
Detecting short directed cycles using rectangular

matrix multiplication and dynamic programming∗

Raphael Yuster † Uri Zwick ‡

Abstract

We present several new algorithms for detecting short fixed length cycles in digraphs. The

new algorithms utilize fast rectangular matrix multiplication algorithms together with a dynamic

programming approach similar to the one used in the solution of the classical chain matrix

product problem. Their complexity analysis requires solving a constant (though large) set of

linear programs. The new algorithms are instantiations of a generic algorithm that we present

for finding a directed Ck, i.e., a directed cycle of length k, in a digraph, for any fixed k ≥ 3. This

algorithm partitions the prospective Ck’s in the input digraph G = (V,E) into O(logk V) classes,

according to the degrees of their vertices. For each cycle class we determine, in O(Eck log V)

time, whether G contains a Ck from that class, where ck = ck(ω) is a constant that depends

only on ω, the exponent of square matrix multiplication. The search for cycles from a given

class is guided by the solution of a small dynamic programming problem. The total running

time of the obtained deterministic algorithm is therefore O(Eck logk+1 V).

For C3, we get c3 = 2ω/(ω + 1) < 1.41 where ω < 2.376 is the exponent of square matrix

multiplication. This coincides with an existing algorithm of [AYZ97].

For C4 we get c4 = (4ω − 1)/(2ω + 1) < 1.48. We can dispense, in this case, of the

polylogarithmic factor and get an O(E(4ω−1)/(2ω+1)) = o(E1.48) time algorithm. This improves

upon an O(E3/2) time algorithm of [AYZ97] and is currently the fastest available algorithm for

sparse enough graphs.

For C5 we get c5 = 3ω/(ω+2) < 1.63. This is the first case where the number of classes is not

constant, and derandomization is needed. The obtained running time of O(E3ω/(ω+2) log6 V) =

o(E1.63) improves upon an O(E5/3) time algorithm of [AYZ97] and is again the fastest available

algorithm for sparse enough graphs.

Determining ck for k ≥ 6 is a difficult task. We conjecture that ck = (k + 1)ω/(2ω + k − 1),

for every odd k. The values of ck for even k ≥ 6 seem to exhibit a much more complicated

dependence on ω.

Key words. cycles, matrix multiplication, dynamic programming

AMS subject classifications. 68R10, 90C35, 90C39, 05C38

∗A preliminary version of this paper appeared in Proceedings of the 15th Annual ACM-SIAM Syposium on Discrete

Algorithms, New Orleans, LA, 2004.
†Department of Mathematics, University of Haifa at Oranim, Tivon 36006, Israel.

E–mail: raphy@research.haifa.ac.il
‡Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E–mail: zwick@post.tau.ac.il

1

1 Introduction

We present several improved algorithms for detecting fixed length (directed) cycles in digraphs. The

algorithms utilize fast square and rectangular matrix multiplication algorithms due to Coppersmith

and Winograd [CW90], Coppersmith [Cop97] and Huang an Pan [HP98], together with a dynamic

programming approach. Although the algorithms are given explicitly, their complexity analysis

is quite a difficult task. Determining this complexity requires, in general, the solution of a huge

number of (constant size) linear programs.

Although our algorithm use fast rectangular matrix multiplication algorithms, we express most

of our time bounds, for simplicity reasons, in terms of ω, the exponent of fast square matrix

multiplications. The best bound currently available on ω is ω < 2.376, obtained by Coppersmith

and Winograd [CW90]. This is done by reducing each rectangular matrix product into a collection

of smaller square matrix products. Slightly improved bounds can be obtained by using, directly,

the best available rectangular matrix multiplication algorithms of Coppersmith [Cop97] and Huang

an Pan [HP98].

As explained in the abstract, the new algorithms are instantiations of a generic algorithm that

we present for finding a directed Ck, i.e., a directed cycle of length k, in a digraph, for any fixed

k ≥ 3. This algorithm partitions the prospective Ck’s in the input digraph G = (V,E) into a

O(logk V) classes 1, according to the degrees of their vertices. For each cycle class we determine, in

O(Eck log V) time, whether G contains a Ck from that class, where ck = ck(ω) is a constant that

depends only on ω. The search for cycles from a given class is guided by the solution of a small

dynamic programming problem.

For k = 3, we ‘rediscover’ an O(E2ω/(ω+1)) algorithm for finding triangles obtained by Alon et al.

