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José Lopes1, Giampiero Salvi1, Gabriel Skantze1, Alberto Abad2, Joakim Gustafson1,

Fernando Batista3, Raveesh Meena1, Isabel Trancoso2

1KTH Speech, Music and Hearing, Stockholm, Sweden
2IST/INESC-ID Lisboa, Lisboa, Portugal

3ISCTE/INESC-ID Lisboa, Lisboa, Portugal
jdlopes@kth.se

Abstract

This paper addresses the problem of automatic detection of re-

peated turns in Spoken Dialogue Systems. Repetitions can be

a symptom of problematic communication between users and

systems. Such repetitions are often due to speech recognition

errors, which in turn makes it hard to use speech recognition

to detect repetitions. We present an approach to detect rep-

etition using the phonetic distance to find the best alignment

between turns in the same dialogue. The alignment score ob-

tained is combined with different features to improve repeti-

tion detection. To evaluate the method proposed we compare

several alignment techniques from edit distance to DTW-based

distance, previously used in Spoken-Term detection tasks. We

also compare two different methods to compute the phonetic

distance: the first one using the phoneme sequence, and the

second one using the distance between the phone posterior vec-

tors. Two different datasets were used in this evaluation: a

bus-schedule information system (in English) and a call routing

system (in Swedish). The results show that approaches using

phoneme distances over-perform approaches using Levenshtein

distances between ASR outputs for repetition detection.

Index Terms: spoken dialogue systems, repetition detection,

phonetic distance

1. Introduction

In human dialogues it is a common practice to use repetitions

as a mechanism to correct some message that was not correctly

understood. While this mechanism is smoothly handled in hu-

man communication, the same does not occur when humans

talk to machines [1]. The dialogue in Table 1 from the Let’s Go

system [2] has several examples where repetitions could not be

handled by the system and lead to miscommunication.

Several reasons may contribute to miscommunications in

the dialogue presented. First, humans tend to adapt their

speech in order to increase their chances of being under-

stood, especially after an utterance that was not correctly un-

derstood. In human-machine speech interaction users aban-

don the computer-directed speech style and use strategies

commonly used in human-human dialogues such as hyper-

articulation (turns U14 and U16) or shouting [3]. Besides

hyper-articulation, speech shifts lengthening were also reported

as a mechanism for error resolution in human-computer interac-

tion [4]. Current dialogue systems are not prepared to deal with

this behaviour. When facing this phenomenon, detecting repe-

titions using the ASR output becomes a very difficult task given

the amount of errors introduced by speech recognition. But, if

the system could detect that turn U4 is a repetition of U2, the

S1: What is the time of your departure?
U2: SEVEN O’CLOCK [SEVEN O’CLOCK, 10:00]
S3: 10 in the evening. Is this correct?
U4: NO [NO SEVEN, no]
S5: What is the time of your departure?
U6: ELEVEN P M [SEVEN P M, 11:00]
S7: 11 in the evening. Is this correct?
U8: NO [NO, no]
S9: What is the time of your departure?
U10: ELEVEN P M [SEVEN P M, 11:00]
S11: 11 in the evening. Is this correct?
U12: NO [NO, no]
S13: What is the time of your departure?
U14: .SEVEN. [SEVEN, - ]
S15: What is the time of your departure?
U16: ELEVEN P M [SEVEN P M, 11:00]
S17: 11 in the evening. Is this correct?
U18: NO [NO, no]
S19: What is the time of your departure?
U20: SEVEN P M [SEVEN P M, 7:00]
S21: 7 in the evening. Is this correct?
U22: YES [YES, yes]

Table 1: Example of repetitions in Let’s Go data. Manual tran-

scription and parsing between square brackets.

ASR output from U2 could be used to avoid miscommunica-

tion in U4. Second, the use of state-specific grammars reduces

the number of possible outputs from speech recognition. For

instance, in utterance U4 the user says “SEVEN”, which was

not expected by the grammar and thus could not be recognized.

Repetitions can be a sign of problematic turns and could also be

used to avoid on-line miscommunications and find miscommu-

nications off-line.

In this paper we propose an approach to detect repetitions

between turns in Spoken Dialogue Systems that does not rely on

the ASR output. Our approach is inspired by techniques used

in Spoken-Term detection [5]. It privileges the information col-

lected from the signal. Our hypothesis is that this method is

robust to the noise introduced by the output of speech recogni-

tion in the examples described above. We expect that repetition

detection improves when compared to methods that compare

the ASR outputs directly [6]. The method was tested in two

different corpora, in two different languages and in two differ-

ent applications that deal with real users with very promising

results.

