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ABSTRACT

A statistical model for the occurrence of convective hazards was developed and applied to reanalysis data to
detect multidecadal trends in hazard frequency. The modeling framework is based on an additive logistic
regression for observed hazards that exploits predictors derived from numerical model data. The regression
predicts the probability of a severe hazard, which is considered as a product of two components: the prob-
ability that a storm occurs and the probability of the severe hazard, given the presence of a storm [P(severe)5
P(storm)3P(severejstorm)]. Themodel was developed using lightning data as an indication of thunderstorm
occurrence and hazard reports across central Europe. Although it uses only two predictors per component, it
is capable of reproducing the observed spatial distribution of lightning and yields realistic annual cycles of
lightning, hail, and wind fairly accurately. Themodel was applied to ERA-Interim (1979–2016) across Europe
to detect any changes in lightning, hail, and wind hazard occurrence. The frequency of conditions favoring
lightning, wind, and large hail has increased across large parts of Europe, with the exception of the southwest.
The resulting predicted occurrence of 6-hourly periods with lightning, wind, and large hail has increased by
16%, 29%, and 41%, respectively, across western and central Europe and by 23%, 56%, and 86% across
Germany and the Alps during the period considered. It is shown that these changes are caused by increased
instability in the reanalysis rather than by changes in midtropospheric moisture or wind shear.

1. Introduction

Severe convective weather is an important hazard to

both people and property. Estimated mean annual di-

rect economic losses of severe storms over the last de-

cade (2007–16) are $19.6 billion (U.S. dollars) and EUR

3.8 billion. The costliest year in theUnited States was 2011,

with;$40 billion, and in Europe it was 2013, with;EUR

8 billion (J. Eichner 2017, personal communication).

Relative to other types of extreme weather phenom-

ena, the confidence is low that changes in the occurrence

of convective hazards can be attributed to climate

change (National Academies of Sciences Engineering

and Medicine 2016). The relationship between the

convective hazards and climate change has become a

topic of study only relatively recently. A natural starting
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point for studying this relationship is to investigate

changes that have occurred in recent times. Authors

have noted, however, that observational datasets of severe

weather, such as tornadoes, hail, and wind reports, are often

inhomogeneous in both time and place (Verbout et al. 2006;

Doswell 2007; Brooks et al. 2014; Groenemeijer and Kühne
2014; Allen and Tippett 2015), to an extent that often pre-

vents the detection of trends. It is, therefore, necessary to

develop methods for using more homogeneous datasets,

such as reanalyses, for this purpose. Likewise, predictions for

the future also require the extraction of convective hazard

occurrence from climate model simulations.

Most reanalyses and climate models have resolutions

that are too coarse to fully resolve severe weather haz-

ards. Several approaches have been taken into account

to link the occurrence of small-scale severe weather

phenomena to spatial scales resolved in those models.

These include dynamic downscaling (Trapp et al. 2007;

Gensini and Mote 2014, 2015) and the identification of

environmental conditions supportive of severe events

(Brooks et al. 2003; Trapp et al. 2009; Diffenbaugh et al.

2013; Allen et al. 2015; Pú�cik et al. 2017; Viceto et al.

2017). These environmental approaches typically define

supportive conditions by formulating thresholds for

quantities deemed necessary for hazard development.

For severe convective storms, these include instability

and wind shear, quantities that may be considered in-

gredients for organized deep moist convection (Johns

and Doswell 1992). In addition to these, the probability

of convective initiation must be assessed because the

presence of instability does not guarantee storm initia-

tion. The ingredients of instability and wind shear are

necessary but not sufficient. For instance, Groenemeijer

et al. (2017) found that in the U.S. Great Plains, severe

storms occur on only 20% of all days that have sufficient

CAPE and wind shear to sustain them. Across Europe,

this value is mostly between 60% and 80%. Thus, the

probability of convective initiation must be assessed in

addition to these ingredients. Therefore, multiple au-

thors (Trapp et al. 2007, 2009; Tippett et al. 2012; Pú�cik
et al. 2017) have used the occurrence of modeled (con-

vective) precipitation as an additional criterion. Van

Klooster and Roebber (2009) used a neural network

approach, while Taylor et al. (2012) and Diffenbaugh

et al. (2013) considered convective inhibition.

These studies count the number of occurrences of sit-

uations that exceed the formulated thresholds. In other

words, environments are classified in a binary rather

than a probabilistic way. Alternatively, a statistical model

can be used that assigns any environment an occurrence

probability of a convective hazard between 0 and 1.

For instance, Kapsch et al. (2012) developed a

Bayesianmodel for hail-damage days based on objective

weather type (OWT) classifications of the tropospheric

flow pattern. OWTs were also used by Mohr et al.

(2015), who developed a linear logistic regression based

on various meteorological parameters [minimum tem-

perature, surface-based lifted index (LI), and 2-m tem-

perature] and theOWTs (Bissolli andDittmann 2001) in

order to model the frequency of hail potential in Ger-

many in the future, using regional climate model simula-

tions.Although theoccurrenceofOWTs correlateswith the

physical ingredients needed for severe convection, identi-

fying the ingredients in simulated weather patterns appears

to be only an indirect way of modeling hazard occurrence.

Focusing on the physical ingredients rather than on indirect

metrics like OWTs allows the model to be used in other

regions and seasons, provided that the environmental fac-

tors are sufficiently broad brushed to capture these features.

For weather forecasting purposes, similar methods have

been developed; the difference is that they are applied to

numerical weather predictions rather than to climate

models or reanalyses. For instance, Schmeits et al. (2005)

developed linear logistic regression equations for the

probability of mid-April–mid-October thunderstorms in

the Netherlands using lightning data and traditional

thunderstorm indices. It has not been demonstrated that

the linear logistic regression is themost suitable statistical

model, which motivated the development of an additive

logistic regression. Further, Hart and Cohen (2016)

developed a statistical severe convection risk assessment

model, which uses the observed frequencies of hazards

for particular values of predictor parameters without fit-

ting these data to any particular function. Cintineo et al.

(2014) created an empirical Bayesian model for assessing

the severe weather potential of developing convection,

using predictors based on radar and satellite data.

In the present study, we describe the development of

statistical models for convective hazard probability and

use them to study hazard trends across Europe during

the last 38 years by applying them to a reanalysis dataset.