[AYZ97]. For k = 4, 5 we obtain algorithms that improve upon the purely combinatorial algorithms

for finding C4’s and C5’s presented in [AYZ97]. This was stated there as an open problem. We con-

jecture that the algorithms that we obtain for k ≥ 6 also improve on the combinatorial algorithms

of [AYZ97], at least when ω is close enough to 2. (Many researchers believe that ω = 2 + o(1).)

Our concrete results for k = 4, 5 are:

Theorem 1.1 There exists an algorithm that given a digraph G = (V,E) determines whether G

has a C4, and outputs one if it does, in O(E(4ω−1)/(2ω+1)) = o(E1.48) time.

Theorem 1.2 There exists an algorithm that given a digraph G = (V,E) determines whether G

has a C5, and outputs one if it does, in O(E3ω/(ω+2) log6 V) = o(E1.63) time.

A summary of all available algorithms for finding C4’s and C5’s in digraphs is given in Table 1.

Alon et al. [AYZ97] obtained two algorithms for finding C4’s. The first has a running time of

O(E3/2), and the second a running time of O(V ω). The new O(E(4ω−1)/(2ω+1)) = o(E1.48) is

clearly better than the old O(E3/2) algorithm. It is better than the O(V ω) algorithm when the

graph is sufficiently sparse. A recent algorithm of Eisenbrand and Grandoni [EG03] detects C4’s in

1Throughout this paper we write V and E, instead of |V | and |E|, when these terms appear inside a big-O notation.

2

Cycle New algorithm Existing algorithms

C4 O(E(4ω−1)/(2ω+1)) = o(E1.48) O(E3/2) [AYZ97], O(E2−2/ωV 1/ω) [EG03], O(V ω) [AYZ97]

C5 Õ(E3ω/(ω+2)) = o(E1.63) O(E5/3) [AYZ97], O(V ω) [AYZ97]

Table 1: New and old algorithms for detecting C4’s and C5’s.

O(E2−2/ωV 1/ω) time. This algorithm is inferior to the algorithm of Theorem 1.1 for sparse graphs

and inferior to the O(V ω) algorithm for dense graphs, but is better than the two of them in some

intermediate density interval. Using directly a fast rectangular matrix multiplication algorithm,

the running time of the algorithm of Theorem 1.1 can be slightly improved to O(E1.474).

The algorithm of Theorem 1.2 is clearly faster than the O(E5/3) algorithm Alon et al. [AYZ97].

It is faster than the O(V ω) algorithm of [AYZ97] when |E| = o(V (ω+2)/3).

Determining the exact value of ck for k ≥ 6 is a difficult task. For odd k, it is not difficult

to show that ck ≥ (k + 1)ω/(2ω + k − 1). We conjecture that for odd k we in fact have ck =

(k + 1)ω/(2ω + k − 1). The values of ck for even k ≥ 6 seem to exhibit a much more complicated

dependence on ω. Numerical experiments suggest that c6 = (10− ω)/(7− ω) < 1.6488, when ω is

near 2.376. This, however, is not true for every ω.

In this extended abstract we concentrate on obtaining algorithms whose running time can be

expressed solely in terms of |E|. Our approach can be easily extended, however, to yield possibly

improved algorithms whose running times are expressed in terms of both |V | and |E|, like the

O(V 1/ωE2−2/ω) time C4 algorithm of Eisenbrand and Grandoni [EG03]. The details will appear in

the full version of the paper.

The rest of this paper is organized as follows. In Section 2 we present, as a warm-up, the

O(E2ω/(ω+1)) time algorithm of [AYZ97] for detecting C3’s. In Section 3 we give a direct proof of

Theorem 1.1. This section is quite technical and may be skipped in a first reading. The concrete

algorithm for detecting C4’s presented in this section partitions the cycles into only a finite number

of classes, thus saving a polylogarithmic factor in the running time. In Section 4 we present our

general procedure for finding a Ck and its derandomization. In Section 5 we analyze the algorithm

obtained for k = 5 and prove Theorem 1.2. In Section 6 we discuss our conjectures for k ≥ 6. The

final section contains some concluding remarks.

Throughout the rest of this paper we use the notation ω(a, b, c) to denote the exponent of

the multiplication of an Na × N b matrix by an N b × N c matrix, where a, b, c are positive con-

stants; namely, the number of arithmetic operations required to perform this multiplication is

O(Nω(a,b,c)). It is not difficult to see (see, e.g., Huang and Pan [HP98]), that ω(a, b, c) ≤ a + b +

c− (3− ω) min{a, b, c}, where ω = ω(1, 1, 1) is the exponent of square matrix multiplication.