The paper is structured as follows. In the next section re-

lated work to repetition occurrences detection in Spoken Di-

alogue System (SDS) data will be described. Section 3 de-

scribes the datasets and annotation scheme. Section 4 presents

the method. Section 5 shows the results. Section 6 discusses the

results and Section 7 concludes the paper and points out future

work directions.



2. Related Work

Finding problematic turns in SDS dialogues is a very impor-

tant resource both to off-line processing and on-line systems.

Repetitions were used in [6, 7] as a clue to find miscommuni-

cations and correction strategies. In [7], repetition was even the

most common correction strategy used in their dataset. Thus

detecting repetitions might be useful to detect miscommunica-

tion. Martinovsky and Traum in their analysis of breakdowns

of human-machine communication [8] refer to repetitions as an

example of “continuous tedious miscommunication and also as

a cause for the breakdown”.

A first step towards detecting repetitions is to find which

features can distinguish repetitions from the other utterances.

In [1] acoustic-prosodic features in human-computer dialogue

were analyzed. Duration, pauses and pitch variability were con-

sidered as possible clues to detect corrections, including repeti-

tions. Since repetitions occurrence is highly correlated with hy-

perarticulation and strong emphasis [6], the properties of hyper-

articulated speech in human-compter error resolution [9] could

also be relevant to detect repetitions. According to this study,

repeated utterances were longer, and had longer and more fre-

quent pauses. The speech rate found was also lower. Average

pitch, intonational contour and phonological alternations were

found to be statistically different. The repeated utterances were

also less disfluent than the original ones.

Two different approaches have been used to built classifiers

for detecting repetition. In [6] a threshold based classifier using

the Levenshtein distance between semantic representations ut-

terance was employed. The result was then used as an input to

a miscommunication detector. In [7] a classifier for corrections

using features that included prosody, ASR related information,

the experimental condition of the system and the distance to the

correction. When they tried to classify the different types of cor-

rections annotated (instead of binary correction/non-correction

classification), repetition detection achieved 33.9% recall and

56% precision.

In our study, we use phonetic-distance based distance be-

tween turns as features to detect repetitions. We hypothesize

that phonetic-distances can deal with hyper-articulation and

lengthening phenomena, and avoid the noise introduced by the

speech recognizer.

3. Data

The first subset consists of 41 Let’s Go dialogues corresponding

to 837 user turns, selected from the data released for the Spoken

Dialogue Challenge [10]. Dialogues were selected for having

turns with confidence scores under the threshold used by the

system.

The second dataset comes from a Swedish commercial call

routing system which handles a very large number of calls on a

daily basis. A set of 219 dialogues was selected from the whole

dataset, corresponding to 1459 turns. Dialogues were selected

from the dataset if at least one of the turns was a “NO” and the

dialogue was longer than 4 turns, to have more repetitions in the

dataset. If there is a “NO” turn, it probably means that there is

some information that the system did not understand correctly

and it will ask the user to repeat.

3.1. Annotation

To annotate the data we have used 4 different labels. To intro-

duce them we use examples from the dialogue in Table 1. Turns

U6, U10, U16 and U20 have exactly the same content, there-

fore they are considered total repetitions between each other.

Turn U14 repeats part of the content of turns U2, U6, U10, U16

and U20. In these cases we used the label partial repetition be-

tween U14 and the other turns. Turns U6, U10, U16 and U20

repeat “SEVEN” from turn U2. However, since the user also

says “NO”, we use the mixed repetition label, instead of partial

repetition. All the pairs of utterances that do not have content

repeated between each other were labeled as non-repetitions.

We adopted these labels since the approach to detect these

different types of repetitions, although equivalent in a way, will

depend on the type of repetition. The distribution of data per an-

notation in each data set is presented in Table 2. This study only

focuses on the detection of total and partial repetitions, since the

method applied to detect them is the same, unlike mixed repe-

titions. Additional modifications would be required to detect

mixed repetitions.

Corpus Total (%) Partial (%) Mixed (%) No Repetition (%)

Let’s Go 221 (5.1) 93 (2.1) 52 (1.2) 4005 (91.6)

SweCC 84 (5.7) 47 (3.2) 63 (4.2) 1292 (86.9)

Table 2: Distribution of the repetition types in the datasets.