The model is an additive logistic regressive convective

hazard model (AR-CHaMo). As we will show, the ad-

ditive nature of the model fits the observational data

better than a linear model would. The full hazard model

is a product of two components: 1) the probability of

lightning, indicating the occurrence of a convective

storm, and 2) the probability of a hazard, given

that lightning occurs, that is, P(hazard) 5 P(storm) 3

P(hazardjstorm). For each hazard or combination of

hazards, different models can be created. Both proba-

bilities are estimated by parameters with a proven

physical and empirical association with lightning prob-

ability and hazard incidence, respectively. The choice of

predictors is based on prior work by Westermayer et al.

(2017), who investigated the environmental conditions
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for thunderstorms in reanalysis data, and by Pú�cik et al.

(2015), who studied the environments for large hail and

severe wind gusts, given that a storm occurs.

In this article, we model the wind and large hail haz-

ards using a reanalysis dataset across Europe covering

data since 1979, with the aim of demonstrating the ap-

plication of AR-CHaMo. The method can also be ap-

plied to other hazards across other areas and can be used

with various datasets, including numerical weather

prediction models. The primary questions we will an-

swer in this study are as follows:

1. How well can we reproduce the observed climatol-

ogy of convective hazards and lightning in Europe

using AR-CHaMo?

2. Can we distinguish between hazards and account for

convective initiation separately?

3. Using AR-CHaMo, are there any detectable trends

in hazard occurrence across Europe during the last 38

years?

In section 2, we introduce the reanalysis, lightning,

and hazard data used in this study. Section 3 explains the

methods and development of the model. Section 4

comprises the results of the model application to re-

analysis data. In section 5, the driving factors for the

modeled trends are analyzed. Section 6 presents con-

clusions and a discussion of the results.

2. Data

a. EUCLID lightning data

Cloud-to-ground lightning data from the European

Cooperation for Lightning Detection network

(EUCLID) serve as indicators of the occurrence of deep

moist convection. EUCLID is a cooperation among 23

European countries that provides lightning measurements

from its national networks (Diendorfer et al. 2010; Schulz et

al. 2016; Poelman et al. 2016). In this study, a lightning case

is defined as a 6-h period (namely, 0000–0600, 0600–1200,

1200–1800, and 1800–0000 UTC) with at least 2 lightning

strikes within the same 0.758 3 0.758 grid. Figure 1a depicts

the geographical distribution of EUCLID lightning cases

between 2008 and 2016. The peak region for lightning case

occurrence in Europe is located in north Italy. Most light-

ning cases occur along the Apennine Mountains and the

east coast of the Adriatic Sea. Within Germany, there is a

clear south–north gradient toward fewer lightning cases in

the north. The time series of lightning cases is illustrated in

the top panel of Fig. 1b, which is restricted to the western

and central European domain of Fig. 1a, referred to as

W&CEurope. The years 2009 and 2011 have a particularly

high frequency of lightning cases during the spring and

summer months. The mean annual cycle (Fig. 1b, bottom)

peaks in July. The second increase inNovember is caused

by the high activity in the Mediterranean region. The

EUCLID lightning data are only used to distinguish be-

tween cases with and without the occurrence of deep

moist convection. To account for the severity of the

identified convection, hazard reports are incorporated, as

described in the next section.

b. ESWD hazard reports

The European Severe Weather Database (ESWD)

is a collection of quality-controlled reports of severe

convective events throughout Europe (Dotzek et al.

2009; Groenemeijer andKühne 2014). For this study, the
twohazards of hail$ 2cmand severewind gusts$ 25ms21

have been taken into account. Hazard reports from

the ESWD were accumulated over 6 h and on a

0.758 3 0.758 horizontal grid. Figure 2 shows the geo-

graphical distribution of the number of 6-h periods with

hail (Fig. 2b) and wind (Fig. 2c) between 2008 and 2016

FIG. 1. Sum of EUCLID lightning cases in Europe between 2008 and 2016. A lightning case is defined as a 6-h
period with at least two lightning strikes within a 0.758 3 0.758 grid. (a) Geographical distribution of EUCLID
lightning cases. (b) Top: time series of lightning cases; bottom: mean annual cycle of lightning cases. The analysis
domain in (b) is restricted to data within the black box of (a). This domain is referred to as W&CEurope.
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where lightning occurred. The criterion of a hail (wind)

case is that at least one report of hail (wind) occurred

in conjunction with lightning within a grid box during

the 6-h period. Hail and wind reports in a grid box that

occurred without lightning are ignored because we

want to focus on convective hazards only. Especially

for wind, we do not want to include winter storms that

occur without embedded convection. The highest den-

sity of reports is in Germany and Austria, which is

partly because of the inhomogeneous reporting rate

(Groenemeijer and Kühne 2014). The reporting rates

over France and central Italy have not been very good

throughout the period, although they have improved

recently. This is primarily due to the number of partners

of the ESWD network in each country and how ac-

tive they are. These partners are usually networks of

storm spotters, as well as individuals. The highest re-

porting rates are in countries in which the European

Severe Storms Laboratory has had long-term co-

operation, such as Germany, Austria, Poland, Czech

Republic, Switzerland, Slovakia, Croatia, Hungary, and

Slovenia. Therefore, only a small domain (referred to as

G&Alps; 45.758–548N, 68–18.758E) covering this area

was selected to develop the statistical models (black

boxes in Figs. 2a,c). East of the G&Alps domain, the

detection efficiency of the EUCLID network decreases

rapidly. Figures 2b and 2d represent the time series (top

panel) and the mean annual cycles (bottom panel) of

hail and wind cases and are restricted to the G&Alps

domain. The annual cycle of hail (Fig. 2b, bottom) peaks

in June and July, and that of wind cases (Fig. 2d) peaks in

July. The slightly elevated activity in December and

January is caused by thunderstorms occurring with

synoptic-scale storm systems in winter.

c. ERA-Interim data

We have used the ERA-Interim global atmospheric

reanalysis, produced at the European Centre for Medium-

Range Weather Forecasts (ECMWF; Dee et al. 2011)

as a representation of the atmospheric conditions. We

FIG. 2. ESWD hazard cases for time period 2008–16 where lightning occurred. (a) Hail $ 2 cm cases. (b) Top:
time series of hail cases; bottom: mean annual cycle of hail cases. (c) Wind$ 25m s21 cases. (d) As in (b), but for
wind cases. The analysis domains in (b) and (d) are restricted to data within the black box shown in both (a) and (c).
This domain is referred to as G&Alps.
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calculated multiple atmospheric parameters every 6h on a

0.758 3 0.758 grid between 2008 and 2016 from pressure-

level data.

