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SUMMARY

We discuss the problem of detecting local signals that occur at the

same location in multiple one dimensional noisy sequences, with particular

attention to relatively weak signals that may occur in only a fraction of

the sequences. We propose statistics that combine data across sequences

and show that they have better power properties and provide a more easily

interpreted summary of the data than do procedures based on a separate

analysis for each sequence. In particular, we examine the case where the sig-

nal is a temporary shift in the mean of independent Gaussian observations.

The formulation of the model is motivated by the problem of detecting re-

current DNA copy number variants in multiple samples, and our results are

illustrated by applications to data involving DNA copy number changes.

Key words and phrases: Scan statistics, change-point detection, segmenta-

tion, meta-analysis, DNA copy number
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1 Introduction

We study in this paper the statistical problem of detecting local signals that occur

at the same location in multiple noisy sequences. Of particular importance are cases

where the shared signal occurs in only a fraction of the sequences. This inquiry is

motivated by current problems in biology, where high-throughput genomic profiles are

collected for cohorts of biological samples, and it may be of interest to pool data across

samples to boost power for detecting simultaneously occurring signals. We start by

describing a few motivating applications.

1. Detection of DNA copy number variation: DNA copy number variants (CNVs),

i.e. gains and losses of chromosomal segments, are an important class of genetic

variation. Various laboratory techniques have been developed for measuring the

quantity of DNA present in a population of cells, relative to the expected quan-

tity of two copies (for autosomal chromosomes). These measurements are taken

at a set of probes, each mapping to a specific location in the genome. The data

thus produced are a set of linear profiles, one for each biological sample in the

study.

While there are many published methods for CNV detection, most deal with

samples one at a time (Fridlyand et al., 2004; Olshen et al., 2004; Wang et al.,

2005; Picard et al., 2005; Hsu et al., 2005; Guha et al., 2006; Engler et al., 2006;

Wen et al., 2006; Broët & Richardson, 2006; Lai et al., 2007; Tibshirani & Wang,

2008). Two independent comparative reviews (Lai et al., 2005; Willenbrock &

Fridlyand, 2005) of single sample methods concluded that the published methods

often disagree, and both reviews concluded that the circular binary segmentation
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(CBS) method of Olshen et al. (2004); Venkatraman & Olshen (2007) performs

well.

Since CNVs are often shared across individuals, we would like to scan all profiles

simultaneously to detect shared CNVs and to obtain a sparse multi-sample sum-

mary that can serve as the overall molecular signature for the cohort of samples.

In most of the literature, cross sample analyses are done post-segmentation (e.g.

Diskin et al. (2006), Wang et al. (2008), and Newton et al. (1998),Newton &

Lee (2000)). An important exception where data is pooled across samples during

the segmentation step is Shah et al. (2007), who proposed hierarchical hidden

Markov models that make specific assumptions about the occurrences, durations

and amplitudes of variant intervals. More background on this problem is given

in Section 4.

2. Transcription profiling using tiling arrays: High-density genomic tiling mi-

croarrays cover a complete genome with densely tiled oligonucleotide probes.

These arrays can be used to assay in an unbiased manner multiple types of activ-

ity on the genome, including transcription, DNA-protein-binding, and chromatin

modification (references needed). As for CNV detection, tiling array data are

often collected for multiple samples in one study. It is also frequently of interest

to detect common regions of activity, and to pool data across samples to locate

weak signals (Piccolboni, 2008; Huber et al., 2006).

3. Meta-analysis of multiple linkage studies: Whole genome linkage studies seek

to identify genetic regions that may contain susceptibility genes for diseases or

genes that contribute to other traits of interest. Often, several linkage studies
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with modest sample sizes are reported, with differing results for the same genomic

region. This is not surprising, since the power of detection by individual stud-

ies is often modest. Wise et al. (1999) and Badner & Gershon (2002) proposed

statistical criterion for the simultaneous analysis of multiple genome scans.

The scenarios described above involve situations where a simultaneous scan for a

shared signal across multiple linear profiles can potentially improve robustness and

power by borrowing strength across profiles. Within individual profiles, the signal of

interest, as well as the noise structure, may vary across applications. In this paper, we

look at the specific problem of detecting an abrupt shift in mean when the noise within

each profile is assumed to be independent and identically distributed Gaussian. The

mean shift model can be directly applied to the problem of CNV detection described

in Example 1. With modifications for correlated errors and probe-level effects, the

methods can potentially also apply to transcription profiling using tiling arrays. The

meta-analysis of multiple linkage studies can be viewed in similar light, but would need

to acount for the diversity of study designs. All of these applications have their own set

of idiosyncracies that must be factored into the models, but we hope to convey some

common themes that extend across applications.

Motivated by the comparative evaluation reported in Lai et al. (2005) and Willen-

brock & Fridlyand (2005), the relative simplicity of the CBS algorithm, and our past

experience in using that algorithm to provide input for our BIC related model selection

criterion (Zhang and Siegmund, 2006), we adopt the conceptual foundations of Olshen

et al. (2004). In this paper we focus on the issue of borrowing information across

multiple scans.
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In Section 2, we build on existing change-point methods to formulate some sim-

ple test statistics, and provide approximations to their significance level and power.

In Section 3, we evaluate the approximations and study the power of these statistics

using numerical calculations and simulations. In Section 4, we provide a more exten-

sive review of the scientific issues involved with studies of copy number variation and

illustrate our methods on two data sets. After summarizing some general conclusions

in Section 5, we sketch in Section 6 the steps in deriving the approximations stated in

Section 2.

2 Methods

2.1 Problem Formulation

Let the observed data be a two dimensional array {yit : 1 ≤ i ≤ N, 1 ≤ t ≤ T},

where yit is the data point for the i-th profile at location t, N is the total number

of profiles, and T is the total number of locations. We assume that for each i, the

random variables yi = {yit : 1 ≤ t ≤ T} are mutually independent and normally

distributed with mean values µit and variances σ2
i . We further assume that under the

null hypothesis, for each profile i, the random variables yit are identically distributed

with “baseline” mean value µi. The alternative hypothesis of interest is that there exist

values 1 ≤ τ1 < τ2 ≤ T and a set of profiles J ⊂ {1, . . . , N}, such that for i ∈ J ,

µit = µi0 + δiI{τ1<t≤τ2}, (2.1)
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where the δi are non-zero constants and µi0 is the background mean level for sample

i. Under the alternative hypothesis we refer to (τ1, τ2] as a variant interval and J the

set of carriers associated with the interval. If the alternative hypothesis is true, we are

interested primarily in detecting this situation and in estimating the variant interval,

and secondarily in determining the carriers.

This model is motivated by the analysis of DNA copy number data, for which we

provide more background in Section 4. In that application, each profile is usually a

different biological sample, with the data points mapping to locations along chromo-

somes. The change-points τ1, τ2 demarcate CNVs. Empirical evidence suggest that the

baseline means and sample variances differ substantially across samples. We also found

that the shifts in mean differ across the carriers for a given CNV. For example, Figure

1a shows the sample means ȳi,τ1:τ2 = (yi,τ1+1 + · · · + yi,τ2)/(τ2 − τ1) within two known

copy number variant intervals for a set of 62 samples described in Section 4.3. The

triangles mark the sample means within the CNV for validated carriers. Observe that

the locations of the triangles vary over a wide range. This motivates the allocation of

a separate δi parameter for each carrier at any given CNV.

