterized as a linear term), and H is

the turbulent sensible heat flux (a nonlinear energy

transport term that will be parameterized in the

following).

After parameterizing the fluxes, the model has

the form

c
y

dDT

dt
5Q

i
2lDT2 rc

p
c
D
UDTf (R

b
) , (2)

in which Qi is the isothermal net radiation, l is

a lumped parameter representing all feedbacks from

soil heat conduction and radiative cooling as a

net linear effect, r is the density of air at constant

pressure, cp is the heat capacity of air at constant

pressure, cD 5 [k/ln(zr/z0)]
2 is the neutral drag co-

efficient, with k’ 0.4 the von Kármán constant, z0 the

roughness length, and zr the reference height, U is

the wind speed at height zr, Rb 5 zr(g/Tr)(DT/U
2) is

the bulk Richardson number, and f(Rb) is the sta-

bility function used in Monin–Obukhov similarity

theory.

The lumped parameter l corresponds to a linear

term in the model as the soil is assumed to respond

linearly to the temperature inversion. Moreover,

DTf(Rb) is a nonlinear term due to the nonlinear de-

pendence of turbulent diffusion on the vertical tem-

perature gradient.

Following van de Wiel et al. (2017), instead of ana-

lyzing the dynamical stability of the energy-balance

model (2) itself, we will present the linear stability

analysis of a simplified system that has a similar math-

ematical structure but is mathematically convenient to

analyze. Using a cutoff, linear form for the stability

function, i.e., f(x) 5 1 2 x and f(x) 5 0 for x . 1, the

simplified model is

dx(t)

dt
5 g[x(t)], where g(x)5

�

Q
i
2 lx2Cx(12 x) for x# 1,

Q
i
2 lx for x. 1

(3)

and x(t0) 5 x0. Here, up to dimensional constants, x

represents DT. The parameter C will be treated as a

bifurcation parameter for this simplified system. Similar

types of stability functions are typically used in numer-

ical weather prediction tools, and the cutoff form facil-

itates the mathematical analysis of the model. Note that
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to be consistent with the original model, the stability

function should include a dependence on both the

temperature and the wind speed via Rb. Removing this

dependence as it is done here changes some of the

nonlinearity; however, it makes the mathematical analysis

very simple and the qualitative behavior of the system is

similar to the original system (see van de Wiel et al. 2017,

their Figs. 8 and 10). In that sense, the model loses some

physical significance for mathematical convenience, but

the qualitative nonlinear feedback processes are main-

tained. This simplification also has for implication that

while C is related to the wind speed, it cannot be directly

interpreted as such in the context of the energy balance

model. For a deeper discussion of the model, its simplifi-

cations and the model parameters, the reader is referred

to its thorough presentation by van de Wiel et al. (2017).

For fixed and physically meaningful values of Qi and

l, Eq. (3) can have either one, two, or three possible

equilibrium solutions depending on the fixed values [see

illustration in van de Wiel et al. (2017), Figs. 10–12, and

related discussion for more details]. The equilibrium

solutions will be functions of the parameter C, which we

will consider as a bifurcation parameter in the following.

Physically, the case of strong thermal coupling between

the surface and the atmosphere, corresponding to a

large value of l, results in one unique equilibrium so-

lution whose value depends on C. In van de Wiel et al.

(2017), it is hypothesized that such a case is represen-

tative of a grass site such as Cabauw, the Netherlands.

The solution is linearly stable to perturbations, i.e., lin-

ear stability analysis shows that perturbed solutions are

attracted back to the equilibrium. The case of no cou-

pling (l 5 0) leads to two equilibrium solutions, one of

which is linearly stable and the other unstable to per-

turbations (i.e., perturbed solutions are repelled by the

equilibrium). A weak coupling strength, with an inter-

mediate value of l that could be representative of a

snow surface or another thermally insulated ground

surface, results in three possible equilibrium solutions.

The two extreme solutions are stable to perturba-

tions, while the middle equilibrium solution is unstable.

Perturbed solutions around the middle equilibrium will

thus be attracted by either the upper or the lower

equilibrium. Plotting those three equilibrium solutions

as a function of the bifurcation parameter C results in a

back-folded curve, which is qualitatively similar to ob-

servations of the temperature inversion shown as a

function of wind speed at Dome C (see Vignon et al.

2017). The bifurcation diagram is shown in Fig. 1 for

parameter values such that l. 0 andQi. l, resulting in

the case with three possible equilibrium solutions. By

convention, the unstable equilibrium branch is denoted

by a dashed line. In the following, we will analyze

transitions between the two stable equilibria. If the system

undergoes randomperturbations in this bistable context, a

perturbation could drive the system sufficiently far from a

stable equilibrium state so that it comes near the unstable

equilibrium and finally gets attracted by the second

equilibrium. The three possible equilibria are denoted as

xe1, xe2, and xe3. To study such regime transitions induced

by random perturbations, the conceptual model is ex-

tended with a noise term in the following section.

b. Extending the conceptual model by randomization

The conceptual model (3) can be equivalently written

in terms of a gradient system, in which the temperature

inversion represented here by x evolves according to the

influence of an underlying potential V(x). The ran-

domized model to be introduced will be based on this

gradient structure. Specifically, the initial-value problem

(3) can be written as

dx

dt
52

dV

dx
, x(t

0
)5 x

0
,

where it is easy to see that the potential is given by

V(x)5

8

>

>

<

>

>

:

1

2
x2(l1C)2

C

3
x3 2Q

i
x for x# 1,

1

2
lx2 2Q

i
x1

1

6
C for x. 1:

(4)

The linear stability analysis discussed in the previous

section can thus be understood in the sense that the

temperature inversion x equilibrates at a local minimum

of a potential V. That is, an equilibrium point xe satisfies

V0(xe) 5 0. Figure 2 sketches the form of the potential

FIG. 1. Bifurcation plot for simplifiedmodel. The lowest, middle,

and upper branches correspond, respectively, to the equilibria xe1 ,

xe2 , and xe3 .
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with the exemplary parameter values l 5 2, Qi 5 2.5,

and C5 6.4. Note that V(x) is a double-well potential in

that case where each local minimum corresponds to one

of the stable equilibrium points xe1 and xe3, while the

local maximum corresponds to the system’s unstable

equilibrium xe2.