The following parameters were selected for the de-

velopment of the models. First, the instability was repre-

sented by a minimum lifted index, which is calculated by

lifting an air parcel adiabatically from three different source

layers—925, 850, and 700hPa—to the 500-hPa layer, as was

done by Pú�cik et al. (2017). The minimum LI value and,

hence, the air parcel with the largest measure of instability,

is selected and will be referred to as LI. We selected LI

instead of CAPE because the method should be applicable

to climate models with a reduced vertical resolution pre-

cluding the calculation of CAPE. Second, the average rel-

ative humidity (RH) from the 850-, 700-, and 500-hPa

layers was used because it was identified as relevant for

thunderstorm initiation by Westermayer et al. (2017).

Third, we calculated the deep-layer (bulk) wind shear

(DLS) between 10m and the 500-hPa level. We decided to

choose the 500-hPa layer as the top layer to ensure that we

can apply the models to climate simulations for which in-

sufficient vertical pressure levels are available to interpolate

to a height level above ground (Pú�cik et al. 2017). We

followed the choice for parameters of Pú�cik et al. (2017)

because we plan to apply AR-CHaMo to the same climate

models used in their study. For these models, pressure

levels above 500hPa are not available.

The details of the atmospheric parameter calculations

are listed in Table 1.

3. Model development

The model that we developed is multiplicative, in the

sense that we treat the probability of hazards as the

product of the probability that a thunderstorm occurs

and the probability that the storm, given that it occurs,

will produce the hazard, that is,

P(hazard)5P(storm)3P(hazardjstorm). (1)

This approach implies that any hazards occurring in

the absence of lightning are excluded from the model.

a. The dependence of lightning on predictor

parameters

Knowledge about the dependence of lightning on

ERA-Interim atmospheric parameters is important to

develop the model P(storm). We acknowledge that many

predictors can be considered formodeling this, but here, we

will focus on the results ofWestermayer et al. (2017), which

demonstrated a strong relationship among lightning occur-

rence, instability, and midtropospheric humidity. They an-

alyzed multiple atmospheric parameter distributions and

linked them with storm occurrence. A similar approach is

done in this study, combining the LI–RH (LI–DLS) pa-

rameter space with the occurrence of lightning (convective

hazard given lightning) cases.

The joint distribution of all data points in the domain in

LI–RH space shows that positive LI values (i.e., stable

conditions) aremost common and occur within typical RH

ranges of 20%–80% (Fig. 3a), while for lightning cases, the

maximum values shift toward lower LI and higher RH

(Fig. 3b). This means that the relative frequency of light-

ning rel_f(storm), defined as the fraction of lightning cases

to all cases, is highest for unstable (negative LI) and moist

conditions (Fig. 3c).

b. The dependence of hazard occurrence on predictor

parameters

To model P(hazardjstorm), the relationship between

the relative frequency of hazards, coincident with

lightning, and potential predictor parameters has to be

explored. Here, we investigate the dependence on the

predictor parameters LI and DLS. Figure 4a shows that

most lightning cases in the area of Fig. 2 occur with LI of

values close to 0K (neutral stability for a lifted parcel)

and DLS within the range of 5–15m s21 (Fig. 4a). The

highest number of such cases that are accompanied by

hail occurs for negative LI values in a range from

0 to 25K, and DLS ranges between 5 and 20ms21

(Fig. 4b). The relative frequency of hail, given lightning,

rel_f(hailjstorm), increases with decreasing LI (i.e., in-

creasing instability) and with increasing DLS (Fig. 4c).

Increasing instability leads to stronger updrafts that

are required for hail formation, and DLS influences the

storm types. High values of DLS favor the development

of well-organized storms, such as multicells, squall lines,

or supercells, which are prone to produce hail.

For wind, the majority of lightning cases occur for

higher shear values, between 5 and 20m s21 (Fig. 4d),

and in somewhat more stable conditions. A fair number

of wind cases, unlike hail cases, occur with DLS ex-

ceeding 30ms21 and a positiveLI. The relative frequency

TABLE 1. Atmospheric parameter calculation.

Atmospheric parameter Calculation of parameter

Instability LI min[LIp(925hPa)/p(500hPa), LIp(850hPa)/p(500hPa), LIp(700hPa)/p(500hPa)]
Midtropospheric moisture RH [RHp(850hPa) 1 RHp(700hPa) 1 RHp(500hPa)]/3
Deep-layer shear DLS [(u10m 2 u500hPa)

2
1 (y10m 2 y500hPa)

2]1/2

MARCH 2018 RÄDLER ET AL . 573



of wind cases, given lightning, rel_f(windjstorm),

exhibits two regions with high values (Fig. 4e): 1) for

high instability (and decreasing LI values) and high DLS,

for LI between 25 and 210K and DLS between 20

and 30ms21, and 2) under stable conditions (LI of 14K)

and even higher DLS of 40ms21. This second maximum

is mainly associated with winter storms for which the

convective layer does not reach up to 500hPa. It is also

possible that the signal in the stable–high DLS parame-

ter space might be reflective of elevated storm activity,

leading to evaporative-cooling-driven downdrafts and dry

microbursts. However, we already account for elevated

convection because we allow the air parcel to be lifted

from three different source layers (925, 850, and 700hPa).

Further, the spatial (0.758 3 0.758) and temporal (6h)

resolutions of ERA-Interim might not be able to capture

subgrid-scale instability under all circumstances.

c. Additive logistic regression

In the next step, a statistical model was developed

to yield continuous probability functions P(storm) and

P(hazardjstorm) across the predictor parameter space.