In many applications, there are usually multiple variant intervals defined by different

τ1 and τ2, and J . In DNA copy number data, the magnitude of change differs widely

across CNVs for any given sample. Figure 1b presents empirical evidence for this

fact: Two samples are shown. For each sample, a histogram of {yit : t = 1, . . . , T} is

plotted. The triangles mark the location of validated CNVs in that sample. Observe

that the locations of the triangles vary substantially. This motivates the estimation of

a separate δi(τ1, τ2) for each interval τ1, τ2. We describe our test statistics first for the
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simple case where there is at most one variant interval. Then, we build on these test

statistics to obtain segmentation algorithms similar to CBS (Olshen et al., 2004) for

cases where multiple variant intervals can occur.

2.2 The Sum-of-Chisquares Statistic

First, we recall existing methods for the analysis of only one profile, where temporarily

we suppress the dependence of our notation on the profile indicator i. For the data

sequence {y1, . . . , yT}, let St = y1 + . . . + yt, ȳt = St/t, and σ̂2 = T−1
∑T

1 (yt − ȳT )2.

The test statistic used in Olshen et al. (2004) and Zhang & Siegmund (2007) is

max
s,t

U2(s, t), (2.2)

where

U(s, t) = σ̂−1{St − Ss − (t− s)ȳT}/[(t− s){1− (t− s)/T}]1/2, (2.3)

and the max is taken over 1 ≤ s < t ≤ T, t − s ≤ T0. Here T0 < T is an assumed

upper bound on the length of the variant interval, which in some contexts may be much

smaller than T .

If the error standard deviation σ were known and could be used in the definition of

U(s, t), (2.2) would be the likelihood ratio statistic. In practice σ must be estimated.

Since T is relatively large in typical applications, we shall for theoretical developments

treat σ as known. Then, we can without loss of generality set σ = 1. Numerical studies

suggest that this is a reasonable simplification.

Now consider the model (2.1) for the original problem involving N sequences. To
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test the null hypothesis that δi = 0 for all 1 ≤ i ≤ N versus the alternative that for

some values of τ1 < τ2 at least some δi are not zero, a direct generalization of (2.2) is

max
s<t

N∑
i=1

U2
i (s, t), (2.4)

where Ui(s, t) is the sequence specific statistic defined as in (2.3) for the ith sequence.

As in the single profile case, if the variances were known, (2.4) would be the generalized

log likelihood ratio statistic. For each fixed s < t, the null distribution of the indicated

sum is approximately χ2 with N degrees of freedom. Since N can potentially be large,

it will be convenient to consider the standardized statistics

Z(s, t) =
N∑
i=1

{Ui(s, t)2 − 1}/(2N)1/2. (2.5)

We will refer to (2.5) as the sum of χ2 statistic. Large values of Z(s, t) are evidence

against the null hypothesis. If the null hypothesis is rejected, the maximum likelihood

estimate of the location of the variant interval is (s∗, t∗) = arg maxs,t Z(s, t).

Before turning to approximations for the significance level and power of a multi-

sample scan using Z(s, t), we consider a weighted version of this statistic suggested by

a mixture model.

2.3 The Weighted Sum-of-Chisquares Statistic

Conducting a separate analysis for each individual sequence requires that each sample

show strong evidence for the detection of a variant interval. The sum of chi-squares

statistic goes to the other extreme of favoring situations where many samples have
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relatively weak evidence. This is because for assessing whether location [s, t] contains

a variant interval in some of the sequences, all individuals contribute a “vote” in terms

of adding a chi-square to the sum. However, in most cases, the carriers of a variant

interval make up only a (small) fraction of the samples. Further, in the case of DNA

copy number data, low-amplitude fluctuations shared by many samples are more likely

to be due to measurement artifacts rather than biologically interesting signals. We

propose an intermediate statistic that requires individual sequences to show strong

enough evidence for a variant interval in order to have substantial vote in the pooled

scan. In this section, we examine a mixture model that naturally gives rise to such a

weighted statistic.

Let Qi(s, t) denote the indicator that i ∈ J , i.e. that sample i is a carrier of the

aligned change segment at s, t. If Qi(s, t) were observable, the log likelihood ratio

statistic would be

max
s,t

N∑
i=1

log[{1−Qi(s, t)}+Qi(s, t)e
U2

i (s,t)/2] = max
s,t

N∑
i=1

Qi(s, t)U
2
i (s, t)/2. (2.6)

In the above statistic, a sample contributes to the sum if and only if it is a carrier.

Since Qi(s, t) is not observed, we propose to estimate it as follows. Let p ∈ [0, 1) be a

pre-specified prior probability that Qi(s, t) = 1. We consider the posterior distribution

of Qi(s, t), given the data. After maximizing the posterior mean of Qi(s, t) with respect

to the unknown parameters δ, µ, we get estimates

Q̂i(s, t) = max
δ,µ

E[Qi(s, t)|y] = exp{U2
i (s, t)/2}/[rp + exp{U2

i (s, t)/2}], (2.7)
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where rp = (1 − p)/p denotes the prior odds of Qi(s, t) = 0 versus Qi(s, t) = 1.

Substituting Qi(s, t) by its estimated value in (2.6) leads to our weighted sum of chi-

squares statistic:

max
s,t

N∑
i=1

wp[Ui(s, t)]U
2
i (s, t), (2.8)

where

wp(x) = exp(x2/2)/{rp + exp(x2/2)}. (2.9)

Note that small values of p require a more substantial apparent signal from a given

sample before that sample is allowed to make an important contribution to the overall

statistic. For p = 1, we obtain the unweighted sum of chi-squares statistic (2.4).

Assuming that under the null hypothesis U2
i (s, t) has exactly a chi-square distri-

bution, we can easily compute through numerical integration the expectation µp =

E[wp(U)U2] and variance σ2
p = var(wp(U)U2] of the summands in (2.8), and use them

to standardize (2.8) to obtain

Z(p)(s, t) =

[
N∑
i=1

wp{Ui(s, t)}U2
i (s, t)−Nµp

]/
σpN

1/2. (2.10)

This leads us to the weighted scan statistic maxs<t Z
(p)(s, t). In Section 2.5 we will

show via numerical studies that the weighted sum of chi-square statistic has higher

power than the unweighted statistic when only a small subset of all profiles carry the

variant interval.
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2.4 Approximations for the Significance Level

In this section, we describe analytic approximations to the significance level for scan

statistics of the form (2.8). These approximations will be evaluated numerically in

Section 3, and proved in Section 6.

Let ψ(θ) be the log moment generating function of the standardized weighted chi-

square distribution:

ψ(θ) = logE(exp[θ{f(U)− µp}/σp]), (2.11)

where f(U) = wp(U)U2, U ∼ N(0,1), and wp(·) is the weight function defined in (2.9).

Let θ = θb,N be chosen to satisfy ψ̇(θ) = b/N1/2. Let I = N{θψ̇(θ)− ψ(θ)}. Define

β = (2σ2)−1[E{f(U)f ′(U)U} − E{f(U)f ′′(U)}].

All of these quantities can be computed numerically for any given function f .

