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Abstract

This article presents: (i) a multi-scale representation of grey-level shape called

the scale-space primal sketch, which makes explicit both features in scale-space and

the relations between structures at di�erent scales, (ii) a methodology for extracting

signi�cant blob-like image structures from this representations, and (iii) applications

to edge detection, histogram analysis, and junction classi�cation demonstrating how

the proposed method can be used for guiding later stage visual processes.

The representation gives a qualitative description of image structure, which allows

for detection of stable scales and associated regions of interest in a solely bottom-

up data-driven way. In other words, it generates coarse segmentation cues, and can

hence be seen as preceding further processing, which can then be properly tuned. It

is argued that once such information is available, many other processing tasks can

become much simpler. Experiments on real imagery demonstrate that the proposed

theory gives intuitive results.

1 Introduction

Scale-space representation introduced by Witkin (1983) and Koenderink (1984) provides

a well-founded framework for dealing with image structures, which naturally occur at

di�erent scales. According to the theory of this representation, one can from a given signal

generate a family of derived signals by successively removing features when moving from

�ne to coarse scale. In contrast to other multi-scale or multi-resolution representations,

scale-space is based on a precise mathematical de�nition of causality, or scale invariance

(Florack et al. 1992), and the behaviour of structure as scale changes can be analytically

described. However, the information in the scale-space embedding is only implicit in the
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grey-level values. The smoothed images in the raw scale-space representation contain

no explicit information about the features in them or the relations between features at

di�erent levels of scale.

The goal of this paper is to present such an explicit representation, called the scale-

space primal sketch, and to demonstrate that it enables extraction of signi�cant image

structures in such a way that the output can be used for guiding later stage processes in

early vision.

The treatment will be concerned with grey-level images, and the chosen features will

be blobs, i.e., bright regions on dark backgrounds or vice versa. However, the method-

ology applies to any bounded function and is therefore useful in many tasks occurring

in computer vision, such as the study of level curves and spatial derivatives in general,

depth maps etc, and also, histograms, point clustering and grouping, in one or in several

dimensions.

1.1 Scale and segmentation

Many methods in computer vision and image analysis implicitly assume that the problems

of scale detection and initial segmentation have already been solved. One example is edge

detection, where the selection of step size in gradient computations leads to a well-known

trade-o� problem. A small step size leads to a small truncation error in the discrete ap-

proximation, but the noise sensitivity might be severe. Conversely, a large step size will

in general reduce the noise sensitivity, but at the cost of an increased truncation error. In

the worst case, a slope of interest can be missed and meaningless results be obtained, if

the di�erence quotient approximating the gradient is formed over a wider distance than

the object considered in the image. Although here we shall mainly be concerned with

static images, the same kind of problem arises when dealing with image sequences. Simi-

larly, models based on spatial derivatives ultimately rely on the computation of di�erence

approximations from measured data. This implies that they always fall back to the basic

scale problem that objects in the world and features in images only exist as meaningful

entities only over limited ranges of scale.

A commonly used technique to improve the results obtained in computer vision and

other �elds related to numerical analysis is by pre-processing the input data with some

amount of smoothing and/or careful tuning of the operator size or some other parameters.

In some situations the output may depend strongly on these processing steps. In certain

algorithms these so-called tuning parameters can be estimated; in other cases they are

set manually. A robust image analysis method intended to work in an autonomous robot

situation must, however, be able to make such decisions automatically. How should this

be done? I contend that these problems are in many situations nothing but disguised scale
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problems.

Also, in order to apply a re�ned mathematical model like a di�erential equation or

some kind of deformable template, it is necessary to have some kind of qualitative initial

information, i.e., a domain where the di�erential equation is (assumed to be) valid or an

initial region for application of the raw deformable template. Examples can be obtained

from many \shape from X" methods, which in general assume that the underlying as-

sumptions are valid in the image domain the method is applied to. A commonly used

assumption is that of smoothness implying that the region in the image, to which the

model is applied to, must correspond to, say, one physical object or one facet of a surface

etc. How should such regions be selected automatically? Many methods cannot be used

unless this non-trivial part of the problem has been solved.

How to detect appropriate scales and regions of interest when there is no a priori

information available. In other words, how to determine the scale of an object and where

to search for it before knowing what kind of object we are studying and before knowing

where it is located. Clearly, this problem is intractable if treated as a pure mathematical

problem. Nevertheless, it arises implicitly in many kinds of processes, e.g., dealing with

texture, contour etc, and seems to boil down to an intractable chicken-in-the-egg problem.

The solution of the pre-attentive recognition problem seems to require the solution of the

scale and region problems and vice versa.

The goal of this presentation is to demonstrate that such pre-attentive groupings can

be performed in a bottom-up manner, and that it is possible to generate initial hypotheses

about blob-like regions of interest as well as to give coarse indications about the scales

at which the regions manifest themselves. The basic tools for the analysis will be scale-

space theory, and a heuristic principle stating that blob-like structures which are stable

in scale-space are likely candidates to correspond to signi�cant structures in the image.

Concerning scale selection, scale levels will be selected that correspond to local maxima

over scales of a measure of blob response strength. (Precise de�nitions of these notions

will be given later). It will be argued that once such scale information is available, and

once regions of interest have been extracted, later stage processing tasks can be simpli�ed.

This claim is supported by experiments on edge detection and classi�cation based on local

features.

1.2 Detection of image structure

The main features that arise in the (zero-order) scale-space representation of an image are

smooth regions which are brighter or darker than the background and stand out from their

surroundings. These will be termed blobs (a precise de�nition will be given later). The

purpose of the suggested representation is to make these blobs as well as their relations
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across scales explicit. The idea is also that the representation should re
ect the intrinsic

shape of the grey-level landscape | it should not be an e�ect of some externally chosen

criteria or tuning parameters. The theory should in a bottom-up fashion allow for a

data-driven detection of signi�cant structures, their relations and the scales at which they

occur. It will, indeed, be experimentally shown that the proposed representation gives

perceptually reasonable results, in which salient structures are (coarsely) segmented out.

Hence, this representation can serve as a guide to subsequent, more �nely tuned processing,

which requires knowledge about the scales at which structures occur. In this respect it

can serve as a mechanism for focus-of-attention.

Since the representation tries to capture important image structures with a small

set of primitives, it bears some similarity to the primal sketch proposed by Marr (1976,

1982), although fewer primitives are used. The central issue here, however, is to represent

explicitly the scales at which di�erent events occur. In this respect the work addresses

problems similar to those studied by Bischof and Caelli (1988). They tried to parse

scale-space by de�ning a measure of stability. Their work, however, was focused on zero-

crossings of the Laplacian. Moreover, they overlooked the fact that the scale parameter

must be properly treated when measuring signi�cance or stability. Here, the behaviour

of structures over scale will be analysed in order to give the basis of such measurements.

Of course, several other representations of the grey-level landscape have been proposed

without relying on scale-space theory. Let us also note that Lifshitz and Pizer (1990) have

studied the behaviour of local extrema in scale-space. However, we shall defer discussing

relations to other work until the suggested methodology has been described.

The idea of scale-space representation of images, suggested by Witkin (1983) has, in

particular, been developed by Koenderink and van Doorn (1984, 1986, 1992), Babaud et

al. (1986), Yuille and Poggio (1986), Hummel (1987), Lindeberg (1990, 1993) and Florack

et al. (1992). This work is intended to serve as a complement addressing computational

aspects, and adding means of making signi�cant structures and scales explicit. The main

idea of the approach is to link features at di�erent scales in scale-space into higher order

objects, called scale-space blobs, and to extract signi�cant image features based on the

appearance and stability of these objects over scales.

As a guide to the reader, it should be remarked that certain subsets of this material

have been presented in other papers (see the references). The aim with this presentation

is to provide a coherent overview, including precise de�nitions and applications that have

not been presented elsewhere. An extensive treatment with algorithmic details can be

found in the author's thesis (Lindeberg 1991).
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2 The scale-space primal sketch

The scale-space representation of a signal is an embedding of the original data into a

derived one-parameter family of successively smoothed signals, intended to represent the

original data a multiple scales. Given a two-dimensional continuous signal f : R2 ! R,

the scale-space L : R2 � R+ ! R is de�ned as the solution to the di�usion equation

@tL =
1

2
r2L =

1

2
(@x1x1 + @x2x2)L (1)

with initial condition L(�; 0) = f , or equivalently by convolution with the Gaussian kernel

g : R2 � R+nf0g ! R

L(�; t) = g(�; t) � f; (2)

where

g(x; t) =
1

2�t
e�(x

2
1+x22)=(2t) (3)

and x = (x1; x2) 2 R2. The parameter t 2 R+ is denoted scale parameter, and corresponds

to the square of the standard deviation of the Gaussian kernel t = �2.

From experiments one can (visually and subjectively) observe that the main features

that arise in this scale-space representation seem to be blob-like, i.e., they are regions

either brighter or darker than the background (see Figure 8). Especially, such regions

which appear to stand from the surroundings in the original image seem to be further

enhanced by scale-space smoothing. The suggested scale-space primal sketch focuses on

this aspect of image structure. The purpose is to build a representation for making such

information in scale-space explicit. Therefore, there is a need to formalize what should be

meant by a \blob".

2.1 Grey-level blob

What properties should be required from a blob de�nition? It is clear that a blob should

be a region associated with (at least) one local extremum. However, it is also essential

to de�ne the spatial extent of the region around the blob, and to associate a signi�cance

measure with it. Ehrich and Lai (1978) considered the extent problem. They allowed

peaks to extend to valleys, a de�nition that will give non-intuitive results, e.g., for small

peaks on large slopes. Koenderink and van Doorn (1984) brie
y touched upon the problem

with reference to work by Maxwell (1870) concerning level curves and critical points. The

de�nition proposed here is related to those arguments.

The blob de�nition this work is based on should be evident from Figure 1. The basic

idea is to let the blob extend \until it would merge with another blob". To illustrate this

notion, consider a grey-level image at a �xed level of scale, and study the case with bright
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Figure 1: Illustration of the grey-level blob de�nition for a two-dimensional signal, with some
descriptive quantities of a grey-level blob; volume, area and contrast. This �gure shows bright
blobs on a dark background. Generically, a grey-level blob is given by a pair consisting of one
extremum and one saddle point, denoted delimiting saddle point.

blobs on a dark background. Imagine the image function as a 
ooded grey-level landscape.

If the water level sinks gradually, peaks will appear. At some instances two di�erent peaks

become connected. The corresponding elevation levels or grey-levels are called the base-

levels of the blobs, and are used for delimiting the spatial extent of the blobs. The support

region of the blob is de�ned to consist of those points that have a grey-level exceeding the

base-level and can be reached from the local maximum point without descending below

the base-level of the blob.

Hence, a bright blob will grow and include points having lower grey-levels until it would

meet with another blob. In this sense the blob de�nition can be regarded as conservative,

since no attempt is made to include points in other directions. From this construction,

the grey-level blob is de�ned as the three-dimensional volume delimited by the grey-level

surface and the base-level. The three-dimensional grey-level blob volume constitutes a

combined measure of the contrast and the spatial extent (area) of the blob.