4. Method

The proposed method has two phases. In the first phase, we

compute the pairwise distance between segments from two dif-

ferent utterances using either the phoneme sequence or the

phoneme posterior vectors. In the second phase we try to find

the best alignment between the two utterances using the dis-

tance matrix computed in the first phase. The alignment returns

a score that corresponds to the acoustic distance between the

two utterances.

4.1. Distance Matrix Computation

The first step described in the Dynamic Time Warping (DTW)

query matching is to compute the distance matrix for each frame

of the utterances. In the algorithm proposed in [5] the distance is

computed using the cosine distance between the phone posterior

vectors produced by a phone recognizer for each frame. We fol-

lowed the same procedure. The phonetic posteriors for the Let’s

Go were obtained using the phonetic tokenizer described in [11]

for English, that uses the neural networks trained for the Au-

dimus Speech recognizer [12]. The phonetic posteriors for the

SweCC data were estimated with a Recurrent Neural Network

(RNN) described in [13], trained with the Swedish SpeechDat

telephone speech database [14]. To build the matrix, the silence

frames were removed from both files before computing the co-

sine distance to avoid that the best alignment provided in the

second phase was silence.

Besides the distance computed using the posteriors, we

also computed another distance using the phoneme sequence

obtained from the phoneme recognizers. To do this, we first

compute the confusion matrix following a similar procedure to

the one used in [15] to compensate the confusability between

phones. For the Let’s Go data we used one month of transcribed

data. To build the confusion matrix, we used the phoneme se-

quence recognized from turns with equal transcription. For in-

stance, from the dialogue from Table 2 turns U6, U10, U16 and

U20 would be compared to train the confusion matrix. For the

SweCC dataset, the confusion matrix was computed using the

correlation between the phone posterior vectors, under the as-

sumption that the more correlated the phone posterior vectors

the more difficult it is to distinguish between them.
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Figure 1: Distribution of the distances in the Let’s Go data. Left: computed using extended phoneme sequences and DTW-based

matching. Right: computed using the Levenshtein distance between the ASR outputs.

The resulting distance matrix is an n ×m (where n > m)

matrix populated with the distance between the two utterances

of length n and m respectively. For the phoneme sequence case

the element is simply the distance between the pair of vectors,

whereas for the phoneme posterior case each element is the pair-

wise distance between posterior vectors.

In Let’s Go the phoneme sequence for each utterance was

already computed by the phoneme recognizer. In SweCC since

only the phoneme posterior vectors are available, the sequence

is built based on the maximum posterior found for each frame.

To evaluate the impact of hyperarticulation in repetition de-

tection we have also used an extended version of the phoneme

sequence with one phone per each 20 ms frame.

4.2. Matching the utterances

Once we had the distance matrix, we tried to find the least costly

path in the matrix. We followed the DTW-based matching algo-

rithm proposed in [5] when using either phoneme posterior and

phoneme sequences. For the phoneme sequence case we have

also used a modified edit distance where the costs of substitu-

tions, deletions and insertions were taken from the confusion

matrix. An extra penalty factor was added for consecutive dele-

tions and insertions, since in our confusion matrix, insertions

and deletions (i.e., replacing/being replaced by silence) were

more frequent than substitutions in the data used to compute

the confusion matrix.

5. Results

In order to find the best way to find repetitions we compared

different versions of our method with the Levenshtein distance

between the ASR outputs. In this study all the total and partial

repetitions are treated as repetitions and the non-repetitions are

labeled as none.

Figures 1 shows the normalized distributions of the distance

scores obtained using the phoneme sequence and DTW-based

matching and the distance scores obtained using the Leven-

shtein distance directly in the ASR output, respectively. The

phoneme sequence with one phoneme per frame used to com-

pute the distance matrix and DTW-based matching was used to

find the best path.

Although there is still an overlap in the distribution in left

part of Figure 1, there is a clear separation between the distances

obtained for the repetition and the none categories, whereas the

same cannot be observed in the right part of the same Figure.

A similar comparison is made in Figure 2 for the SweCC

data. Unlike the results for Let’s Go, the score computed using

the distance between posterior vectors achieved the best per-

formance in the SweCC data. Once more, the scores obtained

using our method separate the two sets under analysis better.