3

2 A warm up: Finding triangles (C3’s)

To put the results obtained in this paper in context we use this short section to remind the reader of

the very simple O(E2ω/(ω+1)) algorithm of [AYZ97] for finding triangles. Implementing our general

procedure in the case k = 3 coincides with this algorithm.

Let G = (V,E) be the input graph. Set ∆ = |E|(ω−1)/(ω+1). Let H = {v ∈ V | deg(v) ≥ ∆}
be the set of high degree vertices of the graph. (For the rest of this paper the notations deg(v) or

degree refer to the sum of the indegree and the outdegree of a vertex.) Clearly |H| ≤ 2|E|/∆. Let

L = V − H be the set of low degree vertices. A triangle consisting of three high degree vertices

can be easily found, using matrix multiplication, in O(Hω) = O((E/∆)ω) = O(E2ω/(ω+1)) time.

A triangle containing a low degree vertex can be easily found, without matrix multiplication, in

O(E∆) time, as this is a bound on the number of paths of length two that pass through a low

degree vertex. As O(E∆) = O(E2ω/(ω+1)), and as each triangle is of one of these two types, the

result follows.

3 A more complicated case: Finding C4’s

In this section we prove Theorem 1.1. Denote α = 2(ω−1)/(2ω+1) and let ∆ = |E|α. We partition

the vertex set V into three parts. Let H denote the vertices having degree greater than ∆ in G.

Let M denote the vertices having degree at most ∆ and greater than
√

∆. Let L = V \ (H ∪M).

Clearly, |H| < 2|E|/∆ and |M | < 2|E|/
√

∆. We distinguish between five different types of C4.

(i) The C4 whose vertices are all in H.

(ii) The C4 with two opposite vertices in M ∪ L.

(iii) The C4 with only one vertex in M ∪ L.

(iv) The C4 with only two consecutive vertices in M ∪ L, at least one of them being from M .

(v) The C4 with only two consecutive vertices in L.

Clearly, any C4 in G is of one of these types. We show that the running time required to detect a

C4 of a given type is O(E(4ω−1)/(2ω+1)).

We can detect a C4 of type (i) using the O(V ω) algorithm from [AYZ97] mentioned in the

introduction in O(Hω) time. Since |H| < 2|E|/∆ = 2|E|1−α we can detect a C4 of type (i) in

O(Eω(1−α)) ≤ O(E(4ω−1)/(2ω+1)) time.

Any C4 of type (ii) is composed of two directed paths of length 2 with an intermediate vertex

in M ∪ L. As in [AYZ97] we can detect all such directed 2-paths in O(E∆) time, and use radix

sort to sort them according to their start and end vertices in linear time (namely, in O(E∆)

time). It is then straightforward to check whether there are two such directed paths of the form

u − x − v and v − y − u where x 6= y in linear time. Thus, we can detect cycles of type (ii) in

O(E∆) = O(E1+α) = O(E(4ω−1)/(2ω+1)) time.

In order to detect a C4 of type (iii) we use the following idea from [EG03]. Let A denote the

square matrix of order |H|, with A(x, y) equal to the number of directed paths of length two from

x ∈ H to y ∈ H that pass through a vertex of H. Clearly, A is the result of multiplying two

4

square matrices of order |H| and hence A can be computed in time O(Hω). Notice that there are

at most |E|∆ = |E|1+α directed paths of length 2 that begin and end in vertices of H and their

middle vertex is from M ∪ L. These paths can easily be traversed in O(E1+α) time by simply

traversing the edges of G one by one, and noticing that for each edge (x, y), if x ∈ M ∪ L and

y ∈ H there are at most ∆ edges of the form (z, x) where z ∈ H, and if x ∈ H and y ∈ M ∪ L
there are at most ∆ edges of the form (y, z) where z ∈ H. For each such path, say, (x, y, z) we

only need to check whether A(z, x) > 0. Furthermore, if A(z, x) > 0 it is straightforward to find

a directed path of length 2 from z to x in O(E) time. Hence, finding a C4 of type (iii) requires

O(Hω + E1+α) = O(E(4ω−1)/(2ω+1)) time.