While the conceptual model (3) has proven very

insightful to explain observed sharp transitions in

temperature inversions, it only allows for regime

transitions when drastic changes in the model pa-

rameters (i.e., bifurcations) occur. That is, the model is

overly idealized and in reality one can expect regime

transitions to also take place due to small natural

fluctuations of the temperature inversion itself in

certain cases, e.g., when the potential barrier sepa-

rating the two local minima and corresponding stable

equilibria is shallow. Therefore, we will consider

an appropriate randomized variant of the model.

Specifically, we consider the stochastic differential

equation (SDE) model

dx52
dV(x)

dx
dt1sdB, x(t

0
)5 x

0
, (5)

to account for small random perturbations to the tem-

perature inversion’s rate of change. Here, B denotes a

standard Brownian motion (i.e., a stochastic process)

and s . 0 scales the intensity of the fluctuations, while

the potential V is as in (4). As the randomized dynamics

is characterized by the same potential, also the equilib-

rium points of the nonrandom model (3) will describe

the dominant effects of the randomized model’s dy-

namics. However, due to the presence of the noise, the

stable equilibria of the nonrandom model (3) are not

limiting points for the stochastic counterpart in (5),

in the sense that the temperature inversion may still

fluctuate after reaching a stable equilibrium. The rea-

son is that in a context of two stable equilibria

(i.e., for parameter values such that the model (3) ex-

hibits two stable equilibria, denoted earlier as the ther-

mally weakly coupled state), the random perturbations

can trigger transitions from one stable equilibrium to

another one. We will therefore refer to the formerly

stable states as: metastable. Note that depending on the

coupling strength and noise intensity, the likelihood of

regime transitions can change drastically and the system

may or may not exhibit metastable states. The type of

noise (additive or multiplicative for example, or noise

with a Levy distribution) will also affect regime

transitions. In our subsequent simulations and ana-

lyses, we will focus on the case of two metastable

states with additive noise and leave other cases for

future research.

The effect of these random perturbations to a meta-

stable equilibrium point xe can be understood through a

localized approximation of the original dynamics. More

precisely, consider a second-order Taylor approxima-

tion of the potential around an equilibrium point xe,

yielding the quadratic approximate potential ~V:

V(x)’ ~V(x):5V(x
e
)1

1

2

d2V

dx2
(x)

�

�

�

�

x5xe

(x2 x
e
)2 .

For the same parameter values that were used to plot

the original potential in Fig. 2, the red line in the

same figure shows the approximate quadratic potential

around the equilibrium value xe1. Using the locally

quadratic potential, we can thus define a locally ap-

proximate dynamics for the temperature inversion by

replacing V in (5) by ~V, resulting in

dX52k(X2 x
e
) dt1sdB, X(t

0
)5 x

e
,

where k:5d2V/dx2(x)jx5xe
2 R and X is introduced to

describe the approximate dynamics of the former x. This

approximate dynamics is an example of the well-studied

Ornstein–Uhlenbeck process and it provides an accu-

rate description of the full dynamics in the neighbor-

hood to the equilibrium point xe. Discretizing the

Ornstein–UhlenbeckprocessXusing theEuler–Maruyama

scheme with a step-size Dt:5 T/L for some positive in-

teger L we furthermore find that the process at discrete

times t2 {1, . . . ,L} approximately satisfies the difference

equation

X
t
5X

t21
2 k(X

t21
2 x

e
)Dt1sfB(tDt)

2B[(t2 1)Dt]g, X
0
5 e

e
,

in the sense that Xt ’ X(tDt). By defining m:5kxe 2 R,

f:5 (12 kDt) andwt:5 s{B(tDt)2B[(t2 1)Dt]} this can

be written as

X
t
5m1fX

t21
1w

t
,

which is a so-called autoregressive model of order 1,

denoted AR(1), thanks to the properties of the (scaled)

FIG. 2. Example of a potential V(x) [Eq. (4)] and its local approxi-

mation through the quadratic potential ~V(x) (see text for details).
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Brownian increments wt. Consequently, we see that the

discretized Ornstein–Uhlenbeck process can be accu-

rately approximated by an AR(1) process. This deriva-

tion can also be found in Thomson (1987). Combining

this with the observation that the Ornstein–Uhlenbeck

process offered an accurate approximation to the orig-

inal dynamics in the vicinity of a stable equilibrium, we

can thus conclude that the local dynamics in the neigh-

borhood of a metastable state can be approximately

described by an AR(1) process.

c. Statistical indicator for the dynamical stability of

time series

In section 2a we discussed the simplified model by van

de Wiel et al. (2017) that was developed to understand

regime transitions in near-surface temperature inver-

sions. This model provides a hypothesis that explains the

existence of two possible equilibria of the temperature

inversion for a given wind speed. In agreement with the

randomized conceptual model introduced in the previ-

ous section, we say that a system exhibiting at least

two metastable equilibria is called metastable. In this

section the goal is to describe a methodology for statis-

tically detecting critical transitions based on time series

data. For the detection we apply an indicator for the

dynamical stability (i.e., the resilience to perturbations)

of time series, which was defined by Faranda et al. (2014)

and applied to SBL turbulence data in Nevo et al.

(2017). The indicator uses a combination of methods

from dynamical systems and from statistical modeling.

In its definition, deviations from AR(1) processes in

the space of so-called autoregressive-moving-average

(ARMA) models are used to quantify the dynamical

stability of a time series. A time series xt, t 2 Z, is an

ARMA(p, q) process if it is stationary and can be

written as

x
t
5 n1�

p

i51

f
i
x
t2i

1w
t
1�

q

j51

u
j
w

t2j
, (6)

with constant n, coefficients fp, uq,and {wt} being white

noise with positive variance s2. The coefficients fp

and uq additionally have to satisfy some constraints

(see Brockwell and Davis 2016). Notice that AR(1) 5

ARMA(1, 0). Intuitively the parameters p and q are

related to the memory lag of the process. The longer the

system takes to return to the equilibrium after a per-

turbation, the more memory we expect to observe in the

process. Examples of simple systems along with their

ARMA(p, q) characteristics can be found in Faranda

et al. (2014).

In section 2b, it was shown that the dynamics when

the system is close to a stable equilibrium can be

approximated by anAR(1) process.We will assume that

far from the transition from one dynamical regime to

another, the time series of a generic physical observable

can be described by an ARMA(p, q) model with a rea-

sonably low number of p, q parameters and coefficients.

Indeed, far from a transition, the system will tend

to remain around an equilibrium despite random per-

turbations, and excursions from the equilibrium are

short. The idea behind the modeling assumption is that

ARMAprocesses are an important parametric family of

stationary time series (Brockwell andDavis 2016). Their

importance is due to their flexibility and their capacity

to describe many features of stationary time series.