2.1.1 Grey-level blob de�nition

A precise mathematical de�nition of the grey-level blob concept can be stated as follows:

Consider again the case with bright blobs on dark background, and assume a continuous

non-degenerate1 grey-level function f : R2 ! R at a �xed level of scale. Consider a local

maximum A 2 R2. For any grey-level z < f(A) let

X(A)
z =

�
the connected component of f(x; �) 2 R2 � R : z � � � f(x)g that contains (A; f(A))

	
;

(4)

and de�ne the sets G
(A)
z and H

(A)
z as follows: A point (B; �0) 2 X

(A)
z belongs to G

(A)
z

(H
(A)
z ) if and only if there exists a path p(A;f(A));(B;�0) from (A; f(A)) to (B; �0) such that

1Unless otherwise stated, the signals are throughout assumed to be Morse, i.e. all critical points are
assumed to be non-degenerate, and all critical values are assumed to be distinct.
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(i) every point on the path belongs to X
(A)
z , and (ii) the derivative of � along this path

�j0p(A;f(A));(B;�0)
< 0 (�j0p(A;f(A));(B;�0)

� 0). The base level of the blob zbase(A) is then de�ned

as the maximum value of z such that

zbase(A) = max
z<f(A)

z : G
(A)
z 6= H(A)

z ; (5)

where the notation C stands for the closure of a set C. (zbase(A) is the grey-level value

of the delimiting saddle point S = Sdelimit(A) associated with A). The grey-level blob

associated with the local maximum A is the set of points

Gblob(A) = G
(A)
zbase(A); (6)

with the (three-dimensional) grey-level blob volume

Gvolume(A) =
Z
(x; z)2Gblob(A)

dx dz: (7)

The projection of this region onto the spatial plane is called the support region,

Dsupport(A) = fx 2 R2 : (x; �) 2 Gblob(A) for some �g; (8)

and the di�erence in grey-level between the extremum point and the base-level gives the

blob contrast

Cblob(A) = f(A)� zbase(A): (9)

It is worth stressing that the grey-level blob is treated as an object with extent both in

space and grey-level. The de�nition is expressed in terms of two-dimensional continuous

signals, but can be extended to arbitrary dimensions as well as to discrete grids, if the paths

are given by a suitable connectivity concept (e.g. eight-connectivity for a two-dimensional

square grid), and the derivative condition f j0pA;B < 0 is replaced by a di�erence condition

f(x(k+1))� f(x(k)) < 0 along the path fx(k)g. Local minima can be treated analogously,

and every local minimum point gives rise to a dark blob on bright background.

2.1.2 Properties

It can be easily veri�ed that a blob will be connected. Moreover, the base level of a bright

blob is in one dimension attained at a minimum point, in two dimensions at a saddle

point. Consequently, the blobs are directly determined from topological properties of the

grey-level landscape, namely the �rst order singularities.

These blobs are not purely local features, as are extrema, but regional. An inherent

property of the stated de�nition is that it leads to a competition between parts; the
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presence of another nearby blob might neutralize a blob or reduce its size. In other

words, features manifest themselves only relative to the background. These aspects re
ect

important principles of the approach.

Note that this de�nition leads to separate systems for bright and dark blobs. This

implies that some points may be left unclassi�ed. Consequently, the given de�nition will

in contrast to, e.g., the sign of the Laplacian of the Gaussian only attempt to make a

partial (and hopefully safer) classi�cation of the grey-level landscape.

M MS

S

- +

Figure 2: Example with a dark blob contained in a bright blob. This phenomenon can be avoided
if the blob de�nition is modi�ed such that a blob is allowed to delimit its own extent in such
situations. Then, it will be guaranteed that no point belongs to both a dark and a bright blob.
(M+ = maximum point, M� = minimum point, S = saddle point).

In one dimension the bright and dark blobs of a signal will be closely related, since a

minimum point which delimits the extent of a bright blob will also constitute the seed of

a dark blob. In two dimensions the situation is slightly di�erent, since a saddle point that

delimits the extent of a bright blob will not delimit the extent of any dark blob, unless

the signal is degenerate. Therefore, in two dimensions, a point in a blob will in general

belong to either a dark blob or a bright blob. In certain types of situations, however, it

may indeed happen that some points are classi�ed as belonging to both a dark blob and

a bright blob, see Figure 2 for an example. If for some reason this type of phenomenon

is not desired, then it can be easily prevented from happening if the blob de�nition is

modi�ed slightly so that a blob is allowed to \delimit its own extent".

2.1.3 Grey-level blob tree

If the imaginary water level used for constructing grey-level blobs in Figure 1 is allowed

to decrease below the base level of a blob, then the grey-level blob will merge with the

adjacent region sharing the same saddle point. By considering all such events under

variations of the water level, a tree-like structure can be de�ned with successive inclusion

relations. Every arc corresponds to a range in grey-level where the topology is locally the

same, and the grey-level blobs constitute the leaves.

This representation termed grey-level blob tree has a qualitative similarity with the re-

lational tree studied by Ehrich and Lai (1978). Simple self-explanatory examples demon-

strating its construction are given in Figure 3. Similarly to a leaf, every arc in the tree can

be associated with a three-dimensional volume, as well as a support region and an area
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Figure 3: Examples of grey-level blob trees: (left) for a one-dimensional signal, and (right) for
a two-dimensional signal. The right �gure shows a mountain-like grey-level landscape with three
main peaks (marked by M+), and one hole (marked by M�). Arcs originating from bright blobs
are drawn with �lled lines (marked by '+'), and arcs corresponding to dark blobs are drawn by
dashed lines (marked by '�').

measure. The formal procedure for de�ning such relations is by treating every encoun-

tered delimiting saddle point as the seed of a new region, and then proceeding with the

successive construction of grey-level blobs and arcs with decreasing water level. In this

approach, every delimiting saddle point representing two merging regions is treated in the

same way as an ordinary maximum, once a merge between the two regions at the saddle

point has been registered.

By simultaneously considering the bright and dark grey-level blob trees of a signal, it

is possible to express formal relations between blobs of reverse polarity. The saddle points

and the level curves through those constitute the links, since these are the only entities

occurring in both systems.

Finally, it should be pointed out that what has been de�ned here is a grey-level blob

(and a corresponding tree) at one level of scale. When such objects are linked across

scales, they result in scale-space blobs (and corresponding trees), which will be described

after next section.

2.2 Motivation for a multi-scale hierarchy

It is easy to realize that the concept of a grey-level blob at a single level of scale is not

powerful enough for stable extraction of image structures. It leads to an extreme degree of

noise sensitivity, since two closely situated local extrema will neutralize each other. This

means that a large peak distorted by a few superimposed local extrema of low amplitude

will not be detected as one unit; only the �ne scale blobs will be found (see Figure 4).

Also the grey-level blob tree (and the relational tree) will be noise sensitive when con-

sidered at a single level of scale, since the hierarchical relations between di�erent blobs

are determined directly by the grey-levels in the valleys of the original signal. For exam-

ple, a thin elongated structures superimposed onto the data may completely change the
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z

x

Figure 4: (left) A high contrast large peak with two superimposed low contrast �ne scale peaks
will not be detected as a grey-level blob if the signal is considered at one scale only. (right) A
single noise spike can also substantially a�ect the relational tree.

topological relations (see Figure 4).

In order to obtain more stable descriptors, it is natural to consider the behaviour of the

grey-level blobs and the grey-level blob tree in scale-space. Since no a priori information

can be expected about what scales are relevant, the only reasonable approach is to consider

all scales simultaneously.

2.3 Scale-space blobs

Given a grey-level blob existing at some level of scale, there will in general be a corre-

sponding blob both at a slightly �ner scale and a slightly coarser scale. Linking such

grey-level blobs across scales, gives four-dimensional objects, called scale-space blobs. (A

formal de�nition of how the linking is performed is given in Appendix A.1).

Figure 5: (a) Linking similar grey-level at adjacent levels of scale gives (b) scale-space blobs,
which are objects with extent both in space, grey-level and scale. (In this �gure the grey-level
coordinate has been omitted. The slices illustrate the support regions of the grey-level blobs.)

At some level of scale it might be impossible to accomplish a plain link between a grey-

level blob at that scale and a corresponding blob at a slightly coarser or �ner scale. A blob

event has occurred a�ecting the connectivity of the blobs. According to a classi�cation in

Appendix A.2, there are four possible types of blob events with increasing scale;

� annihilation | one blob disappears,

� merge | two blobs merge into one,
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� split | one blob splits into two,

� creation | one new blob appears.

In summary, the classi�cation of blob event means that each blob event corresponds to

an annihilation or a creation of a pair consisting of one saddle point and one extremum

point. For example, the di�erence between a blob annihilation and a blob merge, is that

in the �rst case, the delimiting saddle point of the blob is contained in only one grey-level

blob, while in the second case, it is part of two di�erent grey-level blobs; see Figure 6.

d)c)b)

a)

Figure 6: Generic blob events in scale-space: (a) annihilation, (b) merge, (c) split, (d) creation.

The scale levels where these singularities take place delimit the extent of the scale-

space blobs in the scale direction. Consequently, every scale-space blob will be associated

with a minimum scale, denoted appearance scale tA, and a maximum scale, denoted dis-

appearance scale tD. The di�erence
2 between the disappearance scale and the appearance

scale gives the scale-space lifetime of the blob.

In merge and split situations the grey-level blobs existing before the bifurcation are

regarded as belonging to di�erent scale-space blobs than the grey-level blobs existing after

the bifurcation.

In special con�gurations it may happen that a blob without a hole forms a torus,

or that a torus �lls in its hole. These events are also stable in the sense that a small

disturbance of the original signal will not a�ect the qualitative behaviour. Here, such

events will be considered not to a�ect the scale-space blobs; the grey-level blobs existing

before such an event will be regarded as belonging to the same scale-space blob as the

grey-level blobs existing after.

2.4 Scale-space blob tree

Similar considerations can be applied to the evolution properties over scales of the grey-

level blob tree. This gives a scale-space blob tree. Interestingly, the only bifurcations that

2It turns out that some transformation of the scale parameter is necessary in order to capture the
concept of scale-space lifetime properly (see Section 2.6).
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can occur in scale-space are those who a�ect the leaves, i.e. the grey-level blobs and the

scale-space blobs. This is a direct consequence of the fact that both an extremum point

and a saddle point must be involved in a bifurcation (Appendix A.2), and every extremum

point corresponds to a unique grey-level blob, and hence a unique scale-space blob.

M1 M2

M3
S1

S2

M1

M2
M3

S1

S2

S2

M3
+

M2
+

M1
+

S1
S2

M3
+

M2M1
S1

++

+ +

+ +

+ +

Figure 7: The additional complexity that occurs when considering grey-level blob trees is the
introduction of re-orderings, which are changes in the ordering relations in the grey-level blob tree
resulting from relative changes in grey-level between saddle points. This �gure shows a simple
example with bright blobs; in the left case z(S1) > z(S2), while in the right case z(S1) < z(S2).

The additional complexity that arises when considering grey-level blob trees over scales

compared to grey-level blobs is that a structural event called reordering may occur. It

is the result of a relative change in grey-level between two di�erent saddle points, which

directly determine the ordering relations in the grey-level blob tree, see Figure 7 for an

example.

2.5 Grey-level blob extraction: Experimental results

Figure 8 displays an example of extracting (dark) grey-level blobs at di�erent3 scales in

scale-space. It can be seen that at �ne scales mainly small blobs due to noise and surface

texture are detected. When the scale parameter increases, the noise blobs disappear

gradually although much faster in regions near steep gradients. Notable in this context

is that blobs due to noise can survive for a long time in scale-space if located in regions

with slowly varying grey-level intensity. This observation shows that scale-space lifetime

alone cannot be used as the basis for a signi�cance measure, since it would substantially

overestimate the signi�cance of blobs due to noise4.

The buttons on the keyboard manifest themselves as blobs after a small amount of

smoothing. At coarser levels of scale, they merge into one unit (the keyboard). One can

also observe that some other dark details in the image, the calculator, the cord, and the

receiver, appear as single blobs at coarser levels of scale.

This example demonstrates that, as anticipated, the grey-level blob concept shows an

3This behaviour of the grey-level blobs over scales may be regarded as somewhat complex by a reader
unfamiliar with these concepts. A detailed theoretical analysis is given in (Lindeberg 1992).