Then, an approximation to the significance level of the statistic Zmax = max 0<s<t<T
c1T<t−s<c2T

Z
(p)
s,t

is

pr (Zmax > b) ≈ [2πψ̈(θ)]−1/2e−Ib3β2 (2.12)∫ c2

c1

1

u2(1− u)
ν2

[
b(2β/T )1/2

{u(1− u)}1/2

]
du,

where the function ν(x) is defined in Siegmund (1985, p. 85). A simple approximation

for numerical calculations is ν(x) ≈ [(2/x){Φ(x/2) − 1/2}]/{(x/2)Φ(x/2) + ϕ(x/2)},

where ϕ and Φ are the standard normal density and distribution function, respectively.

In (2.12), [2πψ̈(θ)]−1/2e−I arises from an approximation of the marginal probability
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pr(Z
(p)
s,t > b) for the specific window (s, t). The rest of (2.12) is a multiple testing

correction for taking the maximum over all possible windows. The marginal term is

based on large deviation techniques, while the multiple testing correction is derived by

approximating the local increments of {Z(p)
s,t } by a Gaussian process. For a numerical

example, consider the unweighted case, where f(U) = U2. Take T = 1000, T0 = 100

and N = 200. The approximation (2.12) gives a 0.05 significance threshold threshold

of b ≈ 5.09. A 1000 repetition simulation experiment gives as p-value for this threshold

the value 0.047. In Section 3 we report more extensive simulations.

While (2.12) seems reasonable as a rough approximation, its heuristic derivation

involving a combination of Gaussian and non-Gaussian calculations cannot be made

mathematically rigorous. We propose a second approximation for the sum of chi-

squares statistic, which is theoretically more satisfactory and much more accurate in

situations where N is small. Since this alternative approximation relies on the radial

symmetry and other special properties of the sum of chi-squares statistic, it can not

be applied to the weighted chi-squares. The approximation given in Siegmund (1988)

for N = 1 can be directly generalized to arbitrary N , but the generalization is overly

conservative, since it in effect approximates spheres locally by their tangent planes. To

describe the improved approximation, let Z̃(s, t) = {
∑N

1 U
2
i (s, t)}1/2 denote the usual

Euclidean norm of the vector (U1(s, t), . . . , UN(s, t))′. Then

pr

(
max

0<s<t<T
c1T<t−s<c2T

Z̃s,t > b

)
≈ .5b4(1− N − 1

b2
)3fN(b2) (2.13)∫ c2

c1

1

u2(1− u)
ν2

[
b{1− (N − 1)/b2}
{Tu(1− u)}1/2

]
du,
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where fN is the chi-square density with N degrees of freedom. See Section 6.2 for a

derivation of this approximation.

2.5 Power

Assuming that there is a variant interval at (τ1, τ2], we now consider the power of

the unweighted and weighted chisquares statistics in detecting this interval. As an

approximation to the power, we consider the probability

pr{Z(p)(τ1, τ2) > b},

where b = bp is the threshold chosen to achieve a pre-chosen significance level, say

0.05. This probability is a lower bound on the true power, which also involves the

(relatively small) probability that Z(p)(s, t) < b for (s, t] = (τ1, τ2], but exceeds b

for nearby s, t. By the central limit theorem, we approximate this probability by

regarding Z(p) as normally distributed with mean and variance that can be numerically

computed for a given alternative distribution. For example, consider the sum of chi-

squares statistic (p = 1), where explicit analytic formulas can be easily obtained:

The expectation of Z(τ1, τ2) is (τ2 − τ1)
∑

i∈J (δi/σi)
2/(2N)1/2, and the variance is

1 + 2(τ2 − τ1)
∑

i∈J (δi/σi)
2. To simplify the numerical examples to follow, we assume

that δi/σi = ∆ for all i ∈ J . Also let π denote the cardinality of J divided by N , i.e.,

the proportion of sequences having true variant intervals at (τ1, τ2]. The expectation

of Z(τ1, τ2) then becomes

N1/2π(τ2 − τ1)∆2/21/2,
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which depends in a simple way on the the proportion of carriers, the length of the

variant interval, and the magnitude of change. For the weighted sum of chi-squares

statistic the expectation will again be directly proportional to the product of N1/2, π,

and a function of ξ, although now this function must be computed numerically.

For a simple numerical illustration, consider the example discussed in Section 2.4,

for which 0.05 level significance thresholds are b = 5.09 and b = 7.8 respectively for

the unweighted and weighted (rp = 100) statistics. Suppose ξ = 3 and π = 0.07. The

approximate power for the unweighted statistic is 0.79, and increases to 0.94 for the

weighted statistic. For a smaller effect size and a larger proportion of carriers, the

relation can be reversed. For ξ = 2 and π = 0.15, the approximate power for the

unweighted statistic is 0.73, and decreases to 0.63 for the weighted statistic. More

extensive numerical comparisons are given in Section 3.

2.6 Search Algorithm for Multiple Variant Intervals

In general the data contains several, possibly nested, variant intervals. We now de-

scribe algorithms for simultaneously segmenting multiple sequences. In design of the

algorithms, we found it useful to distinguish between two scenarios: In the first sce-

nario, the variant intervals are short and reasonably well separated. For example, in

the analysis of DNA copy number data collected from normal tissue samples, the copy

number variants usually involve changes of small magnitude over short segments that

are well separated along the genome. In this case simultaneous detection of all variant

intervals can be achieved by a straightforward scanning procedure, as implemented in

Algorithm 2.1 below.
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In the second scenario, the variant intervals comprise a substantial portion of the

sequences being analyzed, and changes may be overlapping or nested. An example

is DNA copy number data collected from cancer samples, where somatic aberrations

often span entire chromosomes or chromosome arms. In these cases the more complex

Algorithm 2.2, which involves a recursion, works better. Algorithm 2.2 resembles the

iterative CBS procedure proposed by Olshen et al. (2004) for segmentation of a single

sequence. For multiple sequences it requires that in the course of the recursion we

identify which sequences are carriers of the variant intervals, for which we discuss

possible solutions below.

Algorithm 2.1. Fix a global significance level α, a parameter p ∈ (0, 1] (or equiva-

lently rp), a maximum window size T0 < T , and an overlap fraction 0 < f < 1.

1. For each {(s, t) : 1 ≤ s < t ≤ T, t−s < T0}, compute zs,t,obs, the observed value

of (2.10), and let ps,t = pr(Zmax > zs,t,obs) denote the global p-value associated

with the interval (s, t].

2. Let S = {(s, t) : ps,t < α}. Rank the pairs in S from smallest p-value to largest.

3. Starting from the first element in S, if it overlaps by more than f with any of

the segments ranked before it in S, eliminate it from S.

The set of variant intervals reported would be the final set S.

Algorithm 2.2. Fix the global significance level α, parameter p, and a maximum

window T0 < T . We denote by yh:k the matrix {yi,t : 1 ≤ i ≤ N, h ≤ t ≤ k}.

1. Initialize T1 = 1 and T2 = T .
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2. Compute

Zmax = max
T1≤s<t≤T2
1≤t−s≤T0

{Z(p)(s, t)}.

Let (s∗, t∗) be the maximizing interval.

3. If the p-value of Zmax, as computed using the approximations in Section 2.4, is

less than α, then for each (u, v) ∈ {(T1, s
∗ − 1), (s∗, t∗), (t∗ + 1, T2)}, do:

(a) Determine which samples carry the variation, as described below. If a sample

carries the variation, let ŷi,u:v = ȳi,u:v, and for the other samples let ŷi,u:v =

ȳi,T1:T2 . Let y′u:v = yu:v − ŷu:v.