We have chosen to first develop a generalized linear

model (GLM), as described by Nelder andWedderburn

FIG. 4. (a) Histogram of EUCLID lightning cases in LI–DLS parameter space across the G&Alps domain (2008–16). (b) Histogram for
hail $ 2 cm cases and (c) relative frequency of hail for lightning cases rel_f(hailjstorm). (d) Histogram for wind $ 25m s21 cases and
(e) relative frequency of wind for lightning cases rel_f(windjstorm). Open circles in (c) and (e) represent parameter combinations that
occurred in (a) but not in (b) or (d).

FIG. 3. Histogram of ERA-Interim parameters LI and RH across the W&CEurope domain (2008–16). (a) Histogram of all cases,
(b) histogram of EUCLID lightning cases, and (c) relative frequency of lightning rel_f(storm). Open circles in (c) represent parameter
combinations that occurred in (a) but not in (b).

574 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



(1972), and, second, to extend the GLM to a general-

ized additive model (GAM).

A GLM allows a linear model to be related to the re-

sponse variable via a ‘‘link function’’ and, therefore, gen-

eralizes an ordinary linear regression. Additionally, GLMs

give rise to error distribution models other than normal

distributions for response variables. Wood (2006) de-

scribes the structure of a GLM as

g(m
i
)5X

i
� b , (2)

where Xi represents the ith row of the model matrix X of

the explanatory variable or predictor. The regression co-

efficient b is a vector of unknown parameters. The quan-

tity g() is a link function relating the mean m—in other

words, the estimated fitted values E(y)—to the linear

predictor Xi �b. The quantity mi, hence, describes the ex-

pected value of the response variable or predictandYi, that

is, mi [ E(Yi). The quantity Yi is distributed according to

some exponential family distribution.

In our case, Yi is distributed binomially because the

response variable, or predictand ‘‘hazard occurrence’’

has only two options: yes or no. Logistic regressions are

fit to binary predictands and can then be viewed as

linear after the application of a certain transformation.

In the present example with a binomial family distri-

bution, the necessary transformation is defined by the

logarithm of the odds ratio m/(1 2 m), which is also

called ‘‘logit transformation’’ (Wilks 2006). Hence, in

our case of a linear logistic regression, the logit link

function g(m) 5 ln[m/(1 2 m)] applies. The probabili-

ties for lightning Plin(storm); for hail, given light-

ning, Plin(hailjstorm); and for wind, given lightning,

Plin(windjstorm), are calculated using the programming

language R for statistical computing (R Core Team 2015).

We used the package ‘‘mgcv’’ (Wood 2017) for the above-

described linear logistic regression for two explanatory

variables in each case. The resulting models were ex-

ploited to generate lookup tables (Figs. 5a,c,e), which

link the probability of a hazard to two atmospheric pa-

rameters with predefined ranges. The standard errors of

the models (Wood 2006) are depicted as contour lines in

Figs. 5a, 5c, and 5e. The probability Plin(storm) being de-

pendent on RH and LI increases with increasing in-

stability (i.e., decreasing LI values) (Fig. 5a). The

dependence of P(storm) on the parameter RH is not re-

produced correctly, owing to the inflexibility of the linear

logistic regression. This means for 40%RH and27K LI,

the relative frequency is rel_f(storm) ’ 0.1, while the

modeled probability Plin(storm) ’ 0.8 (cf. Figs. 3c and

5a). For 80%RH and27KLI, rel_f(storm)’ 0.65, while

Plin(storm) ’ 0.9. The strong increase of rel_f(storm)

for increasing RH in unstable environments (LI , 0K)

is also not modeled correctly in Plin(storm) by the linear

model. For Plin(hailjstorm) and Plin(windjstorm), the prob-

ability increases with decreasing LI values and increas-

ing DLS values, with a stronger dependence on LI for

Plin(hailjstorm) andonDLS forPlin(windjstorm) (Figs. 5c,e).

To avoid the abovementioned deficiencies of the

linear approach, and to account for more flexibility in

the models, a generalized additive model was in-

vestigated. Hastie and Tibshirani (1986) defined a

GAM as a generalized linear model with a linear

predictor involving a sum of smooth functions of co-

variates (Wood 2006). The general structure of a

GAM is

g(m
i
) 5 X*

i � u1 f
1
(x

1,i
)1 f

2
(x

2,i
)1 f

3
(x

3,i
, x

4,i
)1 . . . ,

(3)

where X*
i represents the ith row of a model matrix X

*

for any model components, and u is the corresponding

parameter vector (Wood 2006). The fi describes the

smooth functions of the covariates xk (Wood 2006). In-

stead of detailed parametric relationships, this model

allows a rather flexible specification of the dependence

of the response on the covariates and specifies themodel

only in terms of ‘‘smooth functions’’ (Wood 2006). This

means the smoothing function is estimated from the

available data, and no theory or mechanic model as-

sumption is needed. Using this approach, AR-CHaMo is

developed and adjusted for each of the predictands’

probabilities of lightning, hail requiring the coincidence

of lightning, and wind requiring the coincidence of

lightning for two predictors (atmospheric parameters).

If the response variable y is binomially distributed and

depends on two explanatory variables x1 and x2, the

GAM can be written as

logit[E(y
i
)]5 f

1
(x

1,i, x2,i). (4)

For example, the lightningmodel, which depends on two

explanatory variables, LI and RH, can be expressed by

logit[E(Lightning
i
)]5 f

1
(LI

i
, RH

i
). (5)

This additive logistic regression yields a probability

P(storm) over the parameter space LI and RH after

model calculation using thin-plate regression splines

(Wood 2006).

The hazard models, which depend on the explanatory

variables LI and DLS, are represented by

logit[E(Hail
j
)]5 f

2
(LI

j
, DLS

j
), (6)

yielding P(hailjstorm), and
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logit[E(Wind
j
)]5 f

3
(LI

j
, DLS

j
), (7)

yielding P(windjstorm), where i 2 [1, n] signifies the

space of all available n observations and j denotes the

subset of all indices i in which a lightning case was

observed.

The three AR-CHaMo variants for the probability of

lightning P(storm); the probability for hail, given light-

ning, P(hailjstorm); and the probability for wind, given

lightning, P(windjstorm), are computed using the logit

link function for the binomial family distribution

(e.g., lightning ‘‘yes’’ or ‘‘no’’) and thin-plate regression

splines (Wood 2003) to estimate the smooth function.