4Of course, the contrast of such blobs decreases, but it is far from clear that it is possible to set a
threshold on objective grounds.
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Figure 8: Grey-level and (dark) grey-level blob images of a telephone and calculator image at
scale levels t = 0; 1; 2; 4; 8; 16; 32; 64; 128;256;512 and 1024 (from top left to bottom right).
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extreme degree of noise sensitivity, which can be circumvented by the scale-space smooth-

ing. But it is certainly a far from trivial problem to determine a proper amount of

smoothing automatically, based on previous conventional methods.

The aim with the suggested blob linking across scales is to determine which blobs in the

scale-space representation can be regarded as signi�cant, without any a priori information

about neither scale, spatial location nor the shape of the primitives5. As we shall see later,

the output from the linking procedure also enables determination of a suitable scale level

for handling each individual6 blob.

2.6 Measuring blob signi�cance

Since the ultimate goal of this analysis is to extract important structures structures in

the image based on the appearance and signi�cance of scale-space blobs in the scale-space

representation, there is an absolute need for some methodology for comparing signi�cance

between di�erent levels of scale. In other words, what is desired is a mechanism for judging

whether a blob existing only at coarse levels of scale can be regarded as more signi�cant

or less signi�cant than a blob with extent primarily at �ne levels of scale.

The approach proposed here is to use the four-dimensional volumes of the scale-space

blobs in scale-space (de�ned in Appendix A.1.3). It is suggested that it is a useful entity

for a signi�cance measure, since it comprises both the spatial extent, the contrast, and

the lifetime of the blob. Qualitative motivations for incorporating these entities into the

signi�cance measure can be summarized as follows:

spatial extent x : In the absence of further information, a blob having large spatial

extent may be treated as more signi�cant than a corresponding smaller blob.

contrast z : In the absence of further information, a high contrast blob may be treated

as more signi�cant than a similar blob with lower contrast.

lifetime t : In the absence of further information, a blob having a long lifetime in scale-

space may be treated as more signi�cant than a corresponding blob having a shorter

lifetime. In general, a blob B1 far away from another blob B2 will survive longer in

scale-space than a blob B3, similar to B1, but nearer to B2. Moreover, the lifetime

of a blob will in general be longer if there are no spatially coincident structures at

other scales. Hence, two special cases implied by this heuristic principle are that

5Except for the fact that scale-space smoothing favours blob-like bell-shaped objects.
6The word individual is emphasized here, since stable scales when they exist are, in general, local

properties associated with object (or parts of objects) | not with entire images. However, the assumption
of a globally stable scale is sometimes used implicitly in computer vision algorithms, for example, when
edge detection is performed using uniform smoothing all over an image. Instead, it is argued that better
performance can be obtained by adapting the scale levels to the local image structure, see Sections 4{6 for
examples.
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� a blob B1 far away from another blob B2 will be treated as more signi�cant

than a blob B3 similar to B1, but nearer
7 to B2,

� a blob, for which there are no spatially overlapping �ner or coarser scale struc-

tures, will be treated as more signi�cant than a similar blob, for which such

interfering structures at nearby scales exist.

If the signi�cance measure, however, is to be based on the scale-space blob volume, it is

of crucial importance that the coordinates are measured in proper units, since in principle

they could be transformed by arbitrary monotone functions.

2.6.1 Measuring scale-space lifetime

Consider �rst the measurement of scale-space lifetime. A natural choice of scale parameter

for a continuous signal case is the logarithm of the ordinary scale parameter. Based on this

idea, one could be inspired to de�ne scale-space lifetime as log tD � log tA, where tD and

tA denote the disappearance and appearance scales of the scale-space blob respectively.

It seems reasonable that this would give a good description at coarse scales, since it is

well-known that changes in scale-space occur logarithmically with scale. For example, the

scale parameter is usually sampled such that the ratio between successive scale values is

constant.

Such an approach would, however, lead to unreasonable results for discrete signals8

at �ne levels of scale, since then a blob existing in the original signal (at t = 0) would

be assigned an in�nite lifetime. Similarly, it can be observed that tD � tA does not work

either, since then the lifetime of blobs at coarse scales in scale-space would be substantially

overestimated.

Consequently, there is a need for introducing a transformed scale parameter � = �e�(t)

such that scale-space lifetime measured by

�life = �D � �A = �e�(tD)� �e�(tA) (10)

gives a proper description of the behaviour in scale-space also for discrete signals. This

scale parameter should neither favour �ne scales to coarse scales nor the opposite.

At �rst glance the problem of transforming the scale parameter may seem somewhat ad

hoc. What properties are required from an e�ective scale parameter? The approach that

7Note in this context that if two blobs (B2 and B3 above) are closely located, there will in general be a
large blob corresponding to the union of these two blobs at coarser scales in scale-space. Hence, although
the smaller one of these blobs (B3 above) may be assigned a small signi�cance value, the union of these
two blobs will be assigned a larger signi�cance value, and hence attract the focus-of-attention to the union
of the two adjacent structures.

8A brief review of the scale-space concept for discrete signals is given in Appendix A.3.
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will be adopted here is to assume that the expected remaining lifetime of a local extremum

should not vary with scale. More precisely, it will be assumed that the probability that

a certain local extremum disappears9 after a small amount of smoothing �� , expressed

in e�ective scale, should be constant over scales, i.e the relative decay rate should be

independent of scale.

Assume that it is known how the expected number of local extrema per unit area varies

with scale. In other words, assume that

p(t) = fexpected density of extrema at scale tg (11)

is known. The relative decay rate requirement can be stated as

@�p

p
= @�(log p) = C = constant: (12)

Integration and introduction of new arbitrary constants C1 and C2 gives

� = �e�(t) = C1 + C2 log p(t): (13)

Without loss of generality, C1 can be set to zero. It is just an o�set coordinate, and cancels

in the scale-space lifetime. Similarly, C2 just corresponds to an arbitrary but unessential

linear rescaling of the e�ective scale parameter.

So far no assumptions have been made about the dimensionality of the signal, or

whether it is continuous or discrete. What is left to determine is how the density of local

extrema can be expected to vary with scale.

For a large class of continuous signals, the number of local extrema decreases with scale

approximately as t� (Lindeberg 1993b). This result can be derived from a one-dimensional

stationary normal white noise process as well as a corresponding process with a spectral

density of the form !�� with 0 � � < 3. It can also be shown from dimensional analysis

that in arbitrary dimensions N , the density of local extrema can be expected decrease

with scale as t�N=2. Under these conditions, the e�ective scale is given by a logarithmic

transformation

�e�(t) = �C2� log t: (14)

For discrete signals, the density of local extrema can be expected to show the same qual-

itative behaviour at coarse scales, where the grid e�ects are negligible. At �ne scales,

9For one-dimensional signals, the number of local extrema in a signal is guaranteed to decrease mono-
tonically with with scales. In two and higher dimensions the situation is more complicated, since the
number of local extrema can in fact increase locally with scale-space smoothing due to creations of saddle-
extremum pairs. However, the expected number of local extrema, treated as an average over many signals
can always be expected to decrease.
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however, the t�� behaviour cannot hold, since it is based on the assumption that the

original signal contains equal amounts of structure at all scales. The discrete signal is

limited by its �nite sampling density.
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Figure 9: Experimental results showing the number of local extrema as function of the scale
parameter t in log-log scale (a) measured values (b) accumulated mean values. Note that a straight-
line approximation is valid only over a limited range of scales.

These ideas are illustrated in Figure 9, which shows the logarithm of the number of

local extrema in a �nite image as function of the logarithm of the ordinary scale parameter

t. The left diagram shows simulated results for a large number of white noise images gen-

erated from three di�erent distributions, normal, rectangle, and exponential distribution.

The right diagram shows the average of these results. Note that a straight-line approxi-

mation is valid only in an interior scale interval. At �ne scales there is interference with

the inner scale of the image given by its sampling density, and at coarse scales there is

interference with the outer scale of the image given by its �nite size.

The notion of e�ective scale takes this notion of inner scale into account, and enables

a precise de�nition of scale-space lifetime also at �ne levels of scale. Combined with the

concept of scale-space for discrete signals it provides the necessary tool for investigating �ne

scale structures. For implementational purpose, p(t) is estimated from synthetic simulation

results for a set of reference data. Then, the transformation function is determined by

�e�(t) = log
pref(0)

pref(t)
; (15)

where pref(t) denotes the average density of local extrema in the simulations on the ref-

erence data. In the current implementation, the reference data is selected as a large set

(� 102) of white noise images. A motivation for this choice is given in next section.

2.6.2 Transformed grey-level blob volumes

Similarly, the grey-level blob volumes need to be transformed, since the average volume

can be expected to vary substantially with scale. When the scale parameter increases,

the average contrast can be expected to decrease, and the average area to increase. What
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about the grey-level blob volume? Experimental results demonstrate that it actually

decreases at �ne scales and increases at coarser scales, see Figure 10.
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Figure 10: Experimental results showing (a) the mean value, and (b) the standard deviation of
the grey-level blob volumes as function of scale for white noise images of di�erent distribution.

Within the parts of the graphs where a linear approximation is valid, the mean value,

Vm(t), and the standard deviation of the grey-level blob volume, V�(t), vary with scale

approximately as

Vm(t) �
p
t; V�(t) �

p
t; (16)

while corresponding experiments demonstrate that the variation of the area and contrast

is of the form

A(t) � t; C(t) � 1p
t
; (17)

as can be expected from dimensional analysis or a study of a single Gaussian blob.

If these e�ects are not taken into account, the signi�cance of coarse scale blobs will

be substantially overestimated. It is clear that the blob behaviour depends strongly upon

the image (since we actually want to use it for segmentation). Is it then possible to talk

about expected behaviour?

A conservative approach is to consider white noise data, i.e. images without any struc-

tured relations between adjacent pixels. If statistics is accumulated of how blobs can be

expected to behave in such images, then the result will be an estimate of to how large

extent accidental groupings can be expected to occur in scale-space.

If a grey-level blob at some level of scale has a volume smaller than the expected volume

for white noise data, then it can hardly be regarded as signi�cant. On the other hand,

if at some level of scale the blob volume is much larger than the expected blob volume,

and in addition, the di�erence in blob volume is much greater than the expected variation

around the average value, then it may be reasonable to treat the blob as signi�cant.

A natural normalization to perform is to subtract a measured grey-level blob volume

Gvolume by the mean value, Vm(t), and divide by the standard deviation, V�(t). This gives
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a transformed grey-level blob volume

Vprel =
Gvolume � Vm(t)

V�(t)
: (18)

Since, however, such a quantity may take negative values, it is not suitable for integration

(which is a necessary step in the computation of the scale-space blob volume). Therefore, in

the current implementation, the e�ective grey-level blob volume is de�ned in the following

way, which empirically turns out to give reasonable results

Ve� = Vtrans(Gvolume; t) =

8<
:

1 + Vprel if Vprel � 0,

e
Vprel otherwise.

(19)

With this de�nition, the e�ective volume of the mean value is one. For larger values it

grows linearly with Vprel. Thus, Ve� and Vprel show the same qualitative behaviour for

the signi�cant grey-level blobs. For smaller values of Vprel, Ve� decreases to zero, and the

qualitative di�erence between Vprel and Ve�, increases as the signi�cance decreases.

Hence, a qualitatively correct behaviour is obtained for the important blobs, and it

can be expected that this solution should not a�ect the result too seriously. It should also

be mentioned, that in order to adapt the amplitude of the signal to the reference data, Vm

and V� are rescaled linearly from a least-squares �t between the actual and the expected

behaviour of these entities.

Finally, these transformed grey-level blob volumes are integrated over the scale-space

blob according to (31) in Appendix A.1.3. A discussion about other possible approaches

to normalizing the scale-space blob volume is given in Section 8.4.

2.7 Resulting representation

To summarize, the data structure proposed is a tree-like multi-scale representation of blobs

at all levels of scale in scale-space including the relations between blobs at di�erent scales.