(b) Repeat steps 2-3 for T1 = u, T2 = v and the newly normalized y′u:v.

This second algorithm is understandably slower than Algorithm 2.1, because recom-

putation of Zmax for each of the three sub-segments every time a changed segment is

found is an O(NTT0) operation. Thus, if T is large, and if there are many variant

intervals, the algorithm is much slower than Algorithm 2.1. However, it is as fast as

separately applying CBS (Olshen et al., 2004) to each of the individual sequences.

When a variant interval is identified across samples, it is often of interest to deter-

mine its carriers. This is in fact a necessary part of Algorithm 2.2. One approach is to

classify as carrier those samples whose statistic U2
i,s,t falls above a suitable threshold.

A second approach for classifying sequences is to use the absolute difference in median

between points inside (s, t] and points outside that interval. Certain experimentally

verified CNVs contain only one or two SNPs, but are shared across a substantial pro-

portion of the samples. These short intervals are a significant part of the motivation

for multi-sample analysis, although they are often ignored in favor of long intervals of
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small change if U2
i,s,t is used by itself to select individual samples.

For application to DNA copy number data in Section 4, we use a combination of

both types of thresholding. If a multi-sample scan identifies a variant interval at (s, t],

we decide that the ith sample is a carrier if both of the following two conditions hold:

1. the difference in median between inside and outside of the region is greater than

δµσ̂i,

2. the p-value of the sequence and interval specific chi-square statistic, U2
i (s, t), is

less than δχ
2
.

We chose the thresholds δµ and δχ
2

to achieve the best performance on a set of validation

data described in Section 4.3. These rules for classifying the samples rely on two

quantities: The effect size (shift in mean divided by standard deviation) and length of

the interval. Figure 2 shows the region in the (effect size) × (interval length) plane

where a sample would be classified as a carrier, using values of δµ and δχ
2

that work

well on the validation data set. Figure 2 also shows the detection curve for a single

sample scan of the entire genome containing 500,000 Illumina probes at a maximum

window size of 200 and global p-value of 0.01. The area between the two detection

boundaries are those (effect size) × (interval length) combinations that are missed in a

single sample scan, but possibly detectable in a multi-sample scan through the pooling

of information across samples.

These classification rules are designed specifically for analysis of DNA copy number

data. For other types of data, different rules for identifying sequences carrying the

variant intervals, perhaps incorporating problem specific knowledge and objectives,

may be appropriate.
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3 Numerical Experiments

We used Monte Carlo simulations to test the accuracy of the significance level approx-

imation (2.12) for N = 100, T = 500, T0 = 50, and prior odds rp ∈ {0, 10, 100}. The

results are plotted in Figure 3. We see that the analytic approximations agree rea-

sonably well with Monte Carlo results for small p-values (< 0.05). The quality of the

approximation degrades with an increase in rp. However, for the range of rp that we

examined in this numerical experiment, the analytical approximations are close enough

to provide useful practical guidelines.

Approximation (2.12), which involves the assumption of normality in estimating

the multiple-testing correction, performs well when N is large. For small values of N ,

approximation (2.13) should be used for the sum-of-chisquares test statistic. Figure

4 compares Monte Carlo simulation results with approximations (2.12) and (2.13) at

values of N = 3, 20 and 40. As expected, the approximation (2.12) is too conservative

for small values of N , but (2.13) is fairly accurate.

We also evaluated the power of the test under the same settings (N = 100, T = 500,

T0 = 50) at different levels of signal strength ξ and population frequency π, as defined

in Section 2.5, and at different values for the prior odds rp. Power is evaluated at

significance level 0.05, with the rejection threshold computed theoretically via (2.12).

It is our expectation that, due to the effect of rp in downweighting small chi-square

values, one would gain power using larger rp if the proportion of carriers π in the set of

samples is small. Figure 5, which shows the curve of power versus ξ at different levels

of π and different rp, confirms this expectation. We expect that for different sample

sizes, sequence lengths, or significance levels, the relationship between the curves would
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be different. However, the power can be approximated via a fast and easy formula,

and thus in applications can be directly computed for the scenario of interest.

4 Analysis of DNA Copy Number Data

4.1 Scientific Background and Pre-processing of CNV Data

DNA copy number variants (CNVs) are an important class of genetic variation (recently

reviewed in Scherer et al. (2007)), and may underlie a broad spectrum of human traits

and diseases (Fanciulli et al., 2007; Perry et al., 2007; Hollox et al., 2007). Some

CNVs are inherited and, as for other forms of genetic variation, can attain high allele

frequencies in the population and become common or “recurrent” CNVs (Khaja et al.,

2007; Redon et al., 2006; Conrad et al., 2006; McCarroll et al., 2006). Some other

CNVs are de novo, i.e, generated by germline mutations and are observed in a child

but not in his/her parents (Turner et al., 2007). Finally, there is also the category of

somatic CNVs, most noticeably those occurring in cancer cells (reviewed in Pinkel &

Albertson (2005)). These CNVs may confer growth advantages and are observed in a

high proportion of cells in a given tumor sample, or in a large number of samples of a

given kind of tumor.

In this paper, we focus on the de novo detection of inherited CNVs. Since these

CNVs are population level polymorphisms due to a single mutation event in the history

of the cohort, the break points should be exactly shared between samples. These CNVs

are usually relatively short and often involve only 1 copy changes. Since the signal

within each sample is weak, a joint analysis across samples can boost power.
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Although not the focus of this paper, we note that Algorithm 2.2 is very useful for

obtaining a sparse cross-sample summary for a set of samples. Thus, it is especially

useful for copy number analysis in cancer genomes, where a sparse representation of

the genome profiles of a set of tumors is often needed for downstream analysis, such

as for building predictive models of clinical outcome. In current literature, this is

usually done post segmentation. However, chromosomal breakage does not occur at

random in the genome. Instead, they appear in “hot spots” distributed unevenly

across the chromosomes, and often re-use the same CNV-prone breakpoint junctions.

Such patterns of recurrence result from the sequence-specific nature of some of the

key molecular mechanisms responsible for producing new CNVs, such as nonallelic

homologous recombination and retroposition events (Korbel et al., 2007). As long as

some CNV boundaries are shared across samples, a joint analysis which incorporates

information across all samples analyzed is likely to be statistically more robust.

Existing approaches for cross-sample analysis of DNA copy number fall into the

following categories:

1. Frequency plots: In this approach, each sample is separately segmented into

regions of amplification, deletion, or normal copy number. Then, the smoothed

profiles are aligned, and the frequency of amplification or deletion across the

sample cohort is plotted versus the location of each segment. Regions where the

frequency is above a certain threshold are considered regions of interest, and kept

for downstream analyses.

2. STAC Diskin et al. (2006): Each sample is separately segmented into regions of

amplification, deletion, or normal copy number. Then, the samples are aligned,
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high-frequency aberrations are defined, and a permutation method is used to

assess the significance of high-frequency aberrant regions in the sample set.

3. HMM based methods: In Shah et al. (2007), a multi-layer hierarchical hidden

Markov model is used to segment all samples simultaneously. This method in-

volves much more restrictive assumptions on the way that copy number changes

are shared across samples. For example, it assumes that all carriers of a given

CNV must have a change in the same direction, which is often violated in copy

number data from normal samples, as seen in the example in Section 4.4. It

also assumes that all deletions (or gains) for a given sample must have the same

underlying mean, which we also show to be violated in our data set in Figure

1(c,d). A hidden Markov model based approach is also proposed in Wang et al.