The resulting lookup tables for the hazard probabilities

predicted by the different AR-CHaMo variants are

shown in Figs. 5b, 5d, and 5f. For P(storm), the highest

probability values occur with LI,25K andRH. 65%

(Fig. 5b). The dependence on RH is well pronounced, in

contrast to the linear logistic regression model (Fig. 5a).

For P(hailjstorm), the highest values can be found

with high DLS and low LI values (Fig. 5d), representing

an unstable atmosphere with strong updrafts (balancing

FIG. 5. Probabilities predicted by statistical models depending on LI andDLS for (left) GLMs and (right) GAMs
for (a),(b) lightning cases, (c),(d) hail $ 2 cm cases, and (e),(f) wind $ 25m s21 cases. Contour lines are standard
error estimates as described by Wood (2017).
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the fall speed of a growing hailstone) and large vertical

wind shear, which tends to support storm organization,

longevity, and severity (Markowski and Richardson

2010). For P(windjstorm), two areas emerge: 1) low LI

and high DLS—well-organized storms with strong up-

drafts and large vertical wind shear—and 2) positive LI

with very high DLS that is likely to represent atmo-

spheric conditions during winter storms where the con-

vective layer does not reach up to 500 hPa. Another

possible explanation might be that narrow and fast-

moving instability fields are not resolved by the spatial

or temporal resolutions of ERA-Interim (Fig. 5f).

The resulting probabilities of the additive logistic re-

gression models (Figs. 5b,d,f) fit the observational data

(relative frequencies of Figs. 3c, 4c,e) better than the

resulting probabilities of the linear logistic regression

models. The additive approach can overcome the limi-

tations described earlier for the linear logistic re-

gression. The additional flexibility of the additive model

can resolve the dependence of P(storm) on RH more

accurately. Thunderstorms rarely occur with low values

of RH (,40%), even if sufficient instability is available

(LI , 0K). These low relative frequencies are well rep-

resented by the additive logistic regression (cf. Fig. 3c and

Fig. 5d). For P(hailjstorm) and P(windjstorm), the dif-

ferences between the additive and linear logistic re-

gressions are less pronounced.

In addition to the consideration of physical feasibility

of the additive and linear models, statistical measures

can be taken into account for model comparison. Two

common measures for model selection are the residual

deviance, which is the deviance of the fitted model

(Wood 2006), and the ‘‘deviance explained,’’ which is a

standard criterion commonly used in statistical model-

ing and can be easily derived from the residual deviance.

The model with the higher deviance explained can be

considered superior to others.

Further, the Bayesian information criterion (BIC) can

be exploited to distinguish between different models.

Models with lower BIC are preferred, while it has to be

assumed that the same data points are considered. To

avoid overfitting, a penalty term is introduced for the

number of parameters in the models. Table 2 summarizes

the comparison between the statistical measures deviance

explained and BIC for the linear logistic regressions and

the additive logistic regressions of Fig. 5. Yet again, the

additive logistic regressions show a better performance

over the linear logistic regressions.

An illustrative graphical means for the verification

of statistical models is receiver operating characteristic

(ROC) diagrams (Wilks 2006). ROC curves display the

ratios between true positive rates and false positive rates for

varying thresholds of a binary classifier system,which, in our

case, represents theoccurrenceof a lightning caseor ahazard

case. TheROC curves for the linear and additivemodels are

shown in Figs. 6a–c, and it becomes evident that all models

show a good overall performance, as their ratio of true

positive rates exceeds the false positive rates considerably.

To obtain an estimate of the errors in the additive

models, we performed a cross validation. The available

data were divided into two parts: data from even years

(2008, 2010, 2012, and 2014) and data fromodd years (2009,

2011, 2013, and 2015). Six additive models were computed

for lightning, hail, and wind: Peven(storm), Podd(storm),

Peven(hailjstorm), Podd(hailjstorm), Peven(windjstorm), and

Podd(windjstorm). Models that are developed using data

from odd years were applied to data of even years, and

vice versa. ROC curves in Figs. 6d–f show that the per-

formance of these models is slightly degraded relative to

those that were developed using the full dataset. How-

ever, the quality of the even-year models applied to the

odd-year data is very similar to that of the odd-year

models applied to the even-year data. This indicates that

the additive models are robust (Figs. 6d–f).

After examining various statistical measures and

comparing additive and linear models, it can be con-

cluded that the additive approach (AR-CHaMomodels)

can outperform the linear approach and is, therefore,

selected for this study. Finally, a cross validation using

data from even and odd years is able to underline the

robustness of the additive models.

In the next step, we show that AR-CHaMo can re-

produce meteorological patterns, such as annual cycles

and spatial distributions.

TABLE 2. Comparison between additive logistic regressions and linear logistic regressions. Models are computed based on data from
2008 to 2016. For the lightning models, data from W&CEurope were chosen, and for the hazard models—P(hazardjstorm)— data from
G&Alps were taken into account. Parameter n signifies the total number of data points within the selected time and spatial domain.

Model Predictors Type Deviance explained (%) BIC n

Plin(storm) LI and RH Linear 26.8 2 801 047 10 127 040
P(storm) LI and RH Additive 28.9 2 718 959 10 127 040
Plin(hailjstorm) LI and DLS Linear 8.0 15 552.25 150 952
P(hailjstorm) LI and DLS Additive 8.66 15 595.39 150 952
Plin(windjstorm) LI and DLS Linear 6.1 20 441.75 150 952
P(windjstorm) LI and DLS Additive 7.32 20 415.23 150 952
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4. Application to reanalysis data

a. Annual cycles

Another important indicator for the quality of a

model is its ability to reproduce the observed annual

cycles. We applied the AR-CHaMo lightning models

to ERA-Interim data across the W&CEurope do-

main and the 2008–16 period. The modeled number

of cases per month is determined by summing up all

individual probabilities for the 6-h periods. The re-

sulting sum is divided by the number of months

considered. We find that the modeled monthly

number of lightning cases follows the mean annual

cycle of observed lightning cases quite well (Fig. 7a).

The model does overestimate this number to a small

extent from January to April and slightly un-

derestimates it from May to July.