Grey-level blobs10 should be extracted at all levels of scale, the bifurcations in scale-space

be registered, grey-level blobs stable over scales be linked across scales into scale-space

blobs, and the normalized scale-space blob volumes be computed.

Since the representation tries to capture signi�cant features and events in scale-space

using a small set of primitives, it is called a scale-space primal sketch. In the resulting data

structure constructed according to this description, every scale-space blob contains explicit

information about which grey-level blobs it consists of. The grey-level blobs are detected

10As explained in previous sections, grey-level blob trees can be treated in a similar way. Since, however,
the problem of normalizing the spatial and grey-level coordinates has so far been studied only concerning
the grey-level blobs and the scale-space blobs, the remaining part of this presentation will be concerned
with these objects.
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at (sampled) scale levels obtained from an adaptive scale linking and re�nement algorithm

outlined in Appendix A.4. Further, the normalized scale-space blob volumes have been

computed, and the scale-space blobs \know" about the type of of bifurcations that have

taken place at the appearance and disappearance scales. There are also links to the

other scale-space blobs involved in the bifurcations. Hence, the representation explicitly

describes the hierarchical relations between blobs at di�erent scales, see Figure 11 for a

schematic illustration.

annihilation

scale-spaceblobs

merge

Id: Id:

t

t

max

min

Id:

Significance(4D volume)Appr.scaleMin.scaleMax.scaleGrey-level blobs

Figure 11: The scale-space primal sketch based on grey-level blobs can be seen as a tree-like multi-
scale representation of blobs with the scale-space blobs as basic primitives (vertices) and the rela-
tions (bifurcations) between scale-space blobs at di�erent levels of scale as branches. (When grey-
level blob tree are considered as well, the scale-space primal sketch becomes a three-dimensional
graph with hierarchical relations along the grey-level dimension as well.)

In next section it will be shown how some directly available information from this

representation can be used for extracting signi�cant image structures. Then, applications

will be given of how such output from the scale-space primal sketch can be used for tuning

later stage processes and guiding the focus-of-attention.

3 Detecting salient blob structures and their scales

A major motivation for this research has been to investigate whether the scale-space

model allows for determination and detection of stable phenomena. In this section it will

be demonstrated that this is indeed possible, and that the suggested representation can be

used for extracting regions of interest with associated stable scales from image in a solely

bottom-up data-driven way. The treatment is based on the assumption that

Structures, which are signi�cant in scale-space, are likely to correspond to sig-

ni�cant structures in the image.
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This statement has been expressed on a general form, since it can be speculated that the

approach can be applied also to other types of structures11 than the blobs considered here.

More precisely, since the primitives that will be used are scale-space blobs, the heuristic

selection method is formulated as follows:

Assumption 1. (Ranking of blob structures on signi�cance)

In the absence of other evidence, a scale-space blob having a large normalized scale-space

blob volume in scale-space is likely to correspond to a relevant blob-like region in the image.

A scale-space blob will, in general, exist over some range of scales in scale-space. When

there is a need for reducing the amount of data represented, and to select a single scale and

region as representative of the scale-space blob, the following postulates are suggested.

Assumption 2. (Scale selection: Maximum response over scales)

In the absence of other evidence, the scale at which the scale-space blob assumes its max-

imum normalized grey-level blob volume over scales is likely to be a relevant scale for

representing the blob.

Assumption 3. (Selection of spatial representative)

In the absence of other evidence, the spatial extent of a scale-space blob can be represented

by the support region of the blob at the scale level selected according to Assumption 2.

The ranking on signi�cance depends on the actual scaling of the four coordinates in the

scale-space representation. Therefore, the extraction method implicitly relies upon the

assumption that it should be su�cient to transform the coordinates once and for all as

was done in Section 2.6.

Assumption 4. (Normalization with respect to reference data)

The coordinate axes in the scale-space representation can be normalized based on the be-

haviour in scale-space of reference data.

Below, experimental results will be given demonstrating how these assumptions can be

used for segmenting out intuitively reasonable regions from various types of imagery. First,

however, motivations will be given to why these assumptions have been stated.

3.1 Motivations for the assumptions

A central problem in low-level vision concerns what should be meant by image structure.

In other words, which features in an image should be regarded as signi�cant, and which

11For example, it seems plausible that the lifetime of an edge in scale-space is an important property for
measuring signi�cance. As will be demonstrated in Section 6, a multi-scale blob detection approach can be
useful in junction detection, provided that a proper transformation of the intensity domain is performed
as pre-processing.
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ones can be rejected as insigni�cant or as due to noise. As we discussed in the intro-

duction, this problem seems impossible if stated as a pure mathematical problem, as is

the segmentation problem if seen in isolation. Nevertheless, since there are indications

that biological vision systems are able to perform natural pre-attentive groupings in im-

ages (Witkin and Tenenbaum 1983; Lowe 1985), one may speculate whether there are any

inherent properties in data that can be used for de�ning such groupings.

The scale-space primal sketch constitutes an attempt to express such groupings12 for

blob-like structures by a formal mathematical framework. The technique is by constructing

primitives from the scale-space representation, which are de�ned solely in terms of the

singularities that occur in scale-space.

3.1.1 Stability in scale-space: Salience

When Witkin (1983) coined the term scale-space, he observed a marked correspondence

between perceptual salience and stability in scale-space:

... intervals that survive over a broad range of scales tend to leap out to the

eye ...

Assumption 1 constitutes an extension of this observation to a heuristic principle for

extracting blob-like image structures. The signi�cance measure is, however, not based on

the scale-space lifetime alone, since as mentioned in Section 2.5, blobs due to noise can

survive over large ranges of scale, if located in regions with slowly varying grey-level.

Observe how this measure of signi�cance relates to a de�nition of structure in terms of

transformational invariance. If a feature is to be useful for recognition, it must necessarily

be stable with respect to small disturbances. Otherwise it would hardly be useful, since

then it would be impossible to compute it accurately. Here, this stability requirement

is used for actually formulating an operational method for detecting image structures |

by subjecting the image to systematic parameter variations, and explicitly measuring the

stability of the structures (here, blobs) under parameter variations (here, scale variations).

In line with this idea, Assumption 1 states that the scale-space blobs that are the most

stable ones under variations of the scale parameter in scale-space, are the most likely ones

to correspond to signi�cant image structures. Of course, the reverse statement does not

hold. There are many other sources of information, e.g. lines in line drawings, which are

not captured by a blob concept and scale-space smoothing.

Note, that this use of transformational invariance is di�erent than what is usually

meant by invariance in an algebraic or a geometric sense; the transformational invariance

12It should be stressed that no claims are made here that the proposed approach is an appropriate
description of the mechanisms in biological vision. When relations to biological vision are discussed, it is
only as a source of inspiration.
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of the scale-space blobs concerns local topological properties which are stable over �nite

intervals of parameter variations.

3.1.2 Reduction of the representation: Abstraction

Because of complexity arguments, the entire parameter variation information from the

low-level modules cannot be transferred to the higher-level modules in a vision system.

Assumption 2 and Assumption 3 express such a desire to represent a scale-space blob

with a grey-level blob at a single level of scale, in order to give a more compressed repre-

sentation | an abstraction | for further processing.

The motivation for selecting the scale at which the maximum of the normalized grey-

level blob volume is assumed is that it should re
ect the scale where the blob response is

maximally strong. It turns out that this scale will often be close to the appearance scale

of the scale-space blob, except at blob splits and blob creations, for which the grey-level

blob volume may13 be zero at the appearance scale.

It is worth noting that Assumption 2 implies a projection from a four-dimensional

scale-space blob to a three-dimensional grey-level blob, and that Assumption 3 implies a

projection from that grey-level blob to its two-dimensional support region.

3.2 Basic method for extracting blob structures

The basic methodology for extracting signi�cant blobs from an image should now be

obvious from the above presentation.

� Generate the suggested scale-space primal sketch, where blobs are extracted at all

levels of scale, and linked across scales into scale-space blobs.

� Compute the normalized scale-space volume for each scale-space blob based on the

notion of e�ective scale and e�ective grey-level blob volumes.

� Sort the scale-space blobs in descending signi�cance order, i.e., with respect to their

normalized scale-space blob volumes.

� For each scale-space blob determine the scale where it assumes its maximum grey-

level blob volume, and extract the support region of the grey-level blob at that

scale.

13More precisely, at blob creations the grey-level blob volume of the new blob is always zero. At blob
splits, the grey-level blob volume of the blob associated with the new local extremum is zero, while the
volume of the other blob may be non-zero (see the polynomial representative of the fold singularity (32)).
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Figure 12: The 50 most signi�cant dark blobs from a toy block image. (Note how these images
have been produced | they are not just blob images at a few levels of scale. Instead every blob
has been marked at its representative scale. Finally, the blobs have been drawn in di�erent images
as to avoid overlap.)

Figure 13: The 50 most signi�cant dark blobs from a telephone and calculator image.
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3.3 Experimental results

Figures 12{13 show the result of applying this procedure to two di�erent images, one with

a telephone and a calculator, and one with a set of toy blocks.

For display purpose the N most signi�cant dark scale-space blobs have been extracted.

Each blob is displayed at its representative scale, that is the previously mentioned scale

at which the scale-space blob assumes its maximum grey-level blob volume. The spatial

representative of each blob (which is the blob support region of the grey-level blob at the

representative scale) is marked in a binary image, where black indicates the existence of

a signi�cant dark blob, and white represents background. In order to avoid overlap, the

display routine shifts to a new fresh image each time the addition of a new blob would

imply overlap between two di�erent blobs.

We can see that in the toy block image, the individual blocks are extracted. Also, at

coarser scales, adjacent blocks are grouped into coarser scale units, and the imperfections

in the image acquisition near the boundaries are pointed out. In the telephone scene,

the buttons, the keyboard, the calculator, the cord, and the receiver are detected as

single units. In order to show the spatial relations between the blobs at di�erent scales,

Figure 14{15 shows the blob boundaries superimposed onto each other. More experimental

results, including bright blobs, are presented in following sections; see also (Lindeberg 1991;

Lindeberg and Eklundh 1992).

Figure 14: Boundaries of the dark scale-space blobs extracted from the toy block image. (left)
Original image. (middle left) The 50 most signi�cant dark blobs. (middle right) Low threshold on
the signi�cance measure set in one of the \gaps" in the sequence of signi�cance values (between
74 and 131). (right) High threshold on the signi�cance measure set in another \gap" (between 298
and 591). (The signi�cance values are shown in Table 1).

3.4 Further treatment of the generated blob hypotheses

The number of scale-space blobs selected for display above is, of course, rather arbitrary.

Note, however, that there is a well-de�ned ranking between the blobs. If one studies

their signi�cance values (see Table 1 and Figures 14{17), one can observe that those blobs

we regard as the most signi�cant ones have signi�cance values standing out from the

signi�cance values of the other ones. Hence, it seems plausible that a few regions can be
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Figure 15: Corresponding blob boundaries from the telephone and calculator image.

Signi�cance Scale Blob label

1450.55 32.00 1760
1266.43 64.00 1767
1030.53 50.80 1764
591.16 80.60 1768
297.60 812.90 1770
284.72 645.10 1769
150.64 45.25 1761
131.99 28.51 1758
73.69 45.25 1763
63.51 35.91 1065
35.92 28.51 1759
35.42 22.65 1753
20.45 8.00 1703
17.43 8.99 1702
12.84 11.99 1723
9.94 28.51 1757
6.84 4.00 1256
6.20 9.53 1708
5.33 14.25 1725
5.10 2.00 1440

Table 1: Signi�cance values and selected scale levels for the 20 most signi�cant scale-space blobs
computed from the toy block image. Note that a few blobs have signi�cance values clearly standing
out from the other ones.