In order to detect a C4 of type (iv) we proceed as follows. Let A1 denote the rectangular matrix

with |M | rows and |H| columns where A1(x, y) is the number of directed paths of length 2 from

x ∈ M to y ∈ H and that pass through a vertex of H. Clearly, A1 is the result of multiplying an

|M | × |H| matrix with an |H| × |H| matrix. Hence, using O(M/H) square matrix multiplications

we can generate A1 in O(MHω−1) time. Similarly, we can generate the matrix A2 with |H| rows

and |M | columns where A2(y, x) is the number of directed paths of length 2 from y ∈ H to x ∈M
and that pass through a vertex of H. Note that A2 is the result of multiplying an |H|× |H| matrix

with an |H| × |M | matrix and hence can be generated in O(MHω−1) time. Now, as in case (iii)

there are at most |E|1+α directed paths of the form (w, u, x) where w ∈ H, u ∈M ∪ L and x ∈M
and they can be generated in O(E1+α) time. For each such path we only need to check whether

A1(x,w) > 0 and, as in the previous case, if A1(x,w) > 0 we can find a path of length 2 from x

to w in O(E) time. Similarly, there are at most |E|1+α directed paths of the form (x, u, w) where

w ∈ H, u ∈ M ∪ L and x ∈ M and they can be generated in O(E1+α) time. For each such path

we only need to check whether A2(w, x) > 0. The overall running time needed to find a C4 of type

(iv) is therefore

O(E1+α +MHω−1) = O(E1+α + E1−α/2E(1−α)(ω−1))

= O(E(4ω−1)/(2ω+1)) .

In order to detect a C4 of type (v) we first throw away the vertices of M from the graph, as they

are irrelevant. Thus, in the new graph the vertices of L have maximum indegree or outdegree at

most ∆1/2 = |E|α/2. Thus, there are at most |E|1+α directed paths of length 3 that begin and end

in vertices of H and their middle vertices are from L. These paths can be generated in O(E1+α)

time by traversing all edges of the graph, and for each edge (u, u′) where both u, u′ ∈ L we can

generate all possible paths of length 3 of the form (w, u, u′, w′) where w,w′ ∈ H. Notice that there

are at most |E|α/2 choices for w and at most |E|α/2 choices for w′ and hence there are at most

|E|α such paths for each (u, u′). Now, for each generated path (w, u, u′, w′) we check in constant

time whether (w′, w) ∈ E (we can prepare the adjacency matrix of the subgraph induced by H in

O(E+H2) time in the beginning of the algorithm). The overall running time required for detecting

C4 of type (v) is therefore O(E1+α) = O(E(4ω−1)/(2ω+1)).

Notice that in one of its bottleneck phases, our algorithm computes the product of an |M |× |H|
matrix with an |H|× |H| matrix, and the product of an |H|× |H| matrix with an |H|× |M | matrix

5

using O(M/H) square matrix multiplications. This requires O(MHω−1) time. Since |H| < 2|E|1−α

and |M | < 2|E|1−α/2 we can use rectangular matrix multiplication and perform this phase in

O(E(1−α)ω(1,1,(2−α)/(2−2α)) time which is slightly better than O(E1+α). In fact, we can choose α

which satisfies

(1 + α) = (1− α)ω(1, 1,
2− α
2− 2α

)

and the overall running time would still be O(E1+α). Using a computer program that implements

the formula from [HP98] we have found that α = 0.474 suffices.

4 The general case: Finding Ck’s

In this section we describe a generic algorithm for finding a Ck in a directed graph, for any fixed

k ≥ 3. The C3 algorithm of Section 2 partitioned the vertices into two degree classes. The C4

algorithm of the previous section used three degree classes. It turns out that to obtain improved

algorithms for finding larger Ck’s, we need an unbounded number of degree classes. For every

0 ≤ i < log |V |, let

Vi = {v ∈ V | 2i ≤ deg(v) < 2i+1}

Clearly |Vi| ≤ |E|/2i−1. There are therefore log |V | vertex classes, and the Ck’s of the input graph

can be classified, according to the classes of their ordered set of vertices, into O(logk V) cycle classes.

The algorithm will consider each such class separately. This will only increase the running time of

the algorithm by a polylogarithmic factor.

We are usually only interested in finding simple Ck’s, i.e., Ck’s that do not contain repeated

vertices. We can, however, use the color coding technique of [AYZ95] to reduce the problem of

finding a simple Ck in a given input graph into the problem of finding a non-necessarily simple Ck
in a collection of O(log V) graphs. For completeness we describe a simple randomized version of

the color coding technique that is sufficient for our purposes. We simply choose a random coloring

c : V → {0, 1, . . . , k − 1} of the vertices of the graph and construct the graph Gc = (V,Ec), where

Ec = { (u, v) ∈ E | c(v) − c(u) ≡ 1 (mod k)}. Clearly, any Ck in Gc is simple. Also, if G contains

a simple Ck, then this Ck is present in Gc with probability 1/kk−1. As k is assumed to be fixed,

this is enough for our purposes. It is possible to derandomize this technique. This is done by

constructing, deterministically, a sequence c1, c2, . . . of O(log V) colorings such that if G contains

a simple Ck, then at least one of the subgraphs Gci also contains one. For the details the reader is

referred to [AYZ95]. In the sequel we can therefore ignore the simplicity constraint.