Next, we applied the models for hail and wind to the

G&Alps domain. The modeled annual cycle of hail cases

follows the mean annual cycle of observed hail cases fairly

well (Fig. 7b). Indeed, in May and June, the model un-

derestimates the number of observed cases, while it slightly

overestimates it from July onward (Fig. 7b). The modeled

annual cycle of wind cases and that of observed wind cases

match fairlywell throughout the year.Anotable difference

is that the maximum of the model underestimates the

observed maximum in July by approximately 40%. The

spikes in the cool season observationsmay be explained by

the fact that the comparison only takes 9yr of data into

account; in some months within this period, rare major

synoptic windstorms with electrified convection occurred,

whereas by chance they did not in others. They can be

identified in Fig. 2d (top) as two winter storms in 2008 and

2012, respectively.

FIG. 6. ROC curves showing (a)–(c) comparison between additive (gray) logistic regressions and linear (blue) logistic regressions
for lightning, hail, and wind, respectively; models are developed using data between 2008 and 2016. (d)–(f) As in (a)–(c), but for
models based on data from odd years [gray (2009, 2011, 2013, and 2015)] and applied to data from even years [green (2008, 2010,
2012, and 2014)], and vice versa. For the lightning models, data from W&CEurope were taken into account; while for the hazard
models, data from G&Alps were chosen.
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One explanation for the hail underestimation in May

and June suggests that there are other factors controlling

hail occurrence, beyond the three parameters that we have

taken into account. Our thinking is that these might be 1)

the height of the freezing level, which is lower in those

months, and/or 2) the typically steepermidlevel lapse rates

in those months, which may favor hail formation in addi-

tion to the buoyancy of a theoretical low-level parcel

(which we represent by the lifted index). More advanced

models might take such effects into account. In this study,

we restricted ourselves to two-dimensionalmodels in order

to present the method and show its applicabilities.

b. Spatial distribution

Another check of the model’s quality is whether or

not it is able to reproduce observed spatial patterns.We,

therefore, applied the models to the reanalysis dataset

across all of Europe from 1979 to 2016 and calculated

the annual number of hazard cases for each grid point.

The modeled spatial distribution of lightning cases

(1979–2016) reflects the observed pattern (2008–16) in

Fig. 1 quite well (Fig. 8a). The modeled, as well as the

observed, thunderstorm activity is maximized in north

Italy and is high along the Apennine Mountains and the

east coast of the Adriatic Sea. The north–south gradient

of thunderstorm activity in Germany is reproduced. The

modeled number of hail cases in Fig. 8b presents a dif-

ferent pattern than the observed ESWD reports of

Fig. 2a because strong hail activity is no longer limited to

the area where the ESWD reporting efficiency is high.

North Italy stands out, as well as central Romania and

the Pyrenees. The Atlas Mountain Ranges in northern

FIG. 7. Mean annual cycles for (a) modeled number of lightning cases (blue) and observed EUCLID lightning
cases (black) forW&CEurope; (b) as in (a), but for hail cases (blue) and observedESWDhail cases where lightning
occurred (black) for G&Alps; and (c) as in (b), but for wind cases (blue) and observed ESWD wind cases where
lightning occurred (black) for G&Alps. Time period is 2008–16.
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Africa have the highest number of events on the map.

Within Germany, most hail cases are modeled in the

southwest, with a decrease from south to north. This

gradient is more pronounced in the model than in the

observations (Fig. 2a). The model result, however, cor-

responds well to that found in the study by Punge et al.

(2014), which is based on the frequency of overshooting

tops detected by satellite, or by Puskeiler et al. (2016),

who used 3D radar data. Across the G&Alps domain,

the absolute number of modeled events of approxi-

mately 0.6 per year seems rather low, which may be

caused by an underestimation of ERA-Interim

instability.

For wind cases (Fig. 8c), the overall pattern may, at

first sight, seem similar to the pattern of hail (Fig. 8b),

but there are important differences. These differences

can be seen when dividing the modeled number of hail

(Fig. 9a) and wind (Fig. 9b) cases by the modeled

number of lightning cases. In Belarus, for example, be-

tween 0.6% and 0.9% of lightning cases are accompa-

nied by hail or wind. However, in Ireland, the

percentage of lightning cases with hail is only between

0.3% and 0.6%, while the percentage of lightning cases

with wind is between 0.9% and 1.2%.

Across the G&Alps domain, wind events are under-

estimated in the northern half, relative to the southern

half of this domain, that is, in comparison with the ob-

servations. We think that this is primarily caused by the

difficulty of representing wind gusts that occur with

convection under weak instability in strong background

flows near synoptic-scale storms. Such storms can pro-

duce both lightning and severe wind gusts, but the wind

gusts are primarily caused by the strong background

wind field. In such cases, the weak instability yields a

relatively low P(windjstorm), resulting in an un-

derestimation of wind gust risks. The AR-CHaMo wind

model result compares favorably to a study by Mohr

et al. (2017), who have explicitly left out synoptically

driven wind gusts from their climatology of convective

wind gusts across Germany. By doing so, the maximum

number of convective gusts (.18ms21) observed at

standard meteorological stations shifts to the south of

Germany and resembles the AR-CHaMo result rather

closely.

FIG. 8. AR-CHaMo application to ERA-Interim data for the period 1979–2016. The modeled number of cases
per year is determinedby summing up all individual probabilities for the 6-h periods. The resulting sum is divided by
the number of years considered. (a) Modeled number of lightning cases per year, (b) modeled number of hail cases
per year (hail $ 2 cm), and (c) modeled number of wind cases per year (wind $ 25m s21).
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c. Trends of hazard occurrence

To detect trends of the hail or wind hazards in the

last decades, we now consider the modeled annual

number of lightning, wind, and hail cases across

the W&CEurope and G&Alps domains (Fig. 10).

We summed up the individual probabilities for each

6-hourly period within the domains and per year to

receive the expected number of cases per year for each

domain (Fig. 10). For lightning, the annual number of cases

decreases until approximately 1995, followed by a strong

increase until 2016, which dominates the trend over the

entire time period (Fig. 10a). The increase amounts to 3.77

cases per decade for theG&Alps (blue line) and 2.55 cases

per decade for the W&CEurope domain (green line).