�! log(signi�cance)xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xx xx xx xx x xxx

Figure 16: Signi�cance values of the 50 most signi�cant blobs from the toy block image. The
signi�cance value of each blob has been marked with an \x" along a horizontal logarithmic scale.
The vertical lines indicate the manually selected thresholds used in Figure 14.

�! log(signi�cance)xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxx xxxx x x x x

Figure 17: Corresponding signi�cance values and manually selected thresholds for the blobs from
the telephone and calculator image in Figure 15.

26



extracted just based on this observation. In more general situations, there is a need for

feed-back and reasoning.

The output information from this representation should not be over-estimated. Since

it is a low-level processing module, the output should be interpreted mainly as indicators

signalling that \there might be something there of about that size | now some other

module should take a closer look". From this viewpoint it can be noted how well the

extracted blobs describe blob-like features in the previous images, considering that the

blobs have been extracted almost without any a priori information.

In principle, a reasoning process working on the output from the scale-space primal

sketch can operate in either of two possible modes:

� Use a threshold on the signi�cance measure. In a real system, such a threshold may

in some situations be set from given context information and expectations.

� Evaluate the generated hypotheses in decreasing order of signi�cance, i.e. �rst try

to interpret the �rst hypothesis in a feed-back loop, then consider the second one

etc. Continue as long as the hypotheses deliver meaningful interpretations for the

higher-level modules.

An inherent property of this representation is that it does not have any limiting require-

ment that there is just one possible interpretation of a situation. Instead it generates a

variety of hypotheses. Given some region in space, several hypotheses may be active for

it (or parts of it) concerning di�erent structures at di�erent scales.

A principle advocated in this paper is that the qualitative scale and region information

extracted from the scale-space primal sketch can be useful for guiding other visual pro-

cesses, and will simplify their tasks. Now, examples will be given of how such integrations

of the scale-space primal sketch with other processing modules can be performed.

4 Guiding edge detection with blob information

As a �rst application of the suggested methodology, an integration with an edge detection

method known as edge focusing (Bergholm 1987) will be described.

The main idea is to use the scale and region information for guiding an edge detection

scheme working at an adaptively determined level of scale. It will be demonstrated that

this task can be simpli�ed, and that thresholding on gradient magnitude can be avoided.

Given a signi�cant scale-space blob, edge detection is performed at the appropriate scale

of the blob scale-space blob. Then, a matching step is carried out between the support

region of the blob and the edges in a neighbourhood of the blob. Finally, the matched

edges are tracked to �ner scales in order to improve the localization; see Figure 18 for a
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schematic overview.

scale information edge focusing

blobs from thescale-spaceprimal sketch

edge detection +matching at coarse scale

localized edges at finer scales

Figure 18: Schematic view over the proposed integration of the scale-space primal sketch module
with edge focusing.

It is not maintained that the approach to be presented describes any \optimal way" to

solve every occurring subproblem. Instead, the intention is to exemplify how a connection

between the scale-space primal sketch and other modules can be done.

4.1 Edge detection at a coarse scale

A rather simple edge detector is used deliberately. The image is smoothed to the scale

associated with the scale-space blob. Then, derivatives along the two coordinates are

estimated by di�erence approximations, and a non-maximum suppression step (Canny

1986; Korn 1988) is performed (without thresholding on gradient magnitude) in order to

obtain thin edges14. In order to suppress spurious noise points, only edge segments of

length exceeding, say 2 pixels, are accepted.

4.2 Matching blobs to edges

Associating blobs with edges leads to a matching situation. The matching procedure used

for associating blobs with edges is based on the following three criteria:

Geometric coincidence: The edge segment should \encircle", \be included in", or

\intersect" the blob. A convenient way to express such a criterion is by requiring it to be

impossible to draw a straight line separating the edge from the blob, see Figure 19.

A simple way to approximate this criterion computationally is as follows: Let B � R
2

be the set of points contained in the support region of a blob, and let E � R
2 be the set

of points covered by an edge segment. Further, given any region R and any arbitrarily

rotated coordinate system (�; �) 2 R2, de�ne the extreme coordinate values �min; �max 2 R
by

�min(R) = min
(�;�)2R

�; �max(R) = max
(�;�)2R

�: (20)

14Edges are de�ned as the ridges of the gradient magnitude map, i.e. the points for which the gradient
magnitude assumes a maximum in the gradient direction.
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Figure 19: The geometric coincidence condition means that the edge should either surround the
blob, be included in it, or intersect the blob | it should be impossible to draw a straight line
separating the edge from the blob (b). In example (a) edges E1 and E2 are treated as matching
candidates of the blob, while edges E3 and E4 are not.

Now, an edge segment E is regarded as a matching candidate of a blob B if

�min(E) � �max(B); �max(E) � �min(B) (21)

hold in a su�ciently large number of directions. For practical implementation, this con-

dition is required to hold along both the coordinate directions of a standard Cartesian

coordinate system, as well as a corresponding coordinate system rotated by 45 degrees.

Proximity: The edge segment should not be too far away from the blob boundary. In

other words, the edge segment should comprise at least some point located near the bound-

ary of the blob. This condition can be stated as

min
xE2E; xB2B

jjxE � xBjj2 � d(t)

2
; (22)

where d(t) represents a characteristic length15 at scale t. The purpose of this criterion

is to prevent (interior and exterior) edges far away from the blob boundary from being

associated with the blob; see Figure 20(a).

Voronoi diagram of the grey-level blob image: The edge segment should not be

strongly associated with other blobs. A natural way to express such a criterion is in terms

of a Voronoi diagram of the grey-level blob image at the selected scale. An edge segment is

regarded as a Voronoi matching candidate of a blob if it has at least one point in common

with the Voronoi region associated with the grey-level blob; see Figure 20(b). In fact, this

type of criterion turns out to be useful also to other matching problems.

Composed matching procedure: For an edge segment to be accepted as a matching

candidate of a blob, it must satisfy all these criteria; see Figure 21 for an illustration.

Hence, the matching is relatively restrictive. It is also improved by the fact that it is

performed at a scale at which a blob has manifested itself. Once it is known that a

15For implementational purpose, this characteristic length is determined as the square root of an exper-
imentally determined blob area Am(t) at scale t. It is accumulated in the same way as the statistics of the
grey-level blob volume Vm(t).
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Figure 20: (a) The purpose of the proximity criterion is to prevent edges far away from the blob
boundary from being associated with the blob. (b) The purpose of the Voronoi region matching is
to prevent edges strongly related to one blob from being associated with other nearby blobs.

spatial region has given rise to a large blob at some level of scale, it seems unlikely that

con
icting edges should appear at the same scale, since most interfering structures ought

to be suppressed by the scale-space smoothing.

(a{b) (c{d)

(e{f) (g)

Figure 21: The matching procedure between blobs and edges for one blob from the telephone
and calculator image. (a) The support region of a dark scale-space blob (black). from (b) Edges
detected at the scale given by the blob. (c) All grey-level blobs at the same level of scale. (d)
Voronoi diagram of the grey-level blob image. (e) The Voronoi region corresponding to the given
blob. (f) The proximity stripe around the blob edge. (g) Resulting edges matched to the blob.

The main problem with this matching procedure is that it does not include any mecha-

nism for splitting long edge segments into shorter ones. Hence, certain edge segments can

be very long and spread far away from the blob boundary; see the example in Figure 22.

4.3 Blob-initiated edge focusing

Edge focusing (Bergholm 1987, 1989) is a method for following edges through scale-space.

The basic principle is to detect edges at a coarse scale, where the detection problem can

be expected to be easier, and then track the edges to a �ner scale, in order to improve the

localization, which can be very poor at coarse scales.

In this application the focusing procedure is initiated from several scale levels, since
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Figure 22: Illustration of the composed blob-edge focusing procedure for the telephone and
calculator image. The left column shows the active blob hypothesis; its blob support region has
been marked with black. The middle column shows the edge image at the level of scale given by the
previous blob; matched edge segments are drawn black while the other edge pixels are grey. The
right column shows the result after focusing, just before a new blob is considered. The image in
the lower right corner displays \the �nal result", i.e. the edges that are related to the dark blobs in
the image. The scale and signi�cance values for the di�erent blobs are from top to bottom (101.6,
14.1), (50.8, 252.8), (32.0, 11.4), (25.4, 660.9), (14.3, 40.8), (6.4, 63.6) and (1.3, 13.2) respectively.
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the signi�cant blobs from the scale-space primal sketch manifest themselves at di�erent

scales. Hence, the blobs are �rst pre-sorted in decreasing scale order. The procedure starts

with the coarsest scale blob, detects edges at that scale, and matches those to the blob.

This gives the input data for the edge focusing procedure, which follows these edges to the

scale given by the second blob. Then, the edge detection and matching steps are repeated

etc.

Figure 22 illustrates some steps from this composed procedure applied to the telephone

and calculator image. In order to reduce the number of blob hypotheses treated, a thresh-

old has been introduced on the signi�cance value. The \�nal result" is shown in the lower

right corner.

Observe that this method, called blob-initiated edge focusing, is not just another edge

detector, but that the edge elements obtained in this way are more likely to correspond

to meaningful entities, since they are explicitly grouped into edge segments, and are asso-

ciated with blobs and explicit scale information. Note that label information for the edge

segments can be easily inherited16 during the edge focusing process.

With this integration experiment, two of the tuning parameters in the edge focusing

algorithm have been eliminated. What remains undetermined is the stop scale down

to which the edge focusing procedure should be performed. In this work it has been

throughout set to t = 1, a scale where the sampling e�ects due to the discrete grid start

to become important. It seems plausible that some further guidance for this selection

could be obtained by studying the behaviour of the focused edges in scale-space as done

in (Sj�oberg and Bergholm 1988; Zhang and Bergholm 1993; Lindeberg 1993c).

The integration of the two algorithms exempli�es the previously mentioned guidance

of focus-of-attention. Note that the processing initiated by the scale-space primal sketch

is performed only for a small subset of the image data. In this sense the approach bears

similarity with the idea of a \focused beam" derived by Tsotsos (1990) from complexity

arguments; see also the experimental work by Culhane and Tsotsos (1992).

5 Automatic peak detection in histograms

The scale-space primal sketch is well suited for automatic cluster detection, since it is

designed for detection of bright blobs on dark background and vice versa. Hence, it

lends itself as a natural module for peak detection in algorithms based on histogramming

techniques, Although it is well-known that histogram-based segmentation hardly can be

expected to work globally on entire images (due to illumination variations, interference

16Clearly, the problem of relating a blob to edges becomes trivial if a separate focusing process is invoked
for each scale-space blob.
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because of many regions etc), such methods can often give useful results locally in small

windows, where only a few regions of distinctly di�erent characteristics (e.g. colour or

grey-level) are present.

5.1 Experimental results: Histogram-based colour segmentation

(a) (c)

(d) (f)

(g) (i)

Figure 23: Histogram-based colour segmentation of a fruit bowl image: (a) Grey-level image. (b)
Histogram over the chroma information. (c) Boundaries of the 6 most signi�cant blobs detected
by the scale-space primal sketch. (d)-(i) Backprojections of the di�erent histogram blobs (in
decreasing order of signi�cance). The pixels corresponding to the various blobs have been marked
in black. (The region in Figure (f) is the union of the regions in Figures (d), (e) and (i)). The
signi�cance values of the accepted blobs were 42.6 (background), 8.3 (grapes), 3.6 (oranges), 3.1
(apples), 3.0 (bowl) and for the rejected blobs 2.0 and less (2.0, 1.9, 1.8, 1.4, 1.3, 1.1, 1.1, 1.1, ...).

Figure 23 and Figure 24 illustrate how the scale-space primal sketch can constitute

a helpful tool in such histogram modality analysis of multi-spectral data. It shows his-

tograms of the (two-dimensional) chroma17 information, together with blobs detected by

the scale-space primal sketch, and backprojections of the blobs. We see that the extracted

blobs induce a meaningful partitioning of the histogram, corresponding to regions in the

image with distinctly di�erent colours.