(2008), where the change-points are not assumed to be shared across samples.

While Wang et al. (2008) focused on the analysis of cancer data, they mentioned

that a shared change-point model would be desirable for the detection of inher-

ited CNVs, as well as noted the enormous computational task that is inherent to

a hidden Markov model solution for this problem. The output of the methods

from both Shah et al. (2007) and Wang et al. (2008) is a plot by location of the

probability of aberration in any of the samples.

In summary, with the exception of Shah et al. (2007); Wang et al. (2008), most current

studies take the following approach: First, each sample is processed by using exist-

ing copy number estimation methods. Then, the smoothed profiles for the samples

are aligned, and recurrent regions are identified as where the frequency of aberration

across samples is high. We argue, and will show preliminary evidence below, that it is
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beneficial to pool data across samples during the initial segmentation step. We propose

an alternative to hidden Markov models Shah et al. (2007) that can computationally

handle thousands of samples simultaneously, rely on less restrictive model assumptions,

and involve more transparent tuning parameters.

4.2 Data Preprocessing

CNV data contains well documented artifacts, which needs to be removed by pre-

processing. One artifact is local trends, which were first noted in the statistics literature

by Olshen et al. (2004). These local trends correlate with GC content (Bengtsson et al.,

2008), and manifest as local low magnitude shifts in mean that is reproducible across

samples. We observe that on many platforms (including Illumina and Affymetrix), the

local trends in normal samples can be well estimated by the first principal component

of the matrix of y values. This is because in normal samples, CNVs are very short as

compared to the total sequence length, and thus the variation in the data is dominated

by the local trends. Curiously, in most of the data sets we encountered, the local trends

seem to fluctuate continuously in very few dimensions that is captured by the first few

principal components. Thus, we normalize the data by reducing it to the residuals of

its projection on the first 2 principal components.

Still another artifact is badly behaving individual SNPs, which give observations

that are quite different from background in both cross-sample mean and variance. We

standardize each SNP to have median 0 and inter-quartile range 1, to ameliorate the

effect of badly performing SNPs.
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4.3 Detection Accuracy of Inherited CNVs

We assess the accuracy of our CNV detection method on a set of 62 Illumina 550K

Beadchips. The experiments were performed on DNA samples extracted from lym-

phoblastoid cell lines derived from healthy individuals, and were used as part of the

Quality Assessment panel in a genomewide association study recently carried out at

the Stanford Human Genome Center. The 62 samples represent

• 10 sets of (child, parent, parent) trios,

• 16 pairs of technical replicates for 16 independent DNA samples.

To assess detection accuracy, we compare CNVs identified for the two technical repli-

cates of the same individual and those identified for the child with those identified

for the parents. It is not possible to estimate type 1 and type 2 error rates from the

data, but it is possible to define other measures of accuracy. Specifically, we define

“inconsistency” of detections of CNVs in individual samples as follows:

• If a detected CNV in one of the replicate pairs is not detected in the second

sample of the pair, the CNV is considered inconsistent. In this case, either the

detection is a false positive or there is a false negative in the other sample.

• If a detected CNV in the child is not detected in at least one of the parents, it is

considered inconsistent. In this case, neglecting the rare event that the detection

represents a de novo mutation, either the detection made in the child is a false

positive or there is a false negative in one or both of the parents.

In this way, detections made in the child samples and in the replicate sample pairs can

be classified as consistent or inconsistent. The detections made in the parent samples
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are used only to validate the detections made in the child samples, and are not counted

towards the total number of detections. Detection accuracy is thus assessed by plotting

the number of consistent versus inconsistent detections, and different methods can be

compared in such a plot. As described in the previous Section, after an interval of

CNV is found at a location (s, t], one still needs to decide, for each sample, whether

it carries the CNV, and the method for doing this affects the level of consistency.

For example, if all of the samples are classified as “changed” at all CNV locations,

then there would be no inconsistencies. The preceding section suggests some practical

thresholding solutions for classification of samples given that a location is detected as

variant.

Figure 6 shows the results for different settings of the parameters rp and the sample

detection thresholds. The horizontal axis is the number of consistent detections and the

vertical axis is the number of inconsistent detections. For example, if a variant interval

is found, and 5 samples are determined to have that variant interval, it contributes

5 detections to the total. If 3 of those detections are validated, then that adds 3 to

the number on the horizontal axis. Note that in the parent child trios, a parent can

validate a child but not vice versa. Each line in the graph represents a different setting

for rp, and dots on the line refer to performance at varying δµMIN , where δµMIN is the

parameter described in the previous Section. As δµMIN decreases, the total number of

detections, as well as the number of inconsistencies, increases.

Figure 6 also plots the results obtained by segmenting each sample individually

using CBS. The curve for CBS is obtained by varying the p-value parameter in the

CBS algorithm. We can see by comparing the multi-sample segmentation Algorithm
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2.1 and CBS that pooling information across samples does indeed improve accuracy.

For example, with 200 inconsistent detections, CBS finds fewer than 200 consistent

variations, while Algorithm 2.1 with rp = 0 finds more than 400 consistent variations.

For these data, the best value for rp in terms of achieving the highest proportion of

consistent detections is rp = 0.

We expect that CNVs found in these samples are inherited changes. Consistent

with this expectation, we found that long variant intervals are rare and that there

is increased power to detect short intervals from pooling data across samples. For a

summary of the length (number of SNPs spanned by the variation) and proportion

(number of samples that carry the variation) for all consistent detections made in the

child and replicate pair samples, see Figure 7 .

Figure 8 shows heat maps of example regions from these data. Heatmaps of the

entire data set and the estimated change-points, which can be found in the online

supplement, show plots of the data in blocks of 1000. Figure 8 shows a few smaller

regions in finer detail. For each heatmap, the rows correspond to samples, and the

columns correspond to SNPs. The top panel is the raw data, the bottom panel is

the estimated copy numbers. The copy number estimated were obtained with rp = 0,

δχ
2

MIN = 10−4, and δµMIN = 0.4. Each panel has two sample sets separated by a

horizontal blue line. The samples above the blue line are the (child, parent, parent)

trios; each trio is plotted together in that order. The samples below the blue line are

the replicate pairs; the pairs are laid next to each other. Therefore the CNVs detected

above the blue line should occur in 2-out-of-3’s, whereas the CNVs detected below the

blue line should occur in pairs. As one can verify from inspection of the heatmaps,
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most of the consistent CNVs are very short and occur in only a small fraction of this

cohort.

A substantial fraction of the detections are inconsistent. From visual inspection,

we believe that many of the inconsistencies are caused by two types of experimental

artifacts: (1) Low quality SNPs, which have higher variance than the rest of the data

and produce a larger sum-of-(weighted)-chisquares statistic. Fortunately, on many

platforms these SNPs can be flagged in the data normalization step and thrown out.

(2) Local trends, which have been observed in Illumina Beadarray data as well as in

other platforms. These trends occur for various reasons that are not well understood

(Olshen et al. (2004)), and are often shared by samples that are processed in the same

batch. Checking whether samples that carry a low frequency variation belong to the

same batch is a good way to spot this artifact.