Thereby, choosing ARMA(p, q) processes for modeling

the dynamics away from a stable state is a reasonable

Ansatz. Close to a transition, the resilience of the system

to perturbations is weak and longer excursions from the

equilibrium occur. The statistical properties (such as the

shape and/or the persistence of the autocorrelation

function) of the system change drastically, leading to an

expected increase of the value p 1 q (Faranda et al.

2014). Based on this, we use ARMA(p, q) models in the

following to analyze the stability of a dynamical system.

The dynamical stability indicator that will be defined

next will be used to obtain indicators for detecting the

system’s proximity to a regime transition.

To quantify the local stability of a time series, we first

slice the time series xt with a moving time window of

fixed length t. In other words, we obtain subsequences

{x1, . . . , xt}, {x2, . . . , xt11}, . . . , {xt2t11, . . . , xt} of the

original time series that overlap. By slicing the original

time series, we obtain a sequence of shorter time series

for which it is reasonable to suppose that they are

amenable toARMAmodeling. In detail, we assume that

the subsequences are realizations of linear processes

with Gaussian white noise, which then implies that the

process is stationary. We then fit an ARMA(p, q)

model for every possible value of (p, q), with p# pmax

and q # qmax, to these subsequences, where pmax and

qmax are predefined thresholds. Afterward we choose

the best fitting ARMA(p, q) model by choosing the

one with the minimal Bayesian information criterion

(BIC) (Schwarz 1978), which is a commonly used

and well-studied tool in statistical model selection.

Assuming that we have the maximum likelihood es-

timator b̂:5 (n̂, f̂1, . . . , f̂p, û1, . . . , ûq) of the fitted

ARMA(p, q) model (which can be obtained using a

so-called innovation algorithm, as it is, for example,

implemented in the ‘‘forecast’’ R package (Hyndman

et al. 2019), which is used for the analyses), the BIC is

formally defined as

BIC(p, q)522 lnL(b̂)1 ln(t)(p1 q1 1), (7)
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where L(b̂) denotes the associated likelihood function

evaluated at the maximum likelihood estimator b̂. The

second term introduces a penalty for high-order models

(i.e., those that contain more parameters) to avoid

overfitting.

We reiterate that when the system is close to a

metastable state, its dynamics can be well approximated

by an AR(1) process. When the system is approaching

an unstable point separating multiple basins of attrac-

tion, the approximation no longer holds as the under-

lying potential cannot be approximated by a quadratic

potential anymore. The change in the shape of the po-

tential introduces new correlations in the time series,

resulting in higher-order ARMA terms when fitting

such a model to data.

The definition of the stability indicator is based on this

observation, in the sense that it assumes that the dy-

namics near a metastable state can be modeled by an

ARMA(1, 0) orAR(1) process. Specifically, the stability

indicator is defined as

Y(p,q; t)5 12 exp

�

2jBIC(p, q)2BIC(1, 0)j

t

�

. (8)

For a stable state, the most likely statistical model is

an AR(1) process and one expects that Y5 0. The in-

dicatorY gives a normalized distance between the stable

state (Y5 0) and the state in which the system is. The

limit Y/ 1 corresponds to a most likely statistical

model of high order and probably to a nearing transi-

tion. While a formal proof of this statement is still

missing, tests performed for systems of increasing com-

plexity in Nevo et al. (2017) showed promising results

where the indicator correctly identified changes in the

stability of metastable states. Note that the character of

the noise present in the physical system (additive noise,

multiplicative, Levy process, etc.) will affect the ARMA

model approximation and impact the values of Y. To

simplify the notation, we drop the dependence ofY on p,

q, and t in the following discussion.

The reliability of Y highly depends on the choice of t,

the window length (which we will consider in number

of discrete observations in the following), and it re-

lates to the characteristic time scales of the dynamics.

Intuitively, the window length, when converted to its

equivalent physical duration (i.e., the number of discrete

observations multiplied by the discrete sampling time),

has to be shorter than the residence time scale in one

basin of attraction (i.e., the time spent in the neighbor-

hood of an equilibrium before transitioning to another

one) in order to satisfy the local stationarity, but large

enough so that statistical model estimation is reliable. In

winter at Dome C where the polar winter results in a

near absence of daily cycle, no preferred time scale of

residence around an equilibrium of the temperature

inversion was observed (an equilibrium can remain for

several days); however, the transition between two

equilibria was observed to take place over a time scale

on the order of 10 h (Baas et al. 2019). For nocturnal

flows, the residence time scale is tightly connected to the

daily cycle and could be of a few hours during the night,

or the entire night. The transition between two equi-

libria typically takes place over a duration of about a half

hour. For reliable statistical estimation, multiple tests

showed that a minimum window length of 20 discrete

points is needed. With a sampling time of 1min, that

means that a moving window of approximately 20 or

30min may be appropriate.

In addition, the sampling frequency has to be fine

enough to sample typical fluctuations of the dynam-

ics. In the following analyses, we find a sampling

frequency of 1min to be appropriate for that purpose.

The characteristic time scale here is given by the time

scale at which the system recovers from perturbations

(which is estimated by linear stability analysis in the

case where the model is known; see, e.g., van de Wiel

et al. 2017), and the time interval between two ob-

servations should be close to or smaller than this

quantity so that (small-scale) local fluctuations can

be resolved. Since the characteristic time scales of

the system cannot be known analytically in many

situations, for example when analyzing time series

from atmospheric models or from field data, we sug-

gest two data-driven approaches to select a window

length:

d In the first approach, the mean residence time around

each metastable state as well as the mean transition

time between the two states will be estimated based

on a data clustering approach.The observations will be

clustered in the metastable regimes and an interme-

diate, transition regime. From the clustered data, the

mean residence time in each cluster will be evaluated.

This approach will provide an upper bound to select

the window length.
d The second approach is motivated by the fact that the

indicator Y is obtained through a statistical inference

procedure through the definition of the BIC, which

involves fitting suitable ARMA processes to data.

Specifically, a maximum likelihood approach is used,

which assumes that subsequences are sampled from a

normal distribution. To assess the validity of this

statistical approach, a normality test will be imple-

mented as a criterion to select a window length for

which the normality assumption is justified and

ARMA model estimation is reliable.
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Both approaches are applicable when the data-

generating model is unknown. This is important in

cases where data showing signs of metastability are

available, but an underlying model is unknown. A

summary of the full algorithmic procedure used to cal-

culate the statistical indicator is given in appendix C.