Of course, there is a decision �nally to be made about which peaks in the histogram

should be counted as being signi�cant. However, it seems plausible that the signi�cance

17The colour images have been converted from the usual RGB format to the CIEu?v? 1976 format
(Billmeyer and Saltzman 1982), which separates the intensity and the chroma information. The histograms
are formed only over the (two-dimensional) chroma information, ignoring the (one-dimensional) intensity
information.
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(a{b) (c{d)

(e{f) (g{h)

Figure 24: Similar histogram-based colour segmentation of a detail from an o�ce scene. The
image shows a small window from a bookcase with two binders (yellow and blue) on a shelf made
of (yellowish) wood. The displayed blobs have signi�cance 187.9 (blue binder, large blob), 173.7
(blue binder, small blob), 170.1 (yellow binder), 80.6 (shelf) and 66.7 (yellow binder and shelf).
As can be seen, two blobs corresponding to the blue binder have been detected. This is a common
phenomenon in the scale-space primal sketch, that arises because a large blob merges with a small
(insigni�cant) blob and forms a new scale-space blob. Two such duplicate blobs corresponding to
the yellow binder (signi�cance 18.0) and the shelf (signi�cance 17.9) have been suppressed. The
remaining blobs had signi�cance 2.5, 2.0, 2.0, 2.0, 1.2, 1.2, 1.2, 1.1 and less.

values given by the scale-space blob volumes re
ect the situation in a manner useful for

such reasoning, especially since the regions around the peaks are extracted automatically.

In these examples, (single) thresholds have been set manually in \gaps" in the sequences

of signi�cance values; see the captions of Figures 23{24.

It can also be noted that this peak detection concept will be less sensitive to quanti-

zation e�ects in the histogram acquisition than many traditional peak detection methods.

The problems due to too �ne a quantization in the accumulator space will be substan-

tially reduced, since the scale-space blurring will lead to a propagation of information

between di�erent accumulator cells. Thus, even though the original histogram may have

been acquired using \too many and too small" accumulator cells, large scale peaks will

be detected anyway, since the contents of their accumulator cells will merge to large scale

blobs in scale-space after su�cient amounts of blurring.

Finding peaks in histograms is a problem that arises in many contexts. Let us point

out that the case with colour-based histogram segmentation has been considered just as

one possible application of the scale-space primal to histogram analysis. Because of the

general purpose nature of this tool, there are potential applications for similar techniques

such as Hough transforms, texture classi�cation etc. in two as well as other dimensions.

For related work, see (Carlotto 1987; Mokhtarian and Mackworth 1986).
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6 Junction classi�cation: Focus-of-attention

More generally, the scale-space primal sketch can serve as a primitive mechanism for focus-

of-attention. As an illustration of this, an experimental work will be brie
y described,

where the scale-space primal sketch has been used for guiding the focus-of-attention of an

active head-eye system applied to a speci�c test problem of classifying junctions.

The presentation is aimed at showing how the suggested approach can be used when

addressing some of the most fundamental problems in active analysis: (i) how to generate

hypotheses about the existence of objects, (ii) how to determine where to look, and (iii)

at what scale(s) to analyse image structures.

6.1 Background: Junction classi�cation by active focusing

It is well-known that junctions provide important cues to three-dimensional structure

(Malik 1987). Since most edge detectors cannot be expected to give accurate results at

junctions, direct methods for junction detection have been proposed.

Brunnstr�om et al. (1990) have demonstrated that a reliable classi�cation of junctions

can be performed by analysing the modalities of local intensity and directional histograms

during an active focusing process. The basic principle of the method is to accumulate local

histograms over the grey-level values and the directional information around candidate

junction points, which are assumed to be given by some interest point operator. Then,

the numbers of peaks in the histograms can be related to the type of junction according

to Table 2.

Intensity Edge direction Classi�cation hypothesis

unimodal any noise spike
bimodal unimodal edge
bimodal bimodal L-junction
trimodal bimodal T -junction
trimodal trimodal 3-junction

Table 2: Basic classi�cation scheme for local intensity and directional distributions around a
candidate junction point. (Adapted from Brunnstr�om et al. (1990)).

The motivation for this scheme is that in the neighbourhood of a point where three

edges join, there will generically be three dominant grey-level peaks corresponding the

three surfaces that meet. If the point is a 3-junction, an arrow-junction or a Y -junction,

then the edge direction histogram will (generically) contain three major peaks, while two

directional peaks can be expected at a T -junction. Similarly, at an L-junction there

will in general be two intensity and two directional peaks. Noise spikes and edges must

be considered, since interest point operators tend to give false alarms at such points.
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Situations with more than three peaks in either the intensity or the directional histogram

are treated as non-generic or as corresponding to surface markings.

6.2 Required context information

Taking such local histogram properties as the basis for a classi�cation scheme leads to two

obvious questions: Where should the window for accumulating the statistics be located

and how large should it be?

The problem of detecting candidate junctions has been extensively studied in the lit-

erature (Kitchen and Rosenfeld 1982; F�orstner and G�ulch 1987; Koenderink and Richards

1988; Florack et al. 1991). A useful entity for junction detection is the curvature of level

curves. In order to give a stronger response near edges, this entity is usually multiplied

by the gradient magnitude raised to some power k. A natural choice is k = 3. This gives

a polynomial expression

~� = jLxxL
2
y + LyyL

2
x � 2LxyLxLy j; (23)

which turns out to be skew invariant (Blom 1992). The result of computing this rescaled

level curve curvature from the toy block image at a scale given by a scale-space blob is

shown in Figure 25(b). Local maxima in ~� computed at a certain scale in scale-space can

be treated as junction candidates at that scale.

Problems that have not been very much treated concern at what scales the junctions

should be detected, and how to determine regions of interest around those. Corners are

usually regarded as pointwise properties, and thereby treated as very �ne scale features.

Realistic corners from man-made environments are, however, usually rounded. This means

that small size operators will have problems of �nding them noisy images.

In order to extract junction candidates, it is proposed that it can be useful to perform

blob detection on the level curve curvature data. Such blobs are termed curvature blobs.

Figure 25(c) show the result of applying this operation to the data in Figure 25(b). Note

that a set of regions is detected corresponding to the major corners of the toy block. Do also

note that the support regions of the blobs serve as natural descriptors for a characteristic

size of a region around the candidate junction, which can be used for setting the window

size for the histogram classi�cation step.

Of course, direct setting of a window size immediately valid for correct histogram

localization seems to be a very di�cult, or even an impossible task. If the window is too

large, then other structures than the corner of interest may be included. Conversely, if it

is too small, then the histograms could be severely biased, and deviate far from the ideal

appearance if the physical corner is rounded. A too small a window may also fall outside
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the actual corner if the interest point is associated with a localization error.

Therefore, the approach that is proposed is to use the support region of the curvature

blob for determining generous upper and lower bounds on an interval of window sizes,

and then applying the focusing procedure described in (Brunnstr�om et al. 1990). The

intention is that a systematic variation of window size combined with a consistency check

over parameter variation should allow for a more robust modality determination. The

method is based on the assumption that stable responses will occur for the model that

best �t the data, which closely relates to the scale variation principle in Section 3.1.1.

A trade-o� with this approach is that the localization of the corner will in general

be a�ected by the smoothing operation. Therefore, it should be emphasized that the

main goal of this �rst step is to detect candidate junctions at the possible cost of poor

localization. Then, if improved localization is needed, it can be obtained from a separate

process, using edge and curvature information at �ner scales (Lindeberg 1993c).

(a{b) (c{d)

Figure 25: Blob-initiated detection of junction candidates in the toy block image. (a) Support
region of a scale-space blob (marked with black). (b) The rescaled level curve curvature computed
at the scale of the scale-space blob. (c) Boundaries of the 50 most signi�cant curvature blobs
detected by applying the scale-space primal sketch to the curvature data. (d) Curvature blobs
matched to the original scale-space blob by spatial overlap, under the additional condition that
the scale of the curvature blob must not exceed the scale of the original scale-space blob that
invoked the analysis.

6.3 Experimental technique

Figures 26-29 illustrate some of the main processing steps in the composed classi�cation

method (Brunnstr�om et al. 1992), which is integrated with an active head-eye system

(Pahlavan and Eklundh 1992) allowing for algorithmic control of the image acquisition.

Figure 26 shows an overview image of a scene under study together with the 20 most

signi�cant dark and bright scale-space blobs. Each such region constitutes a hypothesis

about the existence of an object, a facet of an object, or an illumination phenomenon in

the scene.

In Figure 27 the cameras of the head-eye system have been redirected towards one of

the dark blobs corresponding to the central toy block, and a new image of higher resolution

has been acquired around the region of interest. This step simulates foveation. At the scale
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Figure 26: (a) Overview image of a scene under study. (b-c) Boundaries of the 20 most signi�cant
dark and bright scale-space blobs respectively.

Figure 27: Zooming in to a region of interest given by a scale-space blob from the previous
processing step. (a) A window around the region of interest, set from the location and the size
of the blob. (b) The rescaled level curve curvature computed at the scale of the blob. (c) The
boundaries of the 20 most signi�cant curvature blobs obtained from blob detection in the curvature
data.

Figure 28: Zooming in to a junction candidate given by a curvature blob. (left) Maximumwindow
size for the focusing procedure set from the size of the curvature blob. (middle left) Backprojected
peaks from the intensity histogram. (middle right) Lines computed from the backprojected peaks
from the directional histogram. (right) Schematic illustration of the classi�cation result in which
a simple junction model has been adjusted to the data. (This junction candidate was classi�ed as
a 3-junction).

Figure 29: Similar classi�cation result for an L-junction.
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of the scale-space blob (transformed with respect to the increased sampling density), the

level curve curvature is computed, and curvature blobs are detected using the scale-space

primal sketch; see Figure 27(c).

In Figure 28 the algorithm has zoomed in further to one of the curvature blobs, and

invoked a histogram classi�cation procedure tuned to the size of the curvature blob. This

junction was classi�ed as a 3-junction based on three peaks stable with respect to vari-

ations in window size, detected in the grey-level and directional histograms respectively.

Figure 28 shows corresponding results for an L-junction.

To summarize, this experiment indicates how the scale-space primal sketch can be used

in dynamic situations like focus-of-attention. Such mechanisms are necessary if computer

vision systems, are to perform their tasks in a complex and dynamic world. It should

be emphasized that the treatment here describes on-going experimental work, and that

there is still more work to be done concerning control strategies of the reasoning process.

Nevertheless, the presentation illustrates some basic ideas of how the suggested approach

can be used in an active vision situation, and speci�cally, how qualitative scale and region

information can be used for guiding a junction detection module by detecting curvature

blobs from grey-level data.

7 Other possible applications

Let us �nally mention a few other problem areas, where the approach can be applicable.

Texture analysis: A basic problem in many shape from texture algorithms concerns

how to detect texture elements (Julesz and Bergen 1983; Blostein and Ahuja 1987; Vorhees

and Poggio 1987; G�arding 1991). Since the scale-space primal sketch does not require any

prior scale information, and scale levels can be automatically adapted to size variations in

image data, it is a useful tool for such analysis.

Figure 30: Multi-scale blob detection on a synthetic texture image generated from perspective
projection of a planar surface with a sinusoidal grey-level pattern. (a) Grey-level image with added
white Gaussian noise with standard deviation 10 % of grey-level range (stand. (b) The 75 most
signi�cant dark blobs. (c) The 75 most signi�cant bright blobs.

Figures 30{31 show experimental results for one synthetic and two realistic images.

Note that in both cases a set of blobs is extracted with a size gradient that can be used

39



Figure 31: Multi-scale blob detection applied to two di�erent views of a real-world surface texture.
(left) Grey-level image. (middle and right) The 100 most signi�cant dark blobs (marked either as
blob regions or boundaries).

as a cue18 to the three-dimensional structure.