Let 0 ≤ f0, f1, . . . , fk−1 < log |V |. How do we find a cycle v0, v1, . . . , vk−1 in the graph for which

vi ∈ Vfi , for 0 ≤ i < k? Let A be the adjacency matrix of the input graph. For 0 ≤ i, j < log |V |,
let Ai,j be the |Vi| × |Vj | submatrix of A representing the edges directed from Vi to Vj . It should

be noted that we sometimes prefer to represent A or Ai,j as a sparse matrix, e.g., with adjacency

lists. Clearly, the graph contains a cycle of the required form if and only if the matrix obtained as a

result of the Boolean chain product Af0,f1Af1,f2 · · ·Afk−2,fk−1
Afk−1,f0 contains a 1 on its diagonal.

6

Or, more efficiently, if there exist 0 ≤ i < j < k such that the matrix

Afi,fi+1
· · ·Afj−1,fj ∧ (Afj ,fj+1

· · ·Afi−1,fi)
T ,

contains a 1 anywhere. (In the above expression indices are interpreted modulo k, A ∧ B is the

matrix obtained by logically anding the corresponding elements of the matrices A and B, and AT

is the transpose of the matrix A.)

This immediately reminds us of the classical matrix chain product problem, one of the most

famous examples used to explain the dynamic programming technique (see, e.g., [CLRS01]), with

several twists. In the classical problem, the rectangular matrix products are performed using the

naive algorithm, i.e., the cost of multiplying an a × b matrix by a b × c matrix is abc. Using a

standard reduction of rectangular matrix products to square matrix products (see, e.g., Huang and

Pan [HP98]), the cost of such a product is reduced to abc/min{a, b, c}3−ω, where ω is the exponent

of square matrix multiplication. More importantly, as noted earlier, the matrices that we are

considering are sometimes sparse. This can be used, in certain cases, to speed up the computation.

As we are only interested in the asymptotic complexity of the computation, it is convenient

to switch to a ‘logarithmic scale’ and consider all quantities as powers of |E|. In particular, let

di = fi/ log2 |E|, so that |E|di = 2fi , for 0 ≤ i < k. Notice that 0 ≤ di ≤ 1.

Let Ck(d0, d1, . . . , dk−1) be such that O(ECk(d0,d1,...,dk−1)) is a bound on the number of op-

erations needed to find a Ck of the class we are considering. Let Pi,j(di, . . . , dj) be such that

O(EPi,j(di,...,dj)) is a bound on the complexity of computing the product Afi,fi+1
. . . Afj−1,fj . The

following two lemmas, the first of which using the dynamic programming spirit, establish suitable

values for Pi,j(di, . . . , dj) and Ck(d0, d1, . . . , dk−1). To keep the following formulae concise, we omit

the arguments of expressions of the form Pi,j . Indices here, and in what follows, are considered

modulo k.

Lemma 4.1

Pi,i+1 = 1

Pi,j = min{Pi,j−1 + dj−1 , Pi+1,j + di+1 , P
′
i,j} , j 6= i+ 1

P ′i,j = min
i<r<j

max{Pi,r, Pr,j ,M(1− di, 1− dr, 1− dj)}

where

M(s0, s1, s2) = s0 + s1 + s2 − (3− ω) min{s0, s1, s2} .

Proof: We can create a sparse representation of Afi,fi+1
in O(E1) time and therefore Pi,i+1 = 1

is suitable. Suppose that we have computed a sparse representation of Afi,fi+1
· · ·Afj−2,fj−1

in

O(EPi,j−1) time. By traversing the O(Edj−1) edges incident with each v ∈ Vfj−1
we can compute

a sparse representation of Afi,fi+1
· · ·Afj−1,fj in O(EPi,j−1+dj−1) time. Thus, Pi,j ≤ Pi,j−1 + dj−1.