1) CLUSTERING APPROACH: K MEANS

In the first approach, we suggest using the K-means

algorithm (Hartigan and Wong 1979, see pseudo code in

appendix A) to select a window length for the analysis. In

the context of analyzing transitions in the temperature

inversion, the idea is to cluster the data into three dif-

ferent clusters: data around each stable fixed point and

data near the unstable fixed point (in other words, data

covering the transition periods between two metastable

states). By that, the goal is to estimate the average time

needed by the system to transition between two meta-

stable states. Themean residence timewithin each cluster

is calculated from the time series of cluster affiliation.We

choose t (recall that we consider it in number of discrete

observations and not in physical time) such that it is

smaller than the minimal mean time spent in one cluster,

which should ensure that subsequences remain mostly

around one equilibrium. This value is denoted by tKmeans.

For the simulated data in the following, each simulated

time series will be assigned a window length tKmeans by

this procedure. For the nocturnal dataset, we cluster the

entire dataset once and obtain a length tKmeans of 22

points, corresponding to a duration of 22min. For the

polar dataset, only one continuous time series during a

polar winter will be considered and assigned one value of

tKmeans, namely, 10 points, corresponding to a duration of

100min. This window length is insufficient to obtain re-

liable statistical estimations.

Note that this clustering approach to determining a

residence time scale around an equilibrium is a crude ap-

proximation and suffers frommany caveats: a high density

of data close to a given value of the temperature inversion

may not necessarily relate to the existence of metastable

equilibria, but could occur due to nonstationary dynamics

or complex nonlinear effects, for example. Nevertheless,

we use it as a first approach and future research may result

in more reliable approaches. In the following analyses, the

K-means procedure can be interpreted as providing an

upper bound for selecting a window length for the analysis

and thus, combined with the following criterion, will offer

an applicability criterion for our method.

2) STATISTICAL APPROACH: ANDERSON–DARLING

NORMALITY TEST

The K-means clustering approach described above

estimates the system’s physical time scales, but the

statistical properties of the process should also be con-

sidered for reliable calculations. To fit ARMA models

reliably and to calculate the Bayesian information cri-

terion for ARMA model selection, we need the under-

lying process to follow a normal distribution. Note that

the reliability of ARMA model fitting generally in-

creases for increasing number of data points (assuming

stationarity remains fulfilled). In this approach, we

suppose that the subsequences are sampled from a

normal distribution, at least for some window length t.

We then choose t as the biggest window length such that

this normality assumption holds (more precisely, such

that the normality hypothesis cannot be rejected). This

value is denoted by tAD. If we find that tAD has to be

much larger than tKmeans to fulfil the normality as-

sumption, we will interpret this as a sign of under-

sampling in the data.

Specifically, the statistical test results in a p-value for

each subsequence, and we choose the window length

such that the median of the p-values of all subsequences

is above a threshold for which the null hypothesis cannot

be rejected. The normality test applied here is the

Anderson–Darling test (Anderson and Darling 1952),

abbreviated AD test, as it is, for example, more stable

than the Kolmogorov–Smirnov test (Stephens 1974).

Further details of the AD test are summarized in

appendix B. Similar to the clustering approach, the

window length tAD for which normality cannot be re-

jected is selected for each analyzed time series, and this

value of tAD is then used for all subsequences of the

time series. Each of the simulated dataset, the noctur-

nal dataset and the polar dataset will be assigned a

single value of tAD. The value of tAD for the nocturnal

dataset is 19 discrete points, hence 19min with a sam-

pling frequency of 1min. For the polar dataset, the

value of tAD is 43 points corresponding to a duration of

430min.

3. Stability analysis of simulated and observed time

series

In this section we quantify the reliability of the sta-

bility indicator introduced in section 2c. We start by

testing it on a controlled dataset generated by the sim-

plified model for near-surface temperature inversion

(see section 2a) and then proceed by applying Y, the

stability indicator, to observational data. In the tests

we use the auto.arima(�) function from the ‘‘forecast’’

R package (Hyndman et al. 2019). The auto.arima(�)

function fits ARMA(p, q) models by calculating the

maximum likelihood estimators for a given model order

(using the innovation algorithm mentioned earlier). It

calculates the corresponding BIC [using the definition (7)]
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for all ARMA(p, q) models with p# pmax and q# qmax,

where pmax and qmax are thresholds set to 10 in our ap-

plication, and then it chooses theARMAmodel with the

minimal BIC value. This procedure is repeated for each

subsequence of data, using the moving window ap-

proach, and the minimal BIC value leads to the optimal

ARMA(p, q) model to represent the given subsequence.

a. Simulated time series

To generate the simulated data, we use the conceptual

randomized model (5), which we recall here for the

reader’s convenience:

dx(t)52
dV[x(t)]

dx
dt1sdB(t), x(t

0
)5 x, 0# t#T ,

whereV(x) is the energy potential defined in (4). That is,

the data-generating model reads

dx5

�

[Q
i
2lx2Cx(12 x)] dt1sdB , x# 1,

(Q
i
2 lx) dt1sdB , x. 1:

(9)

The SDE model (9) is approximated path-wise (i.e.,

for each realization of the driving Brownian path) using

the Euler–Maruyama scheme.

For the purpose of testing the accuracy of the Y in-

dicator and its potential to detect nearing regime tran-

sitions, one realization {xt} of the stochastic process is

used for each fixed value of the bifurcation parameters

C. Multiple fixed values of C are used, resulting in one

time series per value of C. The initial parameters are set

to t05 0 and x(t0)5minfxeiji5 1, 2, 3gwhere xei are the

three equilibria of the system. To generate the con-

trolled dataset the model parameters are set to l 5 2,

Qi 5 2.5, and s5 0.35. The value of C is varied between

C 5 5.3 and C 5 7.2 with discrete increments of 0.1 and

one simulation is done per value of C. The simulations

are run for n 5 2000 time steps of size Dt 5 0.01. The

amplitude of the noise, or diffusion coefficient, s 5 0.35

is chosen as it resulted in trajectories for which regime

transition could be observed on the time interval [0, T5

nDt 5 20]. The range for C is chosen because for these

values the time series shows frequent transitions

from one metastable state to another. To choose the

window length t we apply both the K-means algo-

rithm [section 2c(1)] and the Anderson–Darling test

[section 2c(2)]. The length t is determined individually

for each simulation, i.e., for each fixed value of C. The

K-means algorithm can be used to estimate the amount

of discrete observation points covering the transition

time. We set the cluster number to three as we expect

three equilibria. The results of the clustering algorithm

are exemplary shown in Fig. 3 for C 5 6.4. Note that

t2 [0, nDt]5 [0, 20], whereas wewill express our window

length t in number of discrete points in the following.