5.1. Building a repetition detector

The fact that there is a visible separation in the datasets does

not mean that repetition can be detected automatically. Thus,

we compared different methods for detecting repetitions where

we used different combinations of the scores derived from the

methods proposed and other features available from system logs

that could be helpful for this task. For each corpus we present

results with a phoneme posterior vector based score (PP), a

phoneme sequence based score (PS), combined with system in-

dependent features (SI), number of words and turn duration; and

system dependent features (SD), system act and name of the

grammar used.

To train the repetition detection we used JRip and SVMs

available in Weka [16]. We first trained the classifiers using

10-fold cross-validation scheme (10-f CV) scheme. Since our

data was very skewed, we also split the dataset into 70% for

training and 30% for testing and oversampled (OS) the training

data using the algorithm described in [17] in order to have more

repetition samples. We also report the results obtained using a

simple threshold tuning (TT) procedure for the different scores

tested. The threshold was tuned using the 70% of the data used

for training (without oversampling) and the results are reported

in the test set.

The results reported in Figure 3 and (MRR) [18] which is

an appropriate performance measure for tasks where the dataset

is skewed. The results for Let’s Go show that the distance based

on PS performed better than the one based on PP. When com-

bined, the detection performance increases. The combination of

the distance features with features from the system logs also im-

proves the performance by 10% absolute MRR. Compared with

the performance achieved using only the system dependent fea-

tures we have a 5% absolute MRR improvement.

In the SweCC case the gains in performance are not so clear

when adding system log features. In fact, using a simple TT

procedure with the phoneme posterior vector distance the MRR

obtained is 81%. Using the OS procedure and combining SD

and SI features, the performance increases to 86%. The combi-

nation of all the features only improves the MRR over the SD
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Figure 2: Distribution of the distances in the SweCC data. Left: computed using phonetic posteriors vectors distance and DTW-based

matching. Right: computed using the Levenshtein distance between the ASR outputs.
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Figure 3: Results for repetition detection. Top: Let’s Go. Bot-

tom: SweCC.

features when using the original dataset without oversampling.

6. Discussion

The presented results confirm the initial hypothesis. Interest-

ingly, different methods used to compute the distance score us-

ing PS and PP based methods performed differently in the dif-

ferent corpora. We believe that this is related to the different

phoneme recognizers used. Whereas in Let’s Go the phoneme

sequence is restricted by the phonotactic information, in SweCC

the phoneme sequence is extracted directly from the phoneme

posterior vector which makes it more noisy and consequently

hinders performance when using the PS distance in this dataset.

In Section 5 we presented only one PS score for each cor-

pus, which was always derived using the DTW-based match-

ing. Since this method allows partial matches it performs bet-

ter when detecting partial repetitions, which globally improved

repetition detection.

Another restriction that we added when using the PP score

that improved the performance was to discard all the alignments

that were shorter than 750 ms. Since we are interested in detect-

ing repetitions of content that can be used to fill the system slots,

this threshold eliminates all the false alarms that correspond to

irrelevant information for slot filling.

In cases where we do not have access to SD dependent fea-

tures, our method can be very useful. In SweCC if we use only

the PP features the MRR is only 5% below the performance

achieved using only SD features. In Let’s Go if we combine

PP+PS features the performance is even better than using just

SD features. The SD features seem to be more powerful in

SweCC which is an indication that repetitions may have oc-

curred in the same dialogue state using the same grammar.

Finally, it is interesting to observe that the results using

the Levenshtein distance between ASR outputs are better in the

SweCC data (0.51 vs. 0.35). Considering the figures for WER

in both datasets SweCC is 21.3% and Let’s Go 33.3%. This

means that the using the Levenshtein distance between ASR

outputs might be appropriate in systems where the ASR perfor-

mance is better. However, current state-of-the art speech recog-

nition in SDSs is far from being perfect, which suggests that our

method might be more appropriate for current systems.

7. Conclusions and Future Work

In this paper we have presented an approach for repetition de-

tection in SDSs. The performance for detection of repetitions

greatly improves when compared to the performance obtained

using the Levenshtein distance between ASR outputs. This con-

firms our hypothesis that using this method, repetition detection

is not affected by the noise introduced by the ASR output. The

performance of the method was comparable to the performance

using SD features in SweCC and even better in Let’s Go.

In the future we plan to evaluate the method including

mixed repetitions. We also plan to implement the method in

a live system and test recovering strategies using the repetition

detection information during live interaction.
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