Perceptual grouping: In the presented experiments we have seen that the blobs ex-

tracted from the scale-space primal sketch often induce intuitively reasonable groupings

of various patterns. For example, in Figure 31(a) in principle only the individual squares

were ranked as important, while in Figure 31(d{f) also vertical stripes were found. See

also the dot pattern example in Figure 32. Note that the grouping process is not given by

any set of pre-speci�ed logical rules, but by a di�erential equation combined with a set of

geometric constructions.

Figure 32: Multi-scale blob detection on a dot pattern image. (a) Original grey-level image. (b)
Boundaries of the 50 most signi�cant blobs. (c) Low threshold on the signi�cance measure. (d)
High threshold on the signi�cance measure. Note that all dots are detected and that a number of
intuitive groupings are performed.

Object detection and matching: The blobs delivered from the scale-space primal

sketch can serve as coarse landmarks for di�erent types of matching purposes. The re-

lations given by, say, matches between a blob and a set of edges and junctions, provides

18A shape from texture method using a (simpli�ed) blob detection method of this type is presented in
(Lindeberg and G�arding 1993).
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a sparse set of features, which could be used for e.g. model matching. Another possible

application is to use the blobs for initiating object models, like deformable models (Kass

et al. 1987; Terzopoulos et al. 1988; Pentland 1990), or geon primitives (Biedermann 1985;

Dickinson et al. 1990). Experimental work indicates that the approach may be useful for

establishing coarse correspondences in sequence data; see also (Koller et al. 1992). Blobs

are conceptually easy to match over time based on spatial overlap.

8 Summary and discussion

The proposed representation that is similar to the primal sketch suggested by Marr (1976,

1982), in the sense that it is a two-dimensional representation of the signi�cant grey-

level structures in the image. It is also computed under extremely weak assumptions.

However, besides that it is a region-based and not an edge-based representation, it is more

qualitative, without strong assumptions about the shapes of the primitives. It consists of

blobs (extremum regions) at multiple scales in scale-space, and allows for

� automatic detection of salient (stable) scales, if they exist,

� ranking of blob-like structures in order of signi�cance, and

� generation of hypotheses for grouping and segmentation.

This implies that candidate regions are generated for further processing, as well as infor-

mation about the scale. We have seen that the representation gives clues to subsequent

analysis, and that it can guide focus-of-attention mechanisms. At the same time it is

obtained with no a priori assumptions, and, in principle without tuning parameters. The

only free parameter is the number of blobs to be selected for further analysis (or display).

The underlying principle used for extracting blob structures is that structure should

be invariant under transformations in parameter space. The suggested method consists

of three steps; (i) vary the parameters systematically, (ii) detect (locally) stable states

(intervals), (iii) choose a representative descriptor as an abstraction of each stable interval,

and pass only this information on to the higher level modules. In this speci�c case, the

parameter that is varied is the scale parameter in the scale-space representation, and the

signi�cance measure is de�ned in terms of a four-dimensional volume in scale-space. The

methodology can, however, be applicable also in other types of situations. One example,

concerning junction classi�cation, is described in Section 6.

8.1 Scale-space experiences

Let us �nally point out a few aspects of scale-space representation that have been given

little or insu�cient attention in the literature, and have to be dealt with when building a
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representation of the type proposed.

Suppression of local extrema due to noise: First, it is noteworthy, that the amount

of noise in real images usually leads to a large number of local extrema. These extrema may

disappear rather early if they are subsumed by some more prominent extremum. However,

if located regions with smoothly varying grey-level, they will exist over a large range of

scale. This e�ect is alleviated, but not remedied, by annihilation between nearby noise

extrema. Even though the amplitude can be expected to decrease rapidly, it is not clear

that a globally valid threshold can be set on objective grounds. This problem is related to

the issue of estimating the noise level in an image, which hardly can be addressed without

some constraining assumptions, like in (Voorhees and Poggio 1987).

Stable scale is a local property: Another property, indicated in Section 2.5, is that

images of scenes of even moderate complexity rarely have a global scale, at which all

structure above the noise level is present. Stable scales are local properties associated with

objects, not with entire images. This aspect is explicitly dealt with in the representation.

    

Figure 33: (a) An unusual situation, where one could possibly talk about a globally stable scale
for a whole image. (b) This property manifests itself as a plateau in a graph showing the logarithm
of the number of local extrema as function of (e�ective) scale. (c) For realistic images of moderate
complexity it will, however, usually not be possible to �nd such globally stable states. Even if
there were a number of prominent plateaus corresponding to locally stable structures at di�erent
scales, adding a large number of such pro�les would give a relatively uniformly decreasing curve.

Stable scale is a multi-valued function: Moreover, given some region in space there

may be several stable scales associated with that region, corresponding to structures at

di�erent scales. Therefore, the task of �nding \a best scale" for treating a certain point is

in general an impossible problem (except for very simple images, for which there is only

one such stable scale associated with each point in the image).

In this context it should be remarked that the scale value given by Assumption 2 does

not necessarily re
ect the size of the corresponding blob region in the image. Although, in

general, large values of the scale parameter can be expected to correspond to large scale

structures, there is no direct relationship. Under certain conditions (typically when there

are no superimposed �ner scale structures) a large scale structure may, in fact, be assigned

a small scale value. Therefore, the scale value obtained from Assumption 2 should rather
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be interpreted as an abstract scale parameter, re
ecting the smallest amount of smoothing

for which the blob manifests itself as a single blob entity.

Decreasing amplitude of feature points: The behaviour of local extrema in scale-

space has been studied also by Lifshitz and Pizer (1990). They link points across scales

based on iso-intensity, using integral paths of the vector �eld (Lx1Lt; Lx2Lt;�(L2
x1+L2

x2)),

and construct a \stack" representation, in which the grey-level at which an extremum

disappears is used for de�ning a region in the original image by local thresholding at that

grey-level. The representation is demonstrated to be applicable for certain segmentation

problems in medical image analysis. However, Lifshitz and Pizer observe the serious

problem of non-containment. It essentially means that a point, which at one scale has

been classi�ed as belonging to a certain region (associated with a local maximum), can

escape from the region when the scale parameter increases. Moreover, such paths can be

intertwined in quite a complicated way.

The main cause to problem in the iso-intensity linking is that grey-levels, corresponding

to features tracked over scales, will change19 under scale-space smoothing. For example,

concerning a local extremum, it is a necessary consequence of the di�usion equation that

the grey-level at a maximum point must decrease with scale. This problem is avoided in

the scale-space primal sketch, in which the linking is explicitly based on qualitative feature

points (here, local extrema).

8.2 Relations to previous work

There are earlier attempts to derive similar representations of the grey-level landscape.

Rosenfeld and his co-workers (Gross 1986; Sher and Rosenfeld 1987) have studied blob

detection in pyramids e.g. using relaxation methods. Blostein and Ahuja (1989) detect

texture elements based on zero-crossings at multiple scales and a signi�cance measure

based on a background noise assumption. There is also a wealth of literature on pyramids,

see e.g. (Levine 1980; Burt 1981; Crowley and Parker 1984; Crowley and Sanderson

1987). The texton theory (Julesz and Bergen 1983; Voorhees and Poggio 1987) essentially

also treats the blob detection problem. There are �nally a number of representations

based on intensity changes (Marr 1982; Bergholm 1987; Watt 1988; Baker 1988), and

approaches working at higher levels, like the token based symbolic grouping by Saund

(1990). Of interest is also the approach by Haralick et al. (1983), which allows a more

detailed representation, but only at a single spatial scale.

19A similar problem arises in the motion constraint equation in optical 
ow, where it is usually assumed
that the intensity value of a physical point is preserved under motion. However, as Pentland (1991) has
demonstrated, the photometric distortions can under certain conditions be much larger than the geometric
e�ects due to motion.
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The suggested approach di�ers from these in three important aspects. Firstly, it can be

seen as preceding e.g. the edge-based schemes in that it selects the appropriate scales and

regions, intrinsically de�ned by the image itself, in a complementary data-driven manner.

Secondly, it is a hierarchical representation of image structures at all scales with explicit

information about their signi�cance and relations, and a competition between parts at

di�erent locations and scales. Finally, it is derived in a formal way using the well-de�ned

notion of scale-space, which allow a precise study of events at di�erent scales.

One can ask more generally, what is the relation between the suggested representation

and the zero-crossings of the Laplacian. Given a function f : R2 ! R, de�ne a bright

(dark) Laplacian sign blob as a connected region satisfying rL < 0 (> 0). Since at any

local maximum (minimum) it holds that rL < 0 (> 0), it follows that to every grey-

level blob there is a unique Laplacian sign blob of the same polarity. However, the reverse

relation is not valid; given a bright (dark) Laplacian sign blob, there may be one maximum

(minimum), several maxima (minima), or even no maximum (minimum) in that region.

In fact, a representation similar to the grey-level blob tree at a single scale has been

studied independently by Blom (1992), who considers the nesting structure of level curves

through critical points. The major di�erences are that Blom considers degenerate (non-

Morse) critical point, and that he points out that a hexagonal discrete grid has certain

theoretical advantages. In this work, grey-level volumes are associated with the di�erent

arcs of the nesting tree, and the representation is embedded in scale-space.

8.3 Invariance properties

Since the scale-space primal sketch is de�ned solely in terms of topological properties as

local extrema, level curves through saddle points, and bifurcations between critical points,

it obeys a number of natural invariance properties. Invariance with respect to translations

and rotations of the spatial domain is trivial. Further, given a certain scale level, the

topological relations of the grey-level blob tree are preserved under arbitrary monotone

intensity transformations. Under evolution in scale-space, the invariance of the hierarchical

relations is restricted to linear intensity transformations. Such transformations also leave

the relative ranking of blobs on signi�cance una�ected. Trivially, under uniform rescalings

of the spatial coordinates, x 7! sx (s 2 R+), a singularity at a point (x0; t0) in the scale-

space representation of the original signal is transferred to a new point (sx0; s
2t0). This

means that the hierarchical relations are preserved, and the appearance and disappearance

scales of the scale-space blobs are multiplied by constant factors. Concerning the ranking

on signi�cance, it is clear that the logarithmic measure �e� is invariant to uniform rescal-

ings, and hence the scale-space lifetime. The intention with the transformation function
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Vtrans is that also the integrand should be well-behaved20 under this operation.

8.4 Alternative approaches and further work

Let us �nally mention a few issues that are subject to future work

Normalization: In the current implementation the normalization of the scale parameter

and the grey-level blob volume has been on white noise data. The reason for this is that

it constitutes a conservative choice, and makes theoretical analysis simple. If statistics is

accumulated of how blobs in such data can be expected to behave over scales, then the

result is an estimate of to how large extent accidental groupings take place in scale-space.

By experiments, this normalization based on white noise images has been demonstrated to

give reasonable results. Moreover, concerning scale-space lifetime, it has been theoretically

shown, that for continuous signals such reference data gives rise to the same transformation

function (� � log t) as other self-similar distributions (Section 2.6.1). This selection should,

however, not be interpreted as excluding that other approaches, which are equivalent

in the continuous case, may lead to di�erent results for discrete signals. For example,

some interesting alternatives to consider would be (i) to let the vision system accumulate

statistics for a large (representative) selection of di�erent types of realistic imagery, or,

(ii) if possible, consider some discrete analogue of coloured noise with a (scale invariant)

Fourier spectrum of the form j!j�N , where N denotes the dimension.

A possible problem with the subtraction of the mean grey-level blob volume (18) is that

it makes the normalized grey-level blob volume sensitive to the actual scaling of the data.