In this case the equilibria are xe1 5 0:46 (metastable),

xe2 5 0:97 (unstable), and xe3 5 1:25 (metastable). The

cluster centers, estimated by theK-means algorithm, are

0.46, 0.97, and 1.31, which are a close approximation of

the equilibria. Therefore, we expect a good estimation

for the amount of points covering the transition. The

average time spend in each cluster are (for C 5 6.4):

mean(T1) 5 112.2, mean(T2) 5 94, and mean(T3) 5

286.67, where mean(Ti) is the average time spent with-

out observed transitions in cluster i 2 {1, 2, 3} expressed

in number of discrete points. The minimal mean resi-

dence time is thus mean(T2)5 94 and provides an upper

bound to select a window length that respects the time

scales of the system. The window length t is thus chosen

such that it is smaller than the minimal average time

spent in one cluster, i.e., for C 5 6.4 we choose t ,

tKmeans:5min {mean(Ti)ji5 1, 2, 3}5 94. For all tested

C, we choose t 5min {mean(Ti)ji5 1, 2, 3}2 5 in order

to give room for some uncertainty in the evaluation of

the time spent in each cluster, due to potential overlaps

of the clusters (we recall that the minimal mean resi-

dence time should be understood as an upper bound to

select t). By applying Y to the data generated by the

simplified model with C 5 5.3, C 5 6.4, and C 5 7.2 we

get the results shown in Fig. 4. The solid red lines cor-

respond to the stable equilibria and the dotted red line

to the unstable one. The colors ranging from dark blue

to yellow represent the stability of the points measured

FIG. 3. Clustered simulated time series forC5 6.4 withK-means

algorithm. All points with the same color correspond to the same

cluster. The window length estimated by the K-means algorithm is

tKmeans 5 94 time steps, with a discrete time step Dt5 0.01. Hence

the window duration corresponds to 0.94 time units.
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by Y and we always color the last point of the subse-

quence. The simulation is initialized around the stable

equilibrium xe1, where short memory of the random

perturbations should prevail. As expected, the values

of Y remains close to 0 [corresponding to a most likely

AR(1) model] as long as the simulation oscillates

around the equilibrium. The time series eventually ap-

proaches the neighborhood of the unstable equilibrium

where long memory properties are to be expected and

thus higher-order ARMA(p, q) models, hence larger

values of Y, are more likely. This first transition through

the unstable equilibrium is well recognized with higher

values of Y (green dots after the dotted red line).

The Anderson–Darling test can be used to find the

biggest t for which we can assume that most of the

subsequences are sampled from a normal distribution

and hence trust the ARMA model selection and fitting.

As shown in Fig. 5, for C 5 6.4 the Anderson–Darling

test yields that for t 5 67 the median of the p-values for

all subsequences is greater than the significance level

0.05. The solid line in the gray boxes is the median of the

p-values for a fixed t while the upper and lower border

of the gray boxes refer to the upper and lower quartile of

the p-values. The dotted horizontal line is the signifi-

cance level. We report that the values of tAD given by

the Anderson–Darling test are ranging from 60 to 70

discrete points for all values for C.

Figure 6 summarizes the Y values obtained for dif-

ferent choices of t and different values of C in a bifur-

cation diagram. In the figure, the equilibrium solutions

of the deterministic Eq. (3) are shown by a red line for

the considered range of values of C. This is the same

diagram as shown in Fig. 1, where the upper and lower

branches of the equilibrium solution correspond to the

two stable equilibria, while the middle one is the un-

stable equilibrium separating the two basins of attrac-

tion of the stable equilibria. A discontinuity in the

solution is visible between the upper and middle solu-

tion branches, which is due to the discontinuity intro-

duced by the cutoff form of the stability function. The Y

values obtained for the simulations of the stochastic

system [Eq. (9)] for all considered values of C are then

shown as a scatterplot along with the equilibrium solu-

tion, and the darker color corresponds to higher values

of Y. As the initial condition for all simulations is taken

at the lowest equilibrium values, the transitions are ex-

pected to occur between the lower and upper equilib-

rium branches when the system transitions from the

basin of attraction of the lowest equilibrium value to

that of the highest value. High values of Y are indeed

mainly found in this region of the diagram.

Three methods are used to select the value of t and

the results associated with these window sizes are shown

in Fig. 6. In Fig. 6a, t 5 tKmeans 2 5 is used. Around the

stable branches, values of Y are small, denoting that

stable states are detected as such. Large values of Y are

found between the unstable branch and the upper stable

branch of the bifurcation diagram, indicating that tran-

sitions from the lower to the upper stable branches are

detected by the indicator. The fact that the high values

are not exactly located around the unstable branch is

FIG. 4. Y for simplified model with (a) C 5 5.3, (b) C 5 6.4, and

(c) C5 7.2 and added noise, estimated for a window length (a) t 5

54, (b) t 5 89, and (c) t 5 143 discrete time steps. The gray dots

correspond to missing values, which occur because we only color

the last point of the modeled subsequence. Moreover, in rare cases

the auto.arima(�) R function is not able to find an appropriate

model. Full red lines mark the stable equilibria, while the dotted

red line marks the unstable equilibrium.
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due to the use of a finite window size for the calculation:

in the diagram, the color is always assigned to the last

point of the subsequence. For small values of C, e.g., for

C 5 5.4, large values of Y are occasionally inappropri-

ately found around the upper stable branch. For smallC,

the potential well will be relatively steep and the system

rapidly approaches the second equilibrium, so that the

detection can be too slow. Figure 6b shows the results for

Y when choosing t according to the Anderson–Darling

test, denoted as tAD. The figure is very similar to the one

using tKmeans except that forC# 5.6 there are more high

values of Y located around the stable branch. This is due

to the fact that for these C’s the t values chosen by the

Anderson–Darling test are larger than the ones esti-

mated by the K-means algorithm. Consequently, the

local stationarity assumption may break down. For C $

5.9 the values of t given by the AD test are smaller than

those of theK-means algorithm. In these cases Y gives a

good indication for the stability. Figure 6c is a bifurca-

tion plot showing only the time series for which t can be

chosen to satisfy both the K-means and the Anderson–

Darling condition, i.e., tAD, tKmeans2 5. Here t:5 tAD

is used for the analysis and time series that do not satisfy

the condition are discarded from the analysis. In this

case, we see that large values of Y always occur between

the unstable branch and the upper stable branch; thus, Y

is capable of recognizing the location of unstable equi-

libria for all C and stable equilibria are never assigned a

large value of Y. A note of caution should however be

given regarding the reverse transitions from the upper

stable branch to the lower stable branch in those nu-

merical examples. Indeed, those are poorly identified.