These numbers result in a relative increase of 23% and

16% within the G&Alps and W&CEurope domains, re-

spectively, between 1979 and 2016. The modeled number

of hail and wind cases also increased across both domains

(Figs. 10b,c). Since 1979, the respective increases in hail

and wind cases were 0.091 and 0.092 per decade across the

G&Alps domain (blue line) and 0.047 and 0.051 per decade

across the W&CEurope domain (green line). For hail

and wind, the relative increases are 86% and 56%, re-

spectively, across theG&Alps domain and 41%and 29%,

respectively, across the W&CEurope domain. Table 3

summarizes all linear trends (per decade) along with

their significance levels that are shown in Fig. 10.

The time period 1990–2000 stands out with lower

lightning and hail activity, relative to the earlier and

later periods. It also shows a smaller degree of in-

terannual variability. The low thunderstorm activity

between 1990 and 2000 correlates with higher LI

values—resulting in less instability—and lower midlevel

relative humidity (Fig. 12).

The trends for lightning, hail, and wind are not ho-

mogeneous across Europe. The modeled number of

annual lightning, wind, and hail cases exhibits a signifi-

cant positive linear trend in northern Italy and on the

southeast coast of the Adriatic Sea (Fig. 11). Modest

positive trends are detected across several areas in

north-central Europe. At the same time, significant

negative trends are identified across parts of northeast-

ern Spain and northern Morocco (Figs. 11a–c).

5. Driving factors for the modeled trends

In the next step, we answer the question of how the

detected changes in hazard probability are linked to the

underlying atmospheric parameters used in the models,

that is, LI, RH, and DLS.

a. Trends and variability of instability parameter LI

The fifth percentile of LI exhibits a significant linear

trend of 20.242Kdecade21 across the G&Alps domain

and 20.126Kdecade21 across the W&CEurope domain

(Fig. 12a; Table 4). The negative signs of the trends denote

that 5%ofmost unstable environments have becomemore

unstable. The fifth percentile was chosen, as it corresponds

with an amount of instability (near 0K), which is margin-

ally sufficient to support lightning. For lower (higher)

values of LI, the probability of lightning increases (de-

creases) rapidly (Fig. 3c). The standard deviation of the LI

distribution within any year has a positive linear trend

of10.074K (10.046K) across theG&Alps (W&CEurope)

domain, which signifies an increase in LI variability during

the last three decades (Table 4). The trend of LI differs

across Europe (Fig. 13a). Across most of Europe, signifi-

cant negative trends of LI prevail, while across Spain and

FIG. 9. AR-CHaMo application to ERA-Interim data for the period 1979–2016. Themodeled number of cases per year
is determined by summing up all individual probabilities for the 6-h periods. The resulting sum is divided by the number of
years considered. (a) Modeled number of hail cases per year divided by the modeled number of lightning cases per year.
(b) As in (a), but for wind cases. Thus, the fraction of lightning cases occurring with (a) hail or (b) wind is shown.
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Morocco, significant positive trends are detected. The

strongest increase in instability occurred in north Italy and

the western Balkans (20.55Kdecade21). The spatial pat-

tern of the LI trend (Fig. 13a) is qualitatively similar to the

trend of modeled lightning, hail, and wind cases (Fig. 11).

This suggests that changes in instability may be the primary

driver behind the changes in lightning, hail, and wind cases.

b. Trends and variability of midlevel relative

humidity parameter RH

Relative humidity is also a potential driver of the

changes, as low levels of relative humidity prevent storm

occurrence even when sufficient instability is present

(Fig. 3c). We considered changes of the median relative

humidity in cases of negative LI, which is 65.36%

(60.52%) across the G&Alps (W&CEurope) domains.

These values lie in a region of parameter space with a

strong gradient of lightning probability, that is, for

higher RH than this value, the probability of lightning

increases strongly (Fig. 3c). The median RH exhibits a

significant negative linear trend of 21.165%decade21

(Fig. 12b) for the G&Alps domain, but there is no sig-

nificant trend for the W&CEurope domain (20.101%

decade21). The standard deviation of RH for LI , 0K

FIG. 10. AR-CHaMo application to ERA-Interim data for the period 1979–2016. The modeled number of cases
per year is determined by summing up all individual probabilities for the 6-hourly periods in 1 yr within a chosen
domain. The resulting sum is divided by the number of grid boxes considered.Modeled number of cases per year for
(a) lightning, (b) hail ($2 cm), and (c) wind ($25m s21). The trends per decade (dashed lines), along with its
significance levels, are summarized in Table 3. The green curves correspond to W&CEurope, and the blue curves
correspond toG&Alps. Significance is indicateby theasterisks associatedwith the linear trend lineswith 3 asterisks5 0 and
2 asterisks5 0.001 significance.

TABLE 3. Trends of modeled number of hazard occurrences from Fig. 10.

G&Alps domain W&CEurope domain

Hazard Trend (decade21) Significance level a Trend (decade21) Significance level a

Lightning 13.772 0.001 12.554 0.001
Hail 10.091 0 10.047 0
Wind 10.092 0 10.051 0.001
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shows no significant trend in either domain (Table 4).

The spatial distribution of the trends within Europe is

depicted in Fig. 13b. Almost all of eastern and central

Europe shows a significant negative linear trend toward

lower humidity values. This would have an inhibiting ef-

fect on convective storms. The fact that the model pre-

dicts an increased number of lightning cases in the area

suggests that the effect of increased instability (lower LI)

dominates that of decreasing midtropospheric humidity.

No significant trend of RH is observed over Italy and

France. There is a positive trend over central Spain and

eastern Portugal, but its effect on the number of lightning

cases is dominated by the decrease of instability (increase

of LI).

c. Trends and variability of deep-layer shear

parameter DLS

High values of vertical wind shear, that is, DLS, in the

presence of instability favor the development of orga-

nized convection and attendant hazards. To identify

the effect of changes in DLS on hazard probability,

we consider the median of DLS in an unstable

atmosphere (LI, 0K). No significant trend of DLS was

detected across the G&Alps (10.101ms21decade21)

and W&CEurope (20.080m s21decade21) domains

(Fig. 12c; Table 4). There are no significant trends in the

standard deviation for either domain (Table 4). In spa-

tial terms, a significant positive trend is found over

northeastern Germany and northern Africa (Fig. 13c),

and a significant negative trend is found along the

Adriatic east coast (Fig. 13c). All other trends are not

significant at the 95% confidence level. Because DLS

did not change significantly during the last three decades

in most of the domain, it is not responsible for the

changes in hail and wind probabilities, with the possible

exception of parts of northern Africa.