Therefore, in order to reduce this sensitivity, the tabulated values are rescaled linearily

from a least squares �t between the real and the tabulated values. A possible way to avoid

this problem, and also to avoid the heuristically chosen transformation function in (19),

is by rede�ning the normalized grey-level blob volume as

Ve� =
Gvolume

Vm(t)
; (24)

and then taking as normalized signi�cance values

Se� =
Svolume � Sm(t)

S�(t)
; (25)

where Sm and S� denote mean values and standard deviations of scale-space blob vol-

umes computed from reference data. This method has not yet been implemented, mainly

because the simulation work for building the normalization tables is much larger.

20If a perfectly scale invariant reference signal could be determined, then a scale invariant normalization
would be trivially obtained. This is, however, very hard to accomplish on a discrete grid, which has a
certain preferred scale given by the distance between grid points.
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Multiple blob instances: The scale-space primal sketch leads to separate systems of

bright and dark scale-space blobs. Moreover, a spatial region may give rise to multiple

blob responses; typically as the result of a large blob merging with a smaller blob and

forming a new large scale-space blob. An obvious problem concerns how to integrate

blobs of di�erent polarity and at di�erent scales. In general, it is argued that this problem

can hardly be addressed in isolation, but has to be related to a visual task. Below, are

listed some basic properties that can be used by a reasoning system.

Given a �xed level of scale, the problem of integrating bright and dark blobs can be

approached by considering the grey-level blob tree, which constitutes the natural link be-

tween grey-level blobs of reverse polarity; see also Blom (1992). Concerning the behaviour

over scales, it it clear that a tree describing bifurcations between scale-space blobs will be

strongly coupled to the grey-level blob tree. For example, for the simple noise-free pattern

in Figure 1, a tree describing the bifurcations between scale-space blobs can be expected

to be identical to the grey-level blob tree of the original signal. In the presence of noise,

however, the hierarchical relations will be di�erent. More generally, blob splits and blob

creations are blob events without correspondences in the grey-level blob tree.

Other natural descriptors to de�ne between di�erent blobs are (i) whether two blobs

overlap, and (ii) whether one blob is completely contained in another one. In this way,

the problem with multiple responses from a single region may be approached. This is,

however, a subject for further analysis and experimentation.

9 Conclusions

A multi-scale representation of grey-level image structure has been presented similar to

the primal sketch idea. It can be used for extraction of important blob-like regions from an

image in a solely bottom-up data-driven way, without any a priori assumptions about the

shape of the primitives. The representation, which is essentially free from tuning param-

eters and ad hoc error criteria, gives a qualitative description of the grey-level landscape

with information about approximate location, spatial extent and an appropriate scale for

relevant regions in the image. In other words, it generates coarse but safe segmentation

cues, and can serve as a hypothesis generator for higher-level processes. It has been demon-

strated how such information can serve as a guide to an edge detection scheme working

at a locally adapted level of scale and that it is applicable for automatic cluster detection,

modality analysis of histograms, as well as junction detection and junction classi�cation.

More generally, the approach provides a mechanism for focus-of-attention and for guiding

other low-level processes.

The methodology is based on a number of postulates (Assumptions 1{4 in Section 3)
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stated without proof. Their interpretation essentially is that in the absence of further

information (i) signi�cance blob-like structures in scale-space are likely to correspond to

signi�cant regions in the image, and (ii) that scale levels should be selected where the

normalized blob response is maximal. Starting from these assumptions and scale-space

theory, several theoretical results have been obtained. Moreover, by integrating the scale-

space primal sketch with several other visual modules and by applying the methodology

to di�erent types of images, it has been experimentally demonstrated that the proposed

methodology gives intuitive results, and that it generates highly useful results for further

processing. This is the main support for the validity of the approach.
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A Appendix

A.1 De�nition of scale-space blob

This appendix section describes how a scale-space blob is formally de�ned from a two-

dimensional continuous signal.

A.1.1 Extremum path and saddle path

Consider a critical point x0 2 R2 at some scale t0 2 R+ in scale-space. It is given by

rLj(x0; t0) =
0
@ @x1L

@x2L

1
A
������
(x0; t0)

=

0
@ 0

0

1
A : (26)
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The implicit function theorem ensures that if the Hessian matrix

HLj(x0; t0) =
0
@ @x1x1L @x1x2L

@x1x2L @x2x2L

1
A
������
(x0; t0)

(27)

is non-singular at this point, then there exists some smooth function r0 : It0 ! R
2

x = r0(t) (28)

such that x0 = r0(t0), and for every t in some neighbourhood It0 of t0 the point (r0(t); t)

is a critical point for the mapping x 7! L(x; t). By continuation, such local paths can

be extended to curves as long as the Hessian matrix remains non-singular. It can be

easily shown that the type of critical point remains the same as long the Hessian matrix

is non-singular.

In other words, if (x0; t0) is a local maximum (minimum/saddle), then there ex-

ists a curve through this point, such that every point on the curve is a local maximum

(minimum/saddle) at that scale. The curve is delimited by two scale levels tmin and

tmax, at which the Hessian matrix degenerates (except at the boundary cases tmin = 0 or

tmax = 1). At all interior points the extremum point is non-degenerate. Such a curve

r0 : [tmin; tmax]! R
2 is is called an extremum path (saddle path).

A.1.2 Scale-space blob

Concerning grey-level blobs, this result means that a unique linking of grey-level blobs

across scales can be performed as long as both the extremum point and the saddle point

determining the extent of the grey-level blob remain non-singular. In summary, a scale-

space blob is de�ned as the union of all grey-level blobs associated with the extremum

points along a segment of an extremum path where such a unique linking can be performed.

In order to express this statement precisely, let [t0min; t
0

max] 2 [tmin; tmax] be a (maxi-

mal) subset of an extremum path, along which the delimiting saddle point Sdelimit(r0(t))

associated with the extremum point r0(t) is always non-degenerate. At some distinct scales

it may happen that the delimiting saddle point jumps from one saddle path to another.

In such non-Morse21 situations, when two saddle points have the same grey-level, both

saddle points are required to be non-degenerate. At the end points, either of r(t0min) and

Sdelimitr(t0min) and also either of r(t0max) and Sdelimitr(t0max) are degenerate critical points

(unless tmin = 0 or tmax =1).

Then, the scale-space blob associated with this segment r0

0 : [t0min; t
0
max] ! R

2 is the

21Generically, these events occur at isolated scales, and only two di�erent critical points have the same
critical values.
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set

Sblob(r
0

0) = f(x; z; t) 2 R2 � R � R+ : (t0min < t < t0max) ^ ((x; z) 2 Gblob(r00(t)))g; (29)

where Gblob(r00(t)) is the grey-level blob associated with the extremum point r00(t) in the

scale-space representation L at scale t.

A.1.3 Scale-space blob volume

Strictly, in this coordinate system the scale-space blob volume is

Svolume(r
0

0) =
Z
(x; z; t)2Sblob(r0)

dx dz dt =
Z
t2[t0

min
;t0max]

Gvolume(r
0

0(t)) dt: (30)

However, when the scale-space blob volume is to be used as a signi�cance measure in the

scale-space primal sketch, it turns out that some transformations must be performed. One

would like structures at di�erent scales to be treated uniformly, such that the signi�cance

measure neither favours �ne scales over coarse scales nor the opposite. Therefore, the

normalized scale-space blob volume is de�ned by

Svolume;norm(r00) =

Z
t2[t0min;t

0

max]
Vtrans(Gvolume(r

0

0(t)); t) d(�e�(t)); (31)

where �e� : R+ ! R+ is a transformation function mapping the ordinary scale parameter

t to a transformed scale parameter � called e�ective scale (see Section 2.6.1), and Vtrans :

R� R+ ! R is a corresponding transformation function normalizing the variations of the

grey-level blob volumes into a more uniform behaviour over scales (see Section 2.6.2).

A.2 Scale-space blob events

The implicit function theorem used in previous appendix section guarantees that linking

of non-degenerate critical points is a well-de�ned operation. When the Hessian matrix

becomes singular, bifurcations may occur. Useful techniques for analysing the behaviour

at such points can be obtained from a branch of mathematics known as singularity theory;

see (Poston and Stewart 1978; Gibson 1979) for application-oriented introductions, and

(Arnold et al. 1985; Golubitsky and Schae�er 1985) for more rigorous treatments of the

subject.

In summary, the following result holds concerning the behaviour of critical points in

scale-space. In two dimensions, the only generic (structurally stable) bifurcations are an-

nihilations and creations of pairs consisting of one extremum point and one saddle point22

22In one dimension, the only possible events are annihilations of pairs consisting of one maximum point
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(Koenderink and van Doorn 1986; Lifshitz and Pizer 1990; Lindeberg 1992; Johansen

1993). A natural model of this so-called fold singularity is the polynomial

x31 + 3x1(t� t0)� (x22 + t� t0); (32)

which also satis�es the di�usion equation. The positions of the critical points are given

by

(x1(t); x2(t)) = �(
p
t0 � t; 0) (t � t0) (33)

i.e. the critical points merge along a parabola. At the bifurcation point, the drift velocity

tends to in�nity. This property demonstrates that any algorithm for following extrema

over scales needs a mechanism for adaptive scale sampling.

Concerning scale-space blobs, this classi�cation means that two distinct types of cases

can be distinguished, depending on whether the saddle point involved in the bifurcation is

part of one or two grey-level blobs. A saddle point delimiting the extent of only one grey-

level blob is said to be non-shared, while a saddle point belonging to two grey-level blobs

is said to be shared. Hence, in the generic case, there are four following cases are possible

at a structurally stable bifurcation (see Figure 6 for an illustration, and (Lindeberg 1992)

for a more extensive description):

� blob annihilation | annihilation of an extremum-saddle pair where the saddle path

is non-shared before the bifurcation,

� blob merge | annihilation of an extremum-saddle pair where the saddle path is

shared with another scale-space blob before the bifurcation,

� blob split | creation of an extremum-saddle pair where the saddle path is shared

with another scale-space blob after the bifurcation,

� blob creation | creation of an extremum-saddle pair where the saddle path is non-

shared after the bifurcation.

A.3 Scale-space for discrete signals

Given a discrete signal signal f : Z2 ! R, the scale-space L : Z2 � R+ ! R is for some


 2 [0; 1] de�ned as the solution to the semi-discretized di�usion equation

@tL =
1

2
r2


L =
1

2
((1� 
)r2

5L+ 
r2
�
L); (34)

and one minimum point | the number of local extrema in the scale-space of a one-dimensional signal is
always guaranteed to decrease with scale.
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where the �ve-point operator r2
5 and the cross-operator r2

�
are two common discrete

approximations to the Laplacian operator given by (below the notation f�1;1 stands for

f(x1 � 1; x2 + 1) etc.):

(r2
5f)0;0 = f�1;0 + f+1;0 + f0;�1 + f0;+1 � 4f0;0;

(r2
�2f)0;0 =

1

2
(f�1;�1 + f�1;+1 + f+1;�1 + f+1;+1 � 4f0;0):

In the special case when 
 = 0 the two-dimensional scale-space is given by separable

convolution with the one-dimensional discrete analogue of the Gaussian kernel

T (n; t) = e�t In(t); (35)

where In(t) denotes the modi�ed Bessel functions of integer order (Abramowitz and Ste-

gun 1964). This is the scale-space concept (Lindeberg 1990, 1993) that underlies all

implementations described in this presentation.

A.4 Algorithmic aspects

When building the scale-space primal sketch representation of an image, there are several

computational aspects that need to be treated. The algorithm for building the suggested

data structure consists of two major modules; an algorithm for �nding grey-level blobs

(or grey-level blob trees) at a single level of scale, and an adaptive scale linking and

re�nement procedure. Because of lack of space, the algorithm cannot be described here.

An early description can be found in (Lindeberg and Eklundh 1991), while a more complete

treatment is given in (Lindeberg 1991, 1993).
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