This is probably related to the asymmetry of the un-

derlying potential, which induces different character-

istic time scales in the system and hence a need to adapt

the value of t locally, and not just globally for all types

of transitions as it is done here. To overcome this dif-

ficulty, an adaptive tuning of t would be required,

which will be left for future research. With these pos-

sible limitations in mind, Y will next be applied to

observational data.

As a final remark, the values of t considered here can

be compared to analytical results in this numerical ex-

ample. Indeed, for this simple bistable example system,

analytical results can provide the expected time taken by

the system to transition from one of the local equilibria

to the bifurcation point (Krumscheid et al. 2015) and can

serve as a comparison to the statistical estimations of

t obtained here. As a matter of fact, for C close to the

bifurcation point, the results given by the Anderson–

Darling test are similar to those given by analytical

calculations.

FIG. 6. Bifurcation diagram of the deterministic system (red) andY calculated for simulated data (gray dots): (a) for t5min{mean(Ti)ji

5 1, 2, 3} 2 5 (K means), (b) for t 5 tAD (Anderson–Darling test), and (c) t 5 tAD if tAD , tKmeans 2 5, otherwise the subseries are

discarded. The red full and dotted lines show, respectively, the stable and unstable branches of the bifurcation diagram.

FIG. 5. Boxplot of the p-values from the Anderson–Darling test

for simulated time series with C 5 6.4. The window length esti-

mated by the Anderson–Darling test is tAD 5 67 discrete

time steps.
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b. Analysis of regime transition in observed nocturnal

and polar temperature inversions

In this section we apply the stability indicator Y on

observational data obtained from one site near Dumosa

for which nocturnal data are selected, and fromDome C

for which we consider the polar winter. When we plot

DT overU for both sites (see Fig. 7) we see a clear sign of

two distinct states: one when the wind is weak and DT is

large and one for strong wind where DT is small.

1) DUMOSA

The first observational dataset consists of temperature

measurements from a site near Dumosa. The site was

located in a large area withmostly homogeneous and flat

terrain, covered by wheat crops, and measurements

were taken during the crop season. The temperature

measurements were made on the main tower at heights

of 3 and 6m and the wind measurements at 6m. The

frequency of measurements is 1min. Further details

about the observational site can be found in Lang et al.

(2018). As we want to use data where we can expect

temperature inversions to take place, we exclusively use

evening and nighttime data from March until June 2013

(89 days). Each night of data results in a time series of

1020 discrete observations. Similar to the simulated

data, we use the K-means algorithm and the Anderson–

Darling test to choose the window length t. The results

are shown for all nights considered together in Fig. 8.

According to these tests the maximal t for which we can

assume normality (tAD) is 19 discrete observations

(hence 19min with the sampling frequency of 1min) and

the t, which corresponds to the minimal mean residence

time in one of three clusters (tKmeans) is 22. Hence,

FIG. 7. Temperature inversion as a function of wind speed as observed at (a) Dumosa and (b) DomeC. The color in

(b) corresponds to lower and higher incoming radiation.

FIG. 8. (a) Boxplot of the p-values from the Anderson–Darling test and (b) clustered data with K means for the

Dumosa data, for all 89 nights.
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we have tAD , tKmeans and choosing tAD should be

appropriate. The results for Y applied to all 89 nights

with both choices of window lengths are given in Fig. 9.

The results highlight a lower branch with low values of

Y, or dynamics identified as stable, and an upper branch

with high values ofY, or dynamics identified as unstable.

In some cases, a proper ARMA(p, q) model cannot be

fitted by the statistical methods, resulting in absence

of results for some windows. Generally, a reliable

ARMA(p, q) fit becomes difficult for a time series with

less than 20 observations, and the estimated window

lengths are on the lowest end to obtain the statistical

estimations. Figure 10 shows the time evolution of DT

when conditionally averaged for all nights with the wind

speed (wsp) being in a given category. The corre-

sponding time evolution of Y is shown for the same

conditional averages. The window length here is chosen

as the most restrictive criterion t 5 tAD , tKmeans. For

low wind speeds, the Y values are high (on average),

which implies that in this case we have an unstable

system. Note that in this dataset, a leveling off of the

temperature inversion for low wind speeds [which could

correspond to the stable equilibrium of a strong inver-

sion according to the model of van de Wiel et al. (2017)]

is not very evident from Fig. 9. It could be that the

temperature inversion does not have time to reach the

stable equilibrium during the night, or that other insta-

bilities that are not considered in the simplified model

arise in strong stability conditions. For example, flow

instabilities such as submesomotions, which are favored

in strongly stratified situations, could make the system

dynamically unstable.

2) ANTARCTICA

The Dome C data were measured at the Concordia

Research Station, which is located on the Antarctica

Plateau. It is a French–Italian research facility that was

built 3233m above sea level. It is extensively described

for example in Genthon et al. (2010). The Dome C

dataset contains 10-min-averaged meteorological data

FIG. 9. (a),(c) Observed temperature inversion vs wind speed relation for the Dumosa data, colored according to Y with different

window lengths t: (a) t 5 tAD and (c) t 5 tKmeans. The gray dots correspond to missing values, which occur because we only color the last

point of the modeled subsequence. Moreover, in some cases the auto.arima(�) R function is not able find an appropriate model. (b),(d)

