
Detecting rich-club ordering in complex networks

Vittoria Colizza Alessandro Flammini M. Angeles Serrano Alessandro Vespignani
vcolizza@indiana.edu aflammin@indiana.edu mdserran@indiana.edu alexv@indiana.edu

School of Informatics and Center for Biocomplexity
Indiana University

Bloomington 47406 IN

ABSTRACT
Uncovering the hidden regularities and organizational prin-
ciples of networks arising in physical systems ranging from
the molecular level to the scale of large communication in-
frastructures is the key issue for the understanding of their
fabric and dynamical properties [1, 2, 3, 4, 5]. The “rich-
club” phenomenon refers to the tendency of nodes with high
centrality, the dominant elements of the system, to form
tightly interconnected communities and it is one of the cru-
cial properties accounting for the formation of dominant
communities in both computer and social sciences [4, 5, 6].
Here we provide the analytical expression and the correct
null models which allow for a quantitative discussion of the
rich-club phenomenon. The presented analysis enables the
measurement of the rich-club ordering and its relation with
the function and dynamics of networks in examples drawn
from the biological, social and technological domains.
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Recently, the informatics revolution has made possible the
analysis of a wide range of large scale, rapidly evolving net-
works such as transportation, technological, social and bi-
ological networks [1, 2, 3, 4, 5]. While these networks are
extremely different from each other in their function and
attributes, the analysis of their fabric provided evidence of
several shared regularities, suggesting general and common
self-organizing principles beyond the specific details of the
individual systems. In this context, the statistical physics
approach has been exploited as a very convenient strategy
because of its deep connection with statistical graph the-
ory and because of its power to quantitatively characterize
macroscopic phenomena in terms of the microscopic dynam-
ics of the various systems [1, 2, 3, 4]. As an initial discrim-
inant of structural ordering, attention has been focused on
the networks’ degree distribution; i.e., the probability P (k)
that any given node in the network shares an edge with k
neighboring nodes. This function is, however, only one of
the many statistics characterizing the structural and hierar-
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chical ordering of a network; a full account of the connec-
tivity pattern calls for the detailed study of the multi-point
degree correlation functions and/or opportune combination
of these.

In this work, we tackle a main structural property of com-
plex networks, the so-called “rich-club” phenomenon. This
property has been discussed in several instances in both so-
cial and computer sciences and refers to the tendency of high
degree nodes, the hubs of the network, to be very well con-
nected to each other. Essentially, nodes with a large num-
ber of links - usually referred to as rich nodes - are much
more likely to form tight and well interconnected subgraphs
(clubs) than low degree nodes. A first quantitative definition
of the rich-club phenomenon is given by the rich-club coeffi-
cient φ, introduced by Zhou and Mondragon in the context
of the Internet [6]. Denoting by E>k the number of edges
among the N>k nodes having degree higher than a given
value k, the rich-club coefficient is expressed as:

φ(k) =
2E>k

N>k(N>k − 1)
, (1)

where N>k(N>k − 1)/2 represents the maximum possible
number of edges among the N>k nodes. Therefore, φ(k)
measures the fraction of edges actually connecting those
nodes out of the maximum number of edges they might pos-
sibly share. The rich club coefficient is a novel probe for
the topological correlations in a complex network, and it
yields important information about its underlying architec-
ture. Structural properties, in turn, have immediate con-
sequences on network’s features and tasks, such as e.g. ro-
bustness, performance of biological functions, or selection of
traffic backbones, depending on the system at hand. In a
social context, for example, a strong rich-club phenomenon
indicates the dominance of an “oligarchy” of highly con-
nected and mutually communicating individuals, as opposed
to a structure comprised of many loosely connected and rel-
atively independent sub-communities. In the Internet, such
a feature would point to an architecture in which important
hubs are much more densely interconnected than periph-
eral nodes in order to provide the transit backbone of the
network [6]. It is also worth stressing that the rich club
phenomenon is not trivially related to the mixing proper-
ties of networks, which enable the distinction between as-
sortative networks, where large degree nodes preferentially
attach to large degree nodes, and disassortative networks,
showing the opposite tendency [4, 7, 8]. Indeed, the rich
club phenomenon and the mixing properties express differ-



ent features that are not trivially related or derived one from
each other.

We analyze the behavior of the rich club coefficient as
a function of the degree in a variety of real world networks
drawn from the biological, social and technological world. In
particular, we study: (1) the Protein Interaction Network [8,
9] of the yeast Saccharomyces Cerevisiae; (2) the Scientific
Collaboration Network [10]; (3) the network of Worldwide
Air Transportation [11]; (4) the Internet network at the Au-
tonomous System level [4, 12, 13]. We also consider three
standard network models: the Erdös-Rényi (ER) graph [14],
the generalized random network having a heavy-tailed de-
gree distribution obtained with the Molloy-Reed (MR) al-
gorithm [15], and the Barabasi-Albert (BA) model [16].

All analyzed datasets display a monotonic increasing be-
havior of φ(k). This feature is claimed to provide evidence of
the rich-club phenomenon since φ(k) progressively increases
in vertices with increasing degree (e.g., see Ref. [6] for the
Internet case). However, a monotonic increase of φ(k) does
not necessarily implies the presence of the rich-club phe-
nomenon. Indeed, even in the case of the ER graph - a
completely random network - we find an increasing rich-club
coefficient. This implies that the increase of φ(k) is a natural
consequence of the fact that vertices with large degree have
a larger probability of sharing edges than low degree ver-
tices. This feature is therefore imposed by construction and
does not represent a signature of any particular organizing
principle or structure, as is clear in the ER case. The simple
inspection of the φ(k) trend is therefore potentially mislead-
ing in the discrimination of the rich-club phenomenon.

Appropriate baselines have to be identified in order to be
able to detect the rich-club phenomenon. From a theoretical
analysis of φ(k), we derive the expressions for two normal-
ized measures which provide the discrimination of the ac-
tual presence of the rich club-phenomenon by pointing out
unavoidable structural correlations and ordering principles
shaping the network.

Results show a strong rich-club ordering in the Scientific
Collaboration Network, providing support to the idea that
the elite formed by more influential scientists tends to form
collaborative groups within specific domains. A clearly op-
posite result is found for the Protein Interaction Network,
where the lack of rich-club ordering indicates that proteins
with large number of interactions are presiding over differ-
ent functions and thus, in general, are coordinating specific
functional modules. This different kind of structural orga-
nization is shown in Figure 1 which displays portions of the
Protein Interaction Network and the Scientific Collabora-
tion Network including the club of N>k nodes and the con-
nections among them. The network representations clearly
show the presence of a rich-club phenomenon in the Sci-
entific Collaboration Network, where the majority of rich
nodes are highly interconnected forming tight subgraphs, in
contrast with the Protein Interaction Network case, where
only few links appear to connect rich nodes, the rest linking
to lower degree vertices.

In summary, this analysis provides the baseline functions
for the detection of the rich-club phenomenon and its effect
on the structure of large scale networks. This allows the
measurement of this effect in a wide range of systems, finally
enabling a quantitative discussion of various claims such as
“high centrality” backbones in technological networks and
“elitarian” clubs in social systems.
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Figure 1: Graph representations of the rich-clubs.
Progressively smaller clubs of N>k rich nodes in the
Protein Interaction Network -top- and in the Scien-
tific Collaboration Network -bottom- are shown to-
gether with the E>k connections among them. The
graphs have been produced with the Pajek software
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/).
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