4.4 Example Analysis of a Complex Region

As is well documented in the Database of Genomic Variants (Iafrate et al., 2004),

chromosome 22 contains a complex region of nested deletion at cytoband 22q11 that

has several variant forms in the population. Many samples among the 62 sample data

set we described in Section 4.3 carry this variant region, as is clearly noticeable in the

heatmap of Figure 9. Since this variant interval contains nested changes, Algorithm

2.2 is preferred to Algorithm 2.1 for its analysis. We use this example to illustrate the

application of Algorithm 2.2.

We consider only the first 2000 SNPs mapping to chromosome 22, shown completely

in the top panel of Figure 9. We applied Algorithm 2.2 to this region with parameters
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α = 0.001, rp = 0, δµ = 0.2, and δχ
2

= 0.001. The segmentation is shown in the

lower panel of Figure 9. From the segmentation, we see that there are 3 visually

noticeable variant regions. The first region is at SNPs (416, 442), which corresponds

to positions 17,017-17,368 kilobases. Compared to the rest of the cohort, both gains

and losses in this region are observed. The second region spans SNPs 996 to 1329

( positions 20706 to 21549 kilobases), and contains several layers of nested deletions

with change-points at SNPs (1167, 1217, 1309, 1321). corresponding to chromosomes

positions (20996, 21110, 21379, 21436) Kb. Comparing the top and bottom panels of

Figure 9, we see that the recursive Algorithm 2.2 reconstructs this complex region quite

well. The third visible copy number variant is SNPs 1830-1880 (at positions 23986-

24234 kilobases), which also has at least 3 copy number levels in this sample set. All

of the copy number estimates in the child and replicate samples for these three variant

regions are validated.

5 Conclusions

We have discussed a general statistical problem: simultaneous detection of shared

change-points that define variant intervals in a subset of a collection of sequences. We

have shown the potential advantages of such an approach to the analysis of chromoso-

mal copy number variation of DNA sequences.

The formulation we have chosen was motivated by the success of Olshen et al. (2004)

in their analysis of CNVs in single sequences. It is doubtful that any one approach

can be optimal in problems of this complexity, and it would be useful to extend other

single sequence methods to deal with multiple sequences. A useful version of hidden
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Markov models would be particularly welcome. There is one multi-sequence HMM of

which we are aware (Shah et al., 2007) and for which there is readily available and

easily used software. However, in our experience it would not run in any reasonable

length of time on even moderate numbers of sequences. We are also developing a multi-

sequence version of the Bayes Information Criterion for model selection that we used

for single sequence analysis (Zhang and Siegmund, 2006). There are a number of ad

hoc modifications of single sequence methods that have been suggested for dealing with

multiple sequences. It would be interesting to make a comparison of these methods

along the lines of Lai et al. (2007) for single sequences.

We have concentrated on inherited CNVs, a majority of which occur in relatively

short and non-overlapping intervals across individuals. We also studied cancer-related

CNVs, which are often substantially longer and more complex. The straightforward

Algorithm 2.1 seems sufficient to detect most inherited CNVs. The substantially more

complex Algorithm 2.2, developed to deal with cancer related CNVs, contains two

free parameters. While these parameters are to some extent arbitrary, they are easily

interpreted and compared. Additional empirical experimentation may be required to

determine the stability of the parameter values we have used.

The advantages of simultaneous analysis of multiple sequences is most apparent

for inherited CNVs, which are hypothesized to align because of a common mutational

origin and which often give a signal too weak to be detected in single sequence analysis.

Cancer related CNVs are typically longer and can often be detected in single sequence

analysis. In this case a potential advantage of simultaneous analysis is a relatively

clean cross-sample summary of the data for downstream calculations trying to discover

29



the relationship between CNVs and cancer phenotypes.

6 Appendix

6.1 Proof of (2.12)

Here we sketch the theoretical arguments leading to the approximation (2.12). The

analysis given is a slight modification of the methods used in Siegmund (1988). Instead

of the process Z(p)(s, t), we consider a more general process

Zf,N
s,t = {N1/2σf}−1

N∑
i=1

[f{Ui(s, t)} − µf ],

where Ui(s, t) is the χ-distributed random variable defined as in (2.3) for sample i, f is

an arbitrary “well-behaved” function, and µf = Ef{Ui(s, t)}, σ2
f = varf [Ui(s, t)]. For

simplicity of notation we sometimes omit f and N in our notation and simply write

Z(s, t), µ, and σ. Since Zs,t is a mean and variance standardized sum of N independent

and identically distributed processes, for large N , Zs,t is approximately a Gaussian

process on the two dimensional indexing set D = {(s, t) : 1 < s < t < T, t− s < T0}

with zero mean and covariance function

ρ(s, t, u, v) = cov[Zs,t, Zs,t] =
cov[f{U1(s, t)}, f{U1(u, v)}]

σ2
f

. (6.1)

Note that because of the standardization, for any (s, t) ∈ D, ρ(s, t, s, t) = var[Zs,t] = 1.

Let

J = J(s, t) = {(u, v) ∈ D : v < t or v = t and u < s}.
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Then,

pr(max
s,t∈D

Zs,t > b) =
∑
s,t∈D

∫ ∞
0

pr(Zs,t ∈ b+ dx)pr( max
u,v∈Js,t

Zu,v < b|Zs,t = b+ x)

=
∑
s,t

1

b

∫ ∞
0

pr(Zs,t ∈ b+ dx/b)pr( max
u,v∈Js,t

Zu,v < b|Zs,t = b+ x/b)

≈ ϕ(b)

b

∑
s,t

∫ ∞
0

e−xpr( max
u,v∈Js,t

b(Zu,v − Zs,t) < −x|Zs,t = b)dx (6.2)

(6.3)

In (6.3), we applied the Gaussian approximation to the marginal distribution of Zs,t.

Later, we will give an improved approximation that corrects for non-normality. This

correction is important because in most cases the distribution of f(U) is highly skewed.

We now treat the term inside the integral in (6.3). Again we regard Z as a Gaussian

random field. Under this assumption the conditional mean and variance of b(Zu,v−Zs,t)

are

E{b(Zu,v − Zs,t)|Zs,t = b} = b2{ρ(s, t, u, v)− 1}, (6.4)

var{b(Zu,v − Zs,t)|Zs,t = b} = b2{1− ρ2(s, t, u, v)}. (6.5)

One can verify that ρ is not differentiable in u, v at (u, v) = (s, t), but that the left

and right derivatives have the same absolute magnitude. Let

ρ′1(s, t) = lim
δ↑0

∣∣∣∣ρ(s, t, s+ δ, t)− ρ(s, t, s, t)

δ

∣∣∣∣ ,
ρ′1(s, t) = lim

δ↑0

∣∣∣∣ρ(s, t, s, t+ δ)− ρ(s, t, s, t)

δ

∣∣∣∣ (6.6)
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then for small values of (ε1, ε2),

ρ(s, t, s+ ε1, t+ ε2) ≈ 1 + ρ′1(s, t)ε1 + ρ′2(s, t)ε2,

ρ2(s, t, s+ ε1, t+ ε2) ≈ 1 + 2ρ′1(s, t)dε1 + 2ρ′2(s, t)ε2,

and thus,

E{b(Zs+ε1,t+ε2 − Zs,t)|Zs,t = b} ≈ −b2 {ρ′1(s, t)ε1 + ρ′2(s, t)ε2} , (6.7)

var{b(Zs+ε1,t+ε2 − Zs,t)|Zs,t = b} ≈ 2b2 {ρ′1(s, t)ε1 + ρ′2(s, t)ε2} . (6.8)