Histograms of Y for four different bins of data. The red numbers in (a) and (c) are the bin numbers and the bin separations are shown by

the red lines.
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from 2017. Regimes and their transitions were analyzed

by Vignon et al. (2017) and Baas et al. (2019). Important

for our analysis are measurements of the temperature at

height 9.4m and surface, the wind speed (m s21) at

height 8m and the radiation made in the polar night,

which is from March to September. We focus on the

polar night during which multiple regime transitions

take place. Following van de Wiel et al. (2017) the data

are classified into two subcategories of radiative forcing

being the sum of net shortwave and incoming longwave

radiation: R1 5 KY
2 K[

1 LY. Strong cooling is fa-

vored in cases of low incoming radiation and when

plotting DT 5 T9.4m 2 Ts over the wind speed U8m a

back-folding of the points becomes apparent whenR1
,

80Wm22 (van de Wiel et al. 2017, their Fig. 6; and less

clearly in our Fig. 7). Therefore, we focus on the case

when R1
, 80Wm22. We apply Y to the longest con-

secutive time series with R1
, 80Wm22, which is from

1050 LT 3 August to 2150 LT 24 August 2017, i.e., 3091

data points. Our analyzed time series is thus shorter than

the one visualized in van de Wiel et al. (2017), which

explains the differences in the scatterplot. Again we

choose t with the Anderson–Darling test and the

K-means algorithm. The value for t given by the

Anderson–Darling test tAD 5 43 observations (with a

corresponding window duration of 430min) is much

larger than the one given by the K-means algorithm

(tKmeans 5 10 observations, corresponding to a window

duration of 100min), which is in fact too few points to

expect a good fit for the ARMA(p, q) model. In Fig. 11

we see that no transitions are recognized by Y with t 5

tAD (left) but with t 5 tKmeans (right) some transitions

are noted. This indicates that the data frequency of this

dataset is not high enough to give reliable results for

the stability indicator.

c. Sensitivity analysis on averaged data

As discussed when applying the indicator Y on the

Dome C dataset, there is strong indication for the data

frequency being crucial for the reliability of the results

when applying the stability indicator. Observational

data are often stored in block averages, e.g., measure-

ments over 5-min time window are averaged into 1 data

point. The issue with this can be that the data frequency

can be too low to sample typical fluctuations during the

observed transition. In more detail, if the time taken by

the system to transition from one metastable state to the

next is less than approximately 20 discrete measurement

FIG. 10. Time series of (a) mean DT and (b) mean Y for different wind speed (wsp) categories for Dumosa data,

calculated with tKmeans. The shaded area is the standard deviation.

FIG. 11. Temperature inversion between 9.4m and the surface, as a function of wind speed at 8m as observed at

Dome C, colored according to Y with different window lengths t, expressed in number of discrete observations:

(a) t 5 10 (K means) and (b) t 5 43 (AD test).
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points (the minimum needed to have relevant statistical

results according to our tests), then the approach may

not be applicable. Therefore, data frequency needs to be

high enough to give reliable results for Y. As a com-

parative study to illustrate this point, we block average

the temperature measurements for the Dumosa data,

such that we repeat the analysis based on 5-min-averaged

data instead of 1-min averages. Thereby, we reduce the

length of the time series for each individual night from

1020 to 204 data points. Again we choose t with the

Anderson–Darling test and the K-means algorithm.

There is a clear distinction between the t estimated by

the Anderson–Darling test and the one given by the

K-means algorithm for the 5min data, contrary to the

1min data where both methods suggested comparable

window lengths. Indeed, tAD 5 31 and tKmeans 5 7 for

the 5min averaged data whereas tAD 5 19 and

tKmeans5 22 for the 1min data. The small value for t given

by the K-means algorithm for the 5min averaged data

suggests that there is only a small amount of points cov-

ering the transition time andwe cannot fit anARMA(p, q)

model properly to subsequences this short. Moreover, as

the value for t given by theAnderson–Darling test ismuch

bigger than the amount of points covering the transition

time we do not expect reliable results for Y with this t.

Figure 12 confirms this hypothesis. The left plot is with

t 5 tAD and the right plot is with t 5 tKmeans.

4. Discussion and conclusions

In this study we analyzed the potential of a statis-

tical indicator to be used to detect the system’s prox-

imity to critical regime transitions in the near-surface

temperature inversion. The statistical indicator eval-

uates the dynamical stability of time series resulting

from a dynamical system and was initially suggested in

Faranda et al. (2014). Based on idealized numerical

simulations, van Hooijdonk et al. (2016) had found the

presence of early warning signs in the turbulent flow

field before a transition from weakly stable to strongly

stable conditions. These signs included a critical slow-

ing down, referring to the fact that dynamical sys-

tems tend to recover slower from perturbations when

approaching a transition point in the dynamics. This

slowdown was evaluated based on fluctuations of the

temperature field and the early warning signal relied

on a change in the variance. Such metrics, which are

often used in studies of tipping points, can become

problematic when the underlying dynamics is highly

nonstationary, as an increase of variance could be due

to the nonstationarity of the system without implying a

transition (Lenton et al. 2012; Faranda et al. 2014). The

typical scatter of atmospheric field data and their in-

herent nonstationarity makes the application of clas-

sical critical slowdown metrics difficult. The metric

presented and used here is different in that it statisti-

cally quantifies the deviation from the dynamics ex-

pected when the system is close to a stable equilibrium.

Specifically, the indicator is based on ARMAmodeling

with a moving window for which local stationarity is

assumed, and the distance from stable equilibrium

dynamics is evaluated based on a Bayesian information

criterion. The indicator crucially relies on an appro-

priate window length and we suggested two methods to

select its value in a data-driven manner. That is, both

methods can be used when the underlying model gov-

erning the dynamics is unknown, such that those can be

applied to field data with significant scatter. Our sug-

gestion to ensure reliable results is to use a combina-

tion of both approaches. The shortest residence time

around an equilibrium estimated through the K-means

approach provides an upper bound to select a window

FIG. 12. Observed temperature inversion vs wind speed relation for the 5-min-averaged Dumosa data, colored

according to Y with different window lengths t, expressed in number of discrete observations: (a) t 5 tAD and

(b) t 5 tKmeans.
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length that respects the time scale of the system, i.e., a

length that ensures local stationarity for ARMAmodel

fitting. The window length should be selected as shorter

or equal to this upper bound, and such that the data

within individual windows mostly satisfy normality to

ensure reliable Bayesian inference. The Anderson–

Darling normality test is appropriate, but an im-

provement of the clustering approach to estimate the

residence time around an equilibrium (here done

based on a simple K-means clustering approach) would

be beneficial. Based on this approach, we find that a

nocturnal temperature inversion dataset with a sampling

frequency of 1min can be analyzed successfully using a

window length of approximately 20min. Slower sam-

pling frequency did not lead to conclusive results.

The conceptual model introduced by van de Wiel

et al. (2017) was developed to understand regime tran-

sitions in the near-surface temperature inversion and

can support scenarios with multiple stable equilibria.