A similar argument shows that Pi,j ≤ Pi+1,j + di+1. For any i < r < j, suppose that we have

computed a sparse representation of Afi,fi+1
· · ·Afr−1,fr in O(EPi,r) time, and a sparse representa-

tion of Afr,fr+1 · · ·Afj−1,fj in O(EPr,j) time. It takes at most O(EPi,r +E1−diE1−dr) time to create

the (non sparse) matrix representation of Afi,fi+1
· · ·Afr−1,fr , and at most O(EPr,j + E1−drE1−dj)

7

time to create the (non sparse) matrix representation of Afr,fr+1 · · ·Afj−1,fj . Multiplying the two

matrices requires O(EM(1−di,1−dr,1−dj)). Thus, Pi,j ≤ max{Pi,r, Pr,j ,M(1− di, 1− dr, 1− dj)}. In

particular, Pi,j ≤ mini<r<j max{Pi,r, Pr,j ,M(1−di, 1−dr, 1−dj)}. (Notice that if we have decided

to use a non-sparse matrix representation we can always switch back to the sparse method since

the running time of this conversion is at most the number of entries of the matrix, which is less

than the time it took us to create it.)

�

Lemma 4.2

Ck(d0, d1, . . . , dk−1) =

min{ min
0≤i<j≤k−1

max{Pi,j , Pj,i } , min
0≤i≤k−1

2− di }

Proof: Given sparse representations of Afi,fi+1
· · ·Afj−1,fj and Afj ,fj+1

· · ·Afi−1,fi we can use radix

sort to sort the first representation in linear time and the transpose of the second representation

in linear time. We can then find whether Afi,fi+1
· · ·Afj−1,fj ∧ (Afj ,fj+1

· · ·Afi−1,fi)
T , contains a 1

anywhere in linear time. Thus, Ck(d0, d1, . . . , dk−1) ≤ min0≤i<j≤k−1 max{Pi,j , Pj,i }. There are

O(E1−di) vertices in Vfi . For each vertex, we can check in O(E) time whether it is on some Ck.

Thus, Ck(d0, d1, . . . , dk−1) ≤ 2− di.

�

Given d0, d1, . . . , dk−1, the algorithm solves this small dynamic programming problem, in con-

stant time, and determines the optimal way of finding cycles of the current class. This is repeated

for all cycle classes.

Clearly, the overall complexity of the algorithm is Õ(Eck), where

ck = max
0≤d0,d1,...,dk−1≤1

Ck(d0, d1, . . . , dk−1) .

To obtain the asymptotic complexity of the algorithm, we need to determine the constant ck, as a

function of ω, the exponent of square matrix multiplication. This, in general, is not an easy task! It

is not difficult to reduce the problem of computing ck to a finite (though large) set of linear programs,

of constant (though large) size each. The preceding two sections imply that c3 ≤ 2ω/(ω + 1)

and that c4 ≤ (4ω − 1)/(2ω + 1). To see that equality holds, notice that for k = 3 we have

C3(
ω−1
ω+1 ,

ω−1
ω+1 ,

ω−1
ω+1) = 2ω/(ω+1). For k = 4 we have C4(

2ω−2
2ω+1 ,

2ω−2
2ω+1 ,

ω−1
2ω+1 ,

ω−1
2ω+1) = (4ω−1)/(2ω+1).

In the next section we show that c5 = 3ω/(ω + 2).

5 Another concrete case: Finding C5’s

In this section we show that c5 = 3ω/(ω + 2), thereby getting an Õ(E3ω/(ω+2)) algorithm for

detecting C5’s and proving Theorem 1.2. First, notice that C(ω−12+ω ,
ω−1
2+ω ,

ω−1
2+ω ,

ω−1
2+ω ,

ω−1
2+ω) already

shows that c5 ≥ 3ω/(ω + 2) (this means that regular graphs already require a running time of

Õ(E3ω/(ω+2)). To see the upper bound, it would not be convenient to work directly with the dynamic

8

programming problem which defines c5. As in the case of the C4 algorithm, it is more convenient

to present a more concise algorithm which handles many types of cycle classes simultaneously.

Let δ = (ω − 1)/(2 + ω). We show that C(d0, d1, d2, d3, d4) ≤ 3ω/(2 + ω) for each cycle type

(d0, d1, d2, d3, d4), namely, cycles (v0, v1, v2, v3, v4) with vi ∈ Vfi .
Cycles of type (d0, d1, d2, d3, d4) where each di > δ: Clearly, P4,0 = 1. On the other hand,

P0,4 ≤ max{P0,2, P2,4,M(1 − d0, 1 − d2, 1 − d4)}. Now, P0,2 ≤ ω(1 − δ), P2,4 ≤ ω(1 − δ), and

M(1− d0, 1− d2, 1− d4) ≤ ω(1− δ). Thus, P0,4 ≤ ω(1− δ). Thus, C(d0, d1, d2, d3, d4) ≤ ω(1− δ) =

3ω/(2 + ω).