In a small neighborhood of (s, t] the conditional process b(Zs+ε1,t+ε2−Zs,t) behaves like

the sum of two independent random walks with negative drifts and with variances equal

to twice the absolute drift. Because the drift is negative and of order O(b2) = O(T ),

we assume that the probability that b(Zu,v − Zs,t) crosses the −x threshold when

(u, v) are outside of a O(1) neighborhood of (s, t) is negligible. Therefore, in the O(1)

neighborhood of (s, t), Lemma 4 of Siegmund (1988) applies to give the approximation:

pr{ max
u,v∈Js,t

b(Zu,v − Zs,t) < −x|Zs,t = b)

= pr{max
n≥1

Wn ≤ −x}pr{min
n≥0

Wn + min
n≥1

W ′
n ≥ x},

where Wn is a random walk with drift −b2ρ′1 and variance 2b2ρ′1, while W ′
n is a second

random walk, independent of the first, with drift −b2ρ′2 and variance 2b2ρ′2. Plugging
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this into (6.3), we have

ϕ(b)

b

∑
s,t

∫ ∞
0

e−xpr{max
n≥1

Wn ≤ −x}pr{min
n≥0

Wn + min
n≥1

W ′
n ≥ x}

Then, Lemma (21) from Siegmund (1992) can be used to evaluate the integral above

to get

pr{max
s,t∈D

Z(s, t) > b} ≈ ϕ(b)b3
∑
s,t∈D

ρ′1(s, t)ρ
′
2(s, t)ν

[
b0{2ρ′1(s, t)}1/2

]
ν
[
b0{2ρ′2(s, t)}1/2

]
,

(6.9)

where b0 = b/N1/2.

6.1.1 Approximations of ρ′1, ρ
′
2

First we look at the sum of chi-square statistic, where f(x) = x2. In this special case,

a simple approximate analytic form for ρ(s, t, u, v) exists. For two values x and y, we

use the notation x ∨ y = min(x, y) and x ∧ y = max(x, y). Then for large T ,

ρ(s, t, u, v) = cov(U2
1,s,t, U

2
1,u,v) =

{t ∨ v − s ∧ u− (t− s)(v − u)/T}2

(t− s){1− (t+ s)/T}(v − u){1− (v + u)/T}
.

Computing the one-sided derivatives (6.6) for this correlation function, we have:

ρ′1(s, t) = ρ′2(s, t) = [(t− s){1− (t− s)/T}]−1 (6.10)
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Noting that ρ′1(s, t) and ρ′2(s, t) are both functions only of k = t−s, and approximating

the summation over (s, t) in (6.9) by an integral, (6.9) becomes

ϕ(b)b3
∫ δ1

δ0

1

u2(1− u)
ν2

[
21/2b0

{u(1− u)}1/2

]
du, (6.11)

which, after correction for non-Gaussianity of Zs,t as described in Section 6.1.2, would

be equivalent to (2.12) in the case of β = 1.

Next, we consider general functions f where we may not know the explicit analytical

form of ρ[s, t, u, v]. For small a,

E{f(Us,t)f(Us−a,t)}

≈ E

[
f(Us,t)

{
f(Us,t) +

∞∑
k=1

f (k)(Us,t)(Us−a,t − Us,t)k/k!

}]
. (6.12)

An easy calculation of covariances shows that the numerator of Us,t, namely St − Ss −

(t − s)ST/T has the same joint distributions as the conditional joint distributions of

St − Ss given that ST = 0. In what follows, it will be convenient to consider these

conditional distributions, for which we will add a subscript of 0 to the usual notation

for expectations, variances and covariances. Thus, for example, E(·|ST = 0) = E0(·).

Let r = t − s and Wr = St − Ss. The (conditional) distribution of Us−a,t − Us,t is

the same as that of

Wr+a

[(r + a){1− (r + a)/T}]1/2
− Wr

{r(1− r/T )]1/2

=
Wr+a −Wr

[(r + a){1− (r + a)/T}]1/2
+Wr

[
1

[(r + a){1− (r + a)/T}]1/2
− 1

{r(1− r/T )}1/2

]
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≈ Wr+a −Wr

[(r + a){1− (r + a)/T}]1/2
+Wr

[
−1 + 2r/T

{r(1− r/T )}3/2

](a
2

)
. (6.13)

Computing the first and second moment of Wr+a −Wr conditioned on Wr, we have:

E0{Wr+a −Wr|Wr} = −aWr/{T (1− r/T )},

var0{Wr+a −Wr|Wr} = a(1− a/T ) +O(a2).

One can also verify that, since Wr is Gaussian, all higher (conditional) moments of

Wr+a −Wr are o(a) and thus negligible. Therefore, we only need to keep the first two

terms in the Taylor series expansion in (6.12). Letting

κ(r) =
1

r(1− r/T )
,

we can use the conditional moments computed above to get

E{Us−a,t − Us,t|Us,t} =

[
r(1− r/T )

(r + a){1− (r + a)/T}

]1/2{ −a
T (1− r/T )

}
Us,t

+

{
−1 + 2r/T

r(1− r/T )

}(a
2

)
Us,t

≈ aκ(r)Us,t/2,

E{(Us−a,t − Us,t)2|Us,t} = E0

[
Wr+a −Wr

[(r + a){1− (r + a)/T}]1/2
|Wr

]
+O(a2)

=
a(1− a/T )

(r + a){1− (r + a)/T}

≈ aκ(r)/2
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Plugging the above into (6.12),

E{f(Us,t)f(Us−a,t)} ≈ E{f(Us,t)
2} − E{f(Us,t)f

′(Us,t)Us,t}
aκ(t− s)

2

+E{f(Us,t)f
′′(Us,t)}

aκ(t− s)
2

.

Thus,

cov{f(Us−a,t), f(Us,t)} = E{f(Us−a,t)f(Us,t)} − µ2

= σ2 + [E{f(Us,t)f
′′(Us,t)} − E{f(Us,t)f

′(Us,t)Us,t}]
aκ(t− s)

2
,

and

ρ′1(s, t) = lim
a→0

a−1
∣∣σ−2cov{f(Us−a,t), f(Us,t)]− 1

∣∣
=

E{f(Us,t)f
′(Us,t)Us,t} − E{f(Us,t)f

′′(Us,t)}
2σ2

κ(t− s). (6.14)

The computation of ρ′2(s, t) can be carried out exactly as above, since none of the steps

except for (6.13) depends on whether we are differentiating s or t, and (6.13) relies only

on r = t− s. Thus ∂r/∂s = −∂r/∂t, although the a in (6.13) becomes −a for ρ′2(s, t),

so ρ′2(s, t) = ρ′1(s, t). Given that Us,t is χ distributed and f , f ′ are known, ρ′1(s, t) can

be computed numerically using this formula.

For example, using (6.14) on the simple one sample change-point case f(x) = x, we

have

E{f(Us,t)f
′(Us,t)Us,t} − E{f(Us,t)f

′′(Us,t)}
2σ2

=
E{U2

s,t}
2

= 1/2,

giving us ρ′1(s, t) = κ(t − s)/2, which, when plugged into (6.9), gives us the signif-
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icance level approximation in Siegmund (1992). For the sum-of-chisquare statistic

(2.5), f(x) = x2 and σ2
f = 2, and therefore,

E{f(Us,t)f
′(Us,t)Us,t} − E{f(Us,t)f

′′(Us,t)}
2σ2

=
2E{U4

s,t} − 2E{U2
s,t}

4
= 1,

giving us ρ′1(s, t) = κ(t − s), which is the same as what we get by differentiating the

exact form of the covariance function in (6.10).