6. Discussion and conclusions

We have developed a statistical model that yields a

probability for convective hazard occurrence on the

basis of lightning and hazard observations and reanalysis

data. The method was evaluated within the time period

2008–16 for central Europe, and it was shown that it was

FIG. 11. Themodeled number of cases per year is determined by summing up all individual probabilities for the 6-h periods in 1 yr within
a grid box. A linear trend is then calculated for each grid box. (a)–(c) Trend of the modeled number of lightning, hail ($2 cm), and wind
($25m s21) cases per decade, respectively. The small black dots indicate a significance level of 0.01, and the large ones a level of 0.05.
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able to reproduce the annual cycles and spatial distri-

bution of lightning, hail, and wind hazards fairly well.

The model that was developed has a number of limi-

tations. First, the model was simple and consisted of

only two predictor parameters per model component:

P(storm) and P(hazardjstorm). The parameter selection

and calculation for the AR-CHaMo models is designed

to be applicable to climate simulations despite their

limited vertical resolution. This model may be improved

further by using additional predictor parameters. Such

parameters may include low-level moisture, lapse rates,

lifted condensation level, or height of the melting level.

In this case, sufficient data must be available to prevent

overfitting, which can lead to unphysical relationships

between the predictors and the modeled probabilities.

This may become a problem when the model has a high

number of degrees of freedom. That said, the additional

degrees of freedom provided by an additive logistic

FIG. 12. (a) Change in fifth percentile of LI, (b) change in 50th percentile of RH, and (c) change in the median of
DLS. For (b) and (c), only values are taken into account where LI, 0K. Green line corresponds to W&CEurope,
and the blue line corresponds to G&Alps. The trends per decade (dashed lines), along with their significance levels,
are summarized in Table 4. Significance is indicated by the asterisks associated with the linear trend lines with 3
asterisks 5 0, 2 asterisks 5 0.001, and no asterisks 5 0.05.

TABLE 4. Trends of parameter distribution properties from Fig. 12.

G&Alps domain W&CEurope domain

Parameter Trend (decade21) Significance level a Trend (decade21) Significance level a

LIq1 (K) 20.368 0 20.165 0.001
LIq5 (K) 20.242 0 20.126 0.001
LIstd (K) 10.074 0 10.046 0.001
RHq50 (%) for LI , 0K 21.165 0.001 20.101 0.1
RHmean (%) for LI , 0K 21.062 0 20.052 0.1
RHstd (%) for LI , 0K 10.210 0.05 20.099 0.1
DLSq50 (m s21) for LI , 0K 20.101 0.1 20.080 0.1
DLSmean (m s21) for LI , 0K 10.062 0.1 20.071 0.1
DLSstd (m s21) for LI , 0K 20.014 0.1 20.022 0.1
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regression resulted in a fit to the observations that is much

improved relative to the linear logistic regression.

Second, the hazard observations are not complete and

feature temporal and spatial inhomogeneities. We tried

to minimize any resulting effects on the models by

selecting the small domain of G&Alps, across which the

collection of data was well organized and homogeneous

throughout the 2008–16 period.

Third, the time span of 6 h between subsequent re-

analysis data is long relative to the time scale involved in

the development of convective storms. For example, an

instability value at 1200 UTC might not accurately

represent the atmospheric conditions for a storm that

formed 5h later. The spatial resolution of 0.758 implies

that the predictor parameter values used are the means

over a model grid box of that size. This limited spatio-

temporal resolution blurs the relationship between the

predictor parameters and the predictands, that is, the

lightning, hail, and wind cases. The use of higher-

resolution reanalysis data, as they become available in

the future, will likely mitigate this problem. Addition-

ally, we have not evaluated the sensitivity of the model

to our choice of the reanalysis data, that is, ERA-

Interim. A comparison of results based on other re-

analysis datasets can shed light on the robustness of the

results. Thorne and Vose (2010) studied reanalysis

suitable for characterizing long-term trends. They em-

phasized that the available reanalyses have obvious and

undesirable, unphysical, time-varying biases that lead to

discontinuities in long-term trends. These discontinu-

ities may be a result of changes to the assimilated data

within the reanalysis (Thorne and Vose 2010).

The analysis of the time series since 1979 indicates a

positive trend in themodeled number of lightning cases, as

well as a positive trend of hail and wind cases in both do-

mains. The increase of convective hazards can only partly

be attributed to the more frequent occurrence of thun-

derstorms. More important, thunderstorms that occur are

more likely to produce severe weather. Both the increase

in storms and their efficiency in producing severe weather

are driven by an increase in instability, rather than changes

in DLS, which were small, or midtropospheric humidity.

Although the atmosphere became drier during this time

period, the associated inhibiting effect on the occurrence of

FIG. 13. Trends of ERA-Interim parameter for the period 1979–2016. (a) Trend of fifth percentile of LI (K) per year. (b) Trend of 50th
percentile of RH (%) per year. (c) Trend of 50th percentile of DLS (ms21) per year. For (b) and (c), only those values are taken into account
where LI, 0K, representing an unstable atmosphere. The small black dots indicate a significance level of 0.01, and the large ones a level of 0.05.
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storms was overcompensated by the instability increase.

The spatial distributions of the different trends and their

significance were analyzed in detail. We did not study the

reasons for the changes in instability, relative humidity,

and wind shear in ERA-Interim. The presented AR-

CHaMo modeling framework that we have developed

can be applied to other regions of the world, preferably

calibrated with observations from that region. An impor-

tant question that we have not addressed is whether a

model that was developed using observations from one

region can be applied to another. By applying the models

that were calibrated with data from central Europe, we

have implicitly assumed their applicability to the rest of

Europe and surrounding regions. Further research is

needed to test the sensitivity of the models to the region.

Besides reanalyses, important potential applications in-

clude the use of the framework in the realms of severe

weather forecasting and climate projections. The applica-

tion of the AR-CHaMo method can also be extended to

other convective hazards, such as heavy precipitation or

tornadoes.
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