Cycles of type (d0, d1, d2, d3, d4) where d0, d1, d2, d3 > δ and d4 ≤ δ: As in the previous case,

P0,3 ≤ ω(1 − δ). On the other hand, P3,0 ≤ P3,4 + d4 ≤ 1 + δ. Thus, C(d0, d1, d2, d3, d4) ≤
max{ω(1− δ), 1 + δ} = 3ω/(2 + ω).

Cycles of type (d0, d1, d2, d3, d4) where d0, d1, d2 > δ and d3, d4 ≤ δ: As in the previous

cases, P0,2 ≤ ω(1 − δ). On the other hand, P2,0 ≤ P2,4 + d4 ≤ P2,3 + d3 + d4 ≤ 1 + 2δ. Thus,

C(d0, d1, d2, d3, d4) ≤ max{ω(1− δ), 1 + 2δ} = 3ω/(2 + ω).

Cycles of type (d0, d1, d2, d3, d4) where d1, d3, d4 ≤ δ: P0,2 ≤ P0,1+d1 ≤ 1+δ. On the other hand,

P2,0 ≤ P2,4+d4 ≤ P2,3+d3+d4 ≤ 1+2δ. Thus, C(d0, d1, d2, d3, d4) ≤ max{1+δ, 1+2δ} = 3ω/(2+ω).

Cycles of type (d0, d1, d2, d3, d4) where d0, d1 > δ and d2, d3, d4 ≤ δ: Let ε = δ − d2. We

have three subcases. If d0 > δ + ε and d1 > δ + ε then consider P0,2 and P2,0. Clearly, P2,0 ≤
P2,4 + d4 ≤ P2,3 + d3 + d4 ≤ 1 + 2δ. On the other hand, P0,2 ≤ M(1 − d0, 1 − d1, 1 − d2) ≤
M(1− δ − ε, 1− δ − ε, 1− δ + ε) ≤ M(1− δ, 1− δ, 1− δ) = ω(1− δ). Thus, C(d0, d1, d2, d3, d4) ≤
max{1 + 2δ, ω(1− δ)} = 3ω/(2 + ω). Otherwise, if d0 ≤ δ + ε then consider P1,4 and P4,1. Clearly

P1,4 ≤ P1,3 + d3 ≤ P1,2 + d2 + d3 ≤ 1 + 2δ. On the other hand, P4,1 ≤ P4,0 + d0 ≤ 1 + δ + ε.

Thus, C(d0, d1, d2, d3, d4) ≤ max{1 + 2δ, 1 + δ + ε} = 3ω/(2 + ω). Otherwise, if d1 ≤ δ + ε then

consider P0,2 and P2,0. Clearly, P0,2 ≤ P0,1 + d1 ≤ 1 + δ+ ε. On the other hand, P2,0 ≤ P2,4 + d4 ≤
P2,3 + d3 + d4 ≤ 1 + 2δ. Thus, C(d0, d1, d2, d3, d4) ≤ max{1 + 2δ, 1 + δ + ε} = 3ω/(2 + ω).

Cycles of type (d0, d1, d2, d3, d4) where d0, d1, d3 > δ and d2, d4 ≤ δ: We may assume d4 < d2
since the other case is symmetric. Let ε = δ−d2. We have four subcases. If d0 ≤ δ+ε then consider

P1,3 and P3,1. Clearly, P1,3 ≤ 1+d2 ≤ 1+δ, and P3,1 ≤ 1+d4+d0 ≤ 1+(δ−ε)+(δ+ε) = 1+2δ. Thus,

C(d0, d1, d2, d3, d4) ≤ max{1+δ, 1+2δ} = 3ω/(2+ω). Otherwise, if d1 ≤ δ+ε then consider P0,3 and

P3,0. Clearly, P0,3 ≤ 1+d1+d2 ≤ 1+(δ+ε)+(δ−ε) = 1+2δ. On the other hand, P3,0 ≤ 1+d4 ≤ 1+δ.

Thus, C(d0, d1, d2, d3, d4) ≤ max{1+2δ, 1+ δ} = 3ω/(2+ω). Otherwise, if d3 ≤ δ+ ε then consider

P0,2 and P2,0. Clearly, P0,2 ≤ M(1 − d0, 1 − d1, 1 − d2) ≤ M(1 − δ − ε, 1 − δ − ε, 1 − δ + ε) ≤
M(1−δ, 1−δ, 1−δ) ≤ ω(1−δ). On the other hand, P2,0 ≤ 1+d3+d4 ≤ 1+(δ+ε)+(δ−ε) = 1+2δ.