6.1.2 Correction for non-normality

In (6.3), we used the Gaussian approximation

pr(Zs,t ∈ b+ dx/b) ≈ (2π)−1/2 exp {−(b+ x/b)2/2}dx/b ≈ ϕ(b)e−xdx/b.

Since in most cases f(U) is highly skewed (e.g. f(U) = U2 in the sum of chi-square

statistic), we replace the above with an improved approximation obtained as follows by

a standard argument: Let g(U) = {f(U) − µf}/σf . Then Zs,t =
∑N

i=1 g(Us,t,i)/N
1/2.

Let ψ(θ) be the log moment generating function of g(U), and θ = θb,N be the positive

value that satisfies N1/2ψ̇(θb,N) = b. This root is easily found numerically, since ψ is

increasing on (0,∞) and convex. Let prθ be the tilted measure

prθ(g(U) ∈ dx) = eθx−ψ(θ)pr{g(U) ∈ dx}
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and let Eθ denote expectation under this measure. Then by a local central limit theorem

pr(Z ∈ b+ dx/b) = Eθ{e−θN
1/2Z+Nψ(θ);Z ∈ b+ dx/b}

≈ {2πψ̈(θ)}−1/2e−θN
1/2(b+x/b)+Nψ(θ)dx/b.

A simple linear approximation ψ̇ for θ near 0 suggests the approximation θ ≈ b/N1/2

(for Gaussian variables this is exact), and hence

pr(Z ∈ b+ dx/b) ≈ {2πψ̈(θ)}−1/2 exp (−I)e−xdx/b,

where I = N{θψ̇(θ) − ψ(θ)}. This approximation, when used in (6.3) in place of

ϕ(b) exp(−x)dx/b and combined with the appropriate value of β, leads to (2.12).

6.2 Modifications to prove (2.12)

We indicate briefly here modifications of the proof of (2.11) required to prove (2.12).

Observe that c in (2.12) is given in terms of b in (2.11) by c = {b(2N)1/2 +N}1/2. This

means that c2 and N are of the same order of magnitude when N is large. Also, the

marginal distribution of Z̃s,t is χ with N degrees of freedom. From a straightforward

approximation for large c of pr{Z̃s,t ∈ c+ dx/c}, in which we do not neglect N/c2 even

though c is assumed large, we find that the simple exponential e−x that arises under

the integral sign in the last line of (6.2) now becomes exp[−x{1− (N − 1)/c2}], while

the normal density in front of the integral is replaced by the χ density evaluated at c.

Conditioning on Z̃s,t, we now consider a two term Taylor series expansion of the

increments c(Z̃s+ε1,t+ε2 − Z̃s,t). We can by spherical symmetry assume without loss of
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generality that all the coordinates of the vector (U1(s, t), . . . , UN(s, t))′ are zero except

for the first one. The expansion of c(Z̃s+ε1,t+ε2 − Z̃s,t) contains linear terms in the first

coordinate direction in the form of the sum of two random walks indexed by εi, i = 1, 2

with (negative) means and variances proportional to c2/[2(t − s){1 − (t − s)/T}], cf.

(6.6) and (6.7), and independent quadratic terms in the N − 1 orthogonal directions

with means proportional to (N−1)/[2(t−s){1−(t−s)/T}] and variances proportional

to (N−1)/[(t−s){1−(t−s)/T}]2. Asymptotically important values of t−s are of order

c2, so stochastic fluctuations of the quadratic terms are negligible. The consequence

of adding (N − 1)/[2(t− s){1− (t− s)/T}] to the means of the random walks is that

both the exponential under the integral and the drift of the local random walks are

modified by the same correction factor: 1− (N −1)/c2, while the variances of the local

random walks remain unchanged. Hence Lemma 4 of Siegmund (1992) applies again

to yield (2.12).

Remark. A similar problem was considered by Siegmund and Yakir (2000), but the di-

mension N was regarded as small and fixed, which made it reasonable to approximate a

sphere of large radius in N dimensional Euclidean space locally by tangent hyperplanes.

This leads to a similar approximation, but without the factor 1 − (N − 1)/c2, which

arises in our analysis because N is sufficiently large that the curvature of the sphere

should not be neglected. Numerical examples show that the simpler approximation

deteriorates sharply with increasing N , while the accuracy of the new approximation

is essentially independent of N , as Figure 2 illustrates.
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a. b.

c. d.

Figure 1. Histograms (a,b) show the sample means within two example copy number variant regions.
There are 62 samples, so each histogram represents the counts for 62 numbers. Both CNV are deletion
polymorphisms. The triangles show the means for the validated carriers among the samples. Observe that
the triangles have a wide spread in values, suggesting that the model needs a separate mean shift for each
sample within the same CNV. Figures (c,d) are histograms for {yit : t = 1, . . . , T} for two different
samples. The triangles show the values of δi(τ1, τ2) for validated variant intervals τ1, τ2 on chromosome
5 for that sample. Observe again that the triangles have a wide spread in values, suggesting that the shift
in mean is different across variant intervals within the same sample.
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Figure 2. The light gray region shows the values of segment length (τ2 − τ1) and effect size (δi/σi) that

are classified as carrier for a detected variant interval. This region is determined by setting δχ
2

= 10−5

and δµ = 1.5. The dotted line is the rejection boundary for a single sample scan with T = 500, 000 data
points, T0 = 200, and global p-value of 0.01. The dark gray region between the two boundaries contain
those values that are missed in a single sample scan, but possibly detectable in a multi-sample scan.
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Figure 3. Significance curves approximated by analytic formula and by Monte Carlo at setting N = 100,
T = 500, T0 = 50, and rp values of 0, 10, and 100.
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Figure 4. Significances curve approximated by analytic formula and by Monte Carlo at setting rp = 0,
T = 500, T0 = 50, and number of samples N = 3, 20, and 40.
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Figure 5. Power curves for varying levels of rp and varying proportion. In this example, N = 100, T = 500,
and T0 = 50. Significance level is fixed at 0.05.

50



Figure 6. Comparison of a single sample method (CBS, Olshen et al. 2003) with cross sample segmentation
using different values for rp. The global significance value α = 10−3. The sample calling thresholds are

δµMIN ∈ {0.2, 0.3, 0.4} and δχ
2

MIN = 10−4.
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Figure 7. Summary of the consistent CNVs found for validation data set (rp = 0, δMIN = 0.4). Top:
scatter plot of number of snps versus proportion of the 62 sample set that have the anomaly for the total
of 211 regions identified. Bottom left: histogram of number of SNPs in each anomalous region. Bottom
right: histogram of the proportion (%) of the samples that have the anomaly.
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Figure 8. Example of two regions containing both multi-SNP and single SNP copy number variations in

the 62 sample validation data. The parameters used were rp = 0, δµMIN = 0.4, and δχ
2

MIN = 10−4.
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Figure 9. Example 2000 SNP region in cytoband 22q11 containing a complex CNV with nested deletions.
Bottom panel shows segmentation given by Algorithm 2.2.
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