For our purpose of identifying the system’s proximity to

regime transitions, it offers an ideal model for which the

theoretical dynamical stability can be calculated ana-

lytically. We extended the model to include random

perturbations in the dynamics and used the resulting

stochastic model to provide a test dataset on which to

evaluate the potential of the indicator of regime transi-

tions. In this stochastic system, small-scale perturbations

can be amplified due to the nonlinearity, resulting in

transitions between the bistable equilibria. Our simula-

tions show such noise-induced regime transitions, suc-

cessfully identified by the indicator Y. More research

would however be beneficial in order to assess the type

of noise that is appropriate to represent randomized

dynamics of the SBL.

The application to field data was done for one noc-

turnal dataset and one polar dataset. In their discussion,

van de Wiel et al. (2017) suggest that the strength of the

thermal coupling between the soil and the atmosphere

may be a key process to distinguish between cases where

the temperature inversion has a unique stable equilibria

and cases with bistable equilibria, separated by an un-

stable equilibrium. The wind speed dependence of ob-

servational scatter is partly attributed to the existence

of a dynamically unstable branch in the system in cases

where the thermal coupling is weak. In both datasets

considered in our analysis, a weak thermal coupling is to

be expected. Clearly in the polar dataset, the snow sur-

face leads to a weak thermal coupling between the at-

mosphere and the soil (Vignon et al. 2017; van de Wiel

et al. 2017). The nocturnal dataset originates from a

wheat crop near Dumosa, Australia, probably resulting

in a weak thermal coupling as well. While the Dome C

data did not have the required sampling rate in order to

have reliable estimates of the dynamical stability, the

Dumosa data were found to have a clear signal with one

dynamically stable branch and one dynamically unstable

branch. A second dynamically stable branch corre-

sponding to a strong inversion was not clearly observed.

This data-driven result agrees with the theoretical result

of van de Wiel et al. (2017), namely, that a dynamically

unstable branch exists for a certain range of wind speeds

in case of weak atmosphere–surface thermal coupling.

Note that this is an idealized model and other non-

represented physical processes may be at work and

impact the interpretations. As an additional note of

caution, if the nature of the noise was different in the

two populations evident in the Dumosa data, then the

value of Y could differ even if both branches were dy-

namically stable. Differences in the noise memory

properties may also impact the results. Indeed, de-

pending on how the noise enters the dynamics, its

memory might or might not be represented well by an

ARMA model. The result on the Dumosa data is nev-

ertheless promising for the use of the indicator as an

early warning signal of regime transitions. Extending the

analysis to a polar night with an appropriate sampling

frequency would be very interesting, as multiple regime

transitions occur during the long-lived temperature in-

version (Baas et al. 2019). Moreover, comparing results

obtained for a site with strong atmosphere–surface

thermal coupling would provide great insight to com-

pare the dynamical stability of field data to the dynam-

ical stability predicted by the conceptual model.

To be noted is the fact that the conceptual model is

derived for a temperature inversion between the surface

and a height at which the wind speed stays relatively

constant during the night, found to be approximately

40m at Cabauw in the Netherlands and 10m at DomeC.

The Dumosa dataset did not offer the possibility to

select a height with such a constant wind speed. The

measurements, taken at lower heights in this case, will

be prone to submesoscale activity, inducing perturba-

tions of the shallow inversion, which could affect the

dynamical stability of the time series. In fact, the earlier

application of the dynamical stability indicator to SBL

data in Nevo et al. (2017) showed that higher stability

corresponded to unstable dynamics of the vertical ve-

locity fluctuations and of the wind speed. More analyses

would be needed to assess the influence of the mea-

surement height on the evaluated dynamical stability of

the temperature inversion. Nevertheless, our results

encourage the use of the statistical dynamical stability

as a metric to detect nearing regime transitions in the

SBL. The ability to detect nearing regime transitions in

atmospheric numerical weather prediction and climate

models could offer a possibility to use a different type of
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SBL parameterization in those specific cases without

relying on the assumption of turbulence stationarity.
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APPENDIX A

Details of the K-Means Clustering Algorithm

The clustering is done using the K-means algorithm

with the following steps:

d Input: k5 number of clusters, set of points xi2t11, . . . , xi .
d Place centroids c1, . . . , ck at random locations.
d Repeat until none of the cluster assignments change:

For each point xi find nearest centroid cj and assign xi
to cluster j

For each cluster j 5 1, . . . , k calculate new centroid

cj 5 mean of all points xi assigned to cluster j in

previous step.

APPENDIX B

Details of the Anderson–Darling Normality Test

The Anderson–Darling (AD) normality test statistic

is based on the squared difference between the empirical

distribution function estimated based on the sample

Fn(x) and the normal distribution F*(x). The statistic for

this test is

W2
n 5 n

ð

‘

2‘

[F
n
(x)2F*(x)]2c[F*(x)] dF*(x) ,

where c is a nonnegative weight function that is used

to emphasize the tails of the presumed distribution.

We use the modified AD statistic given by D’Agostino

and Stephens (1986), which takes into accounts the

sample size n:

W2
n
*5W2

n(11 0:75/n1 2:25/n2).

The null hypothesis of this normality test is that the

data are sampled from a normal distribution. When

the p-value is greater than the predetermined critical

value (a 5 0.05), the null hypothesis is not rejected

and thus we conclude that the data are normally

distributed.

APPENDIX C

Summary of the Algorithmic Procedure

The full procedure to apply the statistical indicator

to a time series follows the following steps:

d Input: Time series x1, . . . , xT.
d Evaluate the window length tKmeans:

Cluster the time series in k clusters (expected number

of equilibrium states) using the K-means algorithm.

For each cluster, calculate the mean residence time of

the time series.

The minimal mean residence time over the k clusters

provides an upper bound for tKmeans.
d Evaluate the window length tAD:

For a range of window lengths tmin , t , tmax, apply

the AD test statistic to the time series in a moving

window approach.

For each t, calculate themedian of the p-values obtained

over all windows.

Select the largest t for which the median p-value is

greater than the predetermined critical value (a5 0.05)

as tAD.
d If tAD , tKmeans, select tAD as a window length. Else,

ARMA model fitting may be inappropriate.
d Repeat for each window of length tAD:

Select the best fitting ARMA(p, q) model (minimal

BIC).

Fit an ARMA (1, 0) to the window and calculate the

BIC.

Calculate Y. High values will indicate transitions. The

values themselves may depend on the dataset.
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