Thus, C(d0, d1, d2, d3, d4) ≤ max{ω(1−δ), 1+2δ} = 3ω/(2+ω). Otherwise, d0, d1, d3 are all greater

than δ+ ε so consider P0,3 and P3,0. Clearly, P0,3 ≤ max{P0,1, P1,3,M(1−d0, 1−d1, 1−d3)}. Now,

P0,1 = 1, P1,3 ≤ 1 + d2 ≤ 1 + δ and M(1 − d0, 1 − d1, 1 − d3) ≤ M(1 − δ, 1 − δ, 1 − δ) = ω(1 − δ).
Thus, P0,3 ≤ ω(1 − δ). On the other hand, P3,0 ≤ 1 + d4 ≤ 1 + δ. Thus, C(d0, d1, d2, d3, d4) ≤
max{ω(1− δ), 1 + δ} = 3ω/(2 + ω).

A simple argument shows that the above six cases handle all possible cycle types.

9

6 Conjectures for k ≥ 6

Based on extensive numerical experimentations, we conjecture that

Conjecture 6.1

c6 =

10ω−3
4ω+4 if 2 ≤ ω ≤ 13

6

22−4ω
17−4ω if 13

6 ≤ ω ≤
9
4

11ω−2
4ω+5 if 9

4 ≤ ω ≤
16
7

10−ω
7−ω if 16

7 ≤ ω ≤
5
2

5
3 if 5

2 ≤ ω ≤ 3

Our numerical experiments lead us to conjecture that for all odd k, the hardest case is that

of regular graphs. It is an easy exercise to maximize C(δ, δ, . . . , δ). It is maximized when δ =

(ω − 1)/(ω + (k − 1)/2) and the value is then (k + 1)ω/(2ω + k − 1). We therefore have:

Conjecture 6.2 For all odd k ≥ 3,

ck = (k + 1)ω/(2ω + k − 1) .

In particular, the algorithm from Section 4 finds a Ck, for an odd k, in Õ(E(k+1)ω/(2ω+k−1)) time.

Sections 2 and 5 show that Conjecture 6.2 holds for k = 3, 5. A combinatorial O(E2−2/(k+1)) time

algorithm for detecting odd cycles of length k is presented in [AYZ97]. It is easy to see that if

Conjecture 6.2 is true, then our algorithm improves on this algorithm if ω < 2k/(k − 1). (Many

believe that ω = 2 + o(1).)

For even k, our numerical experiments show that regular graphs are not the worst case. This is

provably so for k = 4, 6, 8. In fact, we believe, as expressed in Conjecture 6.1, that ck is expressed

as different functions of ω for different values of ω for all even k ≥ 6. A combinatorial O(E2−2/k)

time algorithm for detecting even cycles of length k is presented in [AYZ97]. We conjecture that,

for every even k, we have ck < 2− 2/k, if ω is sufficiently close to 2.

7 Concluding remarks

Determining the values of ck, for k ≥ 6 is an interesting open problem. As we said, we suspect the

answer for even values of k to be quite complicated. It would be nice, at first, to obtain a proof of

Conjecture 6.1.

Fast rectangular matrix multiplication is used for speeding up graph algorithms also by Zwick

[Zwi02], Demetrescu and Italiano [DI00], and by Kratsch and Spinrad [KS03]. Finding other

applications of rectangular matrix multiplications, or of the techniques developed here, is also an

interesting problem.

10

References

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42:844–856, 1995.

[AYZ97] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorith-

mica, 17:209–223, 1997.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms.

The MIT Press, second edition, 2001.

[Cop97] D. Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity,

13:42–49, 1997.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation, 9:251–280, 1990.

[DI00] C. Demetrescu and G. F. Italiano. Fully dynamic transitive closure: breaking through

the O(n2) barrier. In Proc. of 41st FOCS, pages 381–389, 2000.

[EG03] F. Eisenbrand and F. Grandoni. Detecting directed 4-cycles still faster. Information

Processing Letters, 87(1):13–15, 2003.

[HP98] X. Huang and V.Y. Pan. Fast rectangular matrix multiplications and applications.

Journal of Complexity, 14:257–299, 1998.

[KS03] D. Kratsch and J. Spinrad. Between O(nm) and O(nα). In Proc. of 14th SODA, pages

709–716, 2003.

[Zwi02] U. Zwick. All-pairs shortest paths using bridging sets and rectangular matrix multipli-

cation. Journal of the ACM, 49:289–317, 